1
|
Zhang M, Zhai Y, An X, Li Q, Zhang D, Zhou Y, Zhang S, Dai X, Li Z. DNA methylation regulates RNA m 6A modification through transcription factor SP1 during the development of porcine somatic cell nuclear transfer embryos. Cell Prolif 2024; 57:e13581. [PMID: 38095020 PMCID: PMC11056710 DOI: 10.1111/cpr.13581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 01/12/2024] Open
Abstract
Epigenetic modifications play critical roles during somatic cell nuclear transfer (SCNT) embryo development. Whether RNA N6-methyladenosine (m6A) affects the developmental competency of SCNT embryos remains unclear. Here, we showed that porcine bone marrow mesenchymal stem cells (pBMSCs) presented higher RNA m6A levels than those of porcine embryonic fibroblasts (pEFs). SCNT embryos derived from pBMSCs had higher RNA m6A levels, cleavage, and blastocyst rates than those from pEFs. Compared with pEFs, the promoter region of METTL14 presented a hypomethylation status in pBMSCs. Mechanistically, DNA methylation regulated METTL14 expression by affecting the accessibility of transcription factor SP1 binding, highlighting the role of the DNA methylation/SP1/METTL14 pathway in donor cells. Inhibiting the DNA methylation level in donor cells increased the RNA m6A level and improved the development efficiency of SCNT embryos. Overexpression of METTL14 significantly increased the RNA m6A level in donor cells and the development efficiency of SCNT embryos, whereas knockdown of METTL14 suggested the opposite result. Moreover, we revealed that RNA m6A-regulated TOP2B mRNA stability, translation level, and DNA damage during SCNT embryo development. Collectively, our results highlight the crosstalk between RNA m6A and DNA methylation, and the crucial role of RNA m6A during nuclear reprogramming in SCNT embryo development.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Yanhui Zhai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Xinglan An
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Qi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Daoyu Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Yongfeng Zhou
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Sheng Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationThe First Hospital of Jilin UniversityChangchunJilinChina
| | - Ziyi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationThe First Hospital of Jilin UniversityChangchunJilinChina
| |
Collapse
|
2
|
Somfai T, Haraguchi S, Dang-Nguyen TQ, Kaneko H, Kikuchi K. Vitrification of porcine immature oocytes and zygotes results in different levels of DNA damage which reflects developmental competence to the blastocyst stage. PLoS One 2023; 18:e0282959. [PMID: 36930621 PMCID: PMC10022796 DOI: 10.1371/journal.pone.0282959] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
The present study investigated the effects of vitrification of porcine oocytes either at the immature Germinal Vesicle (GV) stage before in vitro maturation (GV-stage oocytes) or at the pronuclear stage after in vitro maturation and fertilization (zygotes) on DNA integrity in relevance with their subsequent embryo development. Vitrification at the GV stage but not at the pronuclear stage significantly increased the abundance of double-strand breaks (DSBs) in the DNA measured by the relative fluorescence after γH2AX immunostaining. Treatment of GV-stage oocytes with cryoprotectant agents alone had no effect on DSB levels. When oocytes were vitrified at the GV stage and subjected to in vitro maturation and fertilization (Day 0) and embryo culture, significantly increased DSB levels were detected in subsequent cleavage-stage embryos which were associated with low cell numbers on Day 2, the upregulation of the RAD51 gene at the 4-8 cell stage (measured by RT-qPCR) and reduced developmental ability to the blastocyst stage when compared with the non-vitrified control. However, total cell numbers and percentages of apoptotic cells (measured by TUNEL) in resultant blastocysts were not different from those of the non-vitrified control. On the other hand, vitrification of zygotes had no effect on DSB levels and the expression of DNA-repair genes in resultant embryos, and their development did not differ from that of the non-vitrified control. These results indicate that during vitrification GV-stage oocytes are more susceptible to DNA damages than zygotes, which affects their subsequent development to the blastocyst stage.
Collapse
Affiliation(s)
- Tamás Somfai
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Seiki Haraguchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Thanh Quang Dang-Nguyen
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Hiroyuki Kaneko
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Kazuhiro Kikuchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
3
|
Glanzner WG, Rissi VB, Bordignon V. Somatic Cell Nuclear Transfer in Pigs. Methods Mol Biol 2023; 2647:197-210. [PMID: 37041336 DOI: 10.1007/978-1-0716-3064-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Somatic cell nuclear transfer (SCNT) has been successfully applied to clone animals of several species. Pigs are one of the main livestock species for food production and are also important for biomedical research due to their physiopathological similarities with humans. In the past 20 years, clones of several swine breeds have been produced for a variety of purposes, including biomedical and agricultural applications. In this chapter, we describe a protocol to produce cloned pigs by SCNT.
Collapse
Affiliation(s)
- Werner G Glanzner
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Vitor B Rissi
- Faculty of Veterinary Medicine, Federal University of Santa Catarina, UFSC, Curitibanos, SC, Brazil
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada.
| |
Collapse
|
4
|
Simultaneous Inhibition of Histone Deacetylases and RNA Synthesis Enables Totipotency Reprogramming in Pig SCNT Embryos. Int J Mol Sci 2022; 23:ijms232214142. [PMID: 36430635 PMCID: PMC9697165 DOI: 10.3390/ijms232214142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Combining somatic cell nuclear transfer (SCNT) with genome editing technologies has emerged as a powerful platform for the creation of unique swine lineages for agricultural and biomedical applications. However, successful application of this research platform is still hampered by the low efficiency of these technologies, particularly in attaining complete cell reprogramming for the production of cloned pigs. Treating SCNT embryos with histone deacetylase inhibitors (HDACis), such as Scriptaid, has been routinely used to facilitate chromatin reprogramming after nuclear transfer. While increasing histone acetylation leads to a more relaxed chromatin configuration that facilitates the access of reprogramming factors and DNA repair machinery, it may also promote the expression of genes that are unnecessary or detrimental for normal embryo development. In this study, we evaluated the impact of inhibiting both histone deacetylases and RNA synthesis on pre- and post-implantation development of pig SCNT embryos. Our findings revealed that transcription can be inhibited for up to 40 h of development in porcine embryos, produced either by activation, fertilization or SCNT, without detrimentally affecting their capacity to form a blastocyst and their average number of cells at this developmental stage. Importantly, inhibiting RNA synthesis during HDACi treatment resulted in SCNT blastocysts with a greater number of cells and more abundant transcripts for genes related to embryo genome activation on days 2, 3 and 4 of development, compared to SCNT embryos that were treated with HDACi only. In addition, concomitant inhibition of histone deacetylases and RNA synthesis promoted the full reprograming of somatic cells, as evidenced by the normal fetal and full-term development of SCNT embryos. This combined treatment may improve the efficiency of the genome-editing + SCNT platform in swine, which should be further tested by transferring more SCNT embryos and evaluating the health and growth performance of the cloned pigs.
Collapse
|
5
|
Glanzner WG, de Macedo MP, Gutierrez K, Bordignon V. Enhancement of Chromatin and Epigenetic Reprogramming in Porcine SCNT Embryos—Progresses and Perspectives. Front Cell Dev Biol 2022; 10:940197. [PMID: 35898400 PMCID: PMC9309298 DOI: 10.3389/fcell.2022.940197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Over the last 25 years, cloned animals have been produced by transferring somatic cell nuclei into enucleated oocytes (SCNT) in more than 20 mammalian species. Among domestic animals, pigs are likely the leading species in the number of clones produced by SCNT. The greater interest in pig cloning has two main reasons, its relevance for food production and as its use as a suitable model in biomedical applications. Recognized progress in animal cloning has been attained over time, but the overall efficiency of SCNT in pigs remains very low, based on the rate of healthy, live born piglets following embryo transfer. Accumulating evidence from studies in mice and other species indicate that new strategies for promoting chromatin and epigenetic reprogramming may represent the beginning of a new era for pig cloning.
Collapse
|
6
|
de Macedo MP, Glanzner WG, Gutierrez K, Bordignon V. Chromatin role in early programming of embryos. Anim Front 2021; 11:57-65. [PMID: 34934530 PMCID: PMC8683133 DOI: 10.1093/af/vfab054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
| | - Werner Giehl Glanzner
- Department of Animal Science, McGill University, Sainte Anne de Bellevue, QC, Canada
| | - Karina Gutierrez
- Department of Animal Science, McGill University, Sainte Anne de Bellevue, QC, Canada
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte Anne de Bellevue, QC, Canada
| |
Collapse
|
7
|
Lin T, Sun L, Lee JE, Kim SY, Jin DI. DNA damage repair is suppressed in porcine aged oocytes. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:984-997. [PMID: 34796342 PMCID: PMC8564305 DOI: 10.5187/jast.2021.e90] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 12/24/2022]
Abstract
This study sought to evaluate DNA damage and repair in porcine postovulatory aged
oocytes. The DNA damage response, which was assessed by H2A.X expression,
increased in porcine aged oocytes over time. However, the aged oocytes exhibited
a significant decrease in the expression of RAD51, which reflects the DNA damage
repair capacity. Further experiments suggested that the DNA repair ability was
suppressed by the downregulation of genes involved in the homologous
recombination (HR) and nonhomologous end-joining (NHEJ) pathways. The expression
levels of the cell cycle checkpoint genes, CHEK1 and
CHEK2, were upregulated in porcine aged oocytes in response
to induced DNA damage. Immunofluorescence results revealed that the expression
level of H3K79me2 was significantly lower in porcine aged oocytes than in
control oocytes. In addition, embryo quality was significantly reduced in aged
oocytes, as assessed by measuring the cell proliferation capacity. Our results
provide evidence that DNA damage is increased and the DNA repair ability is
suppressed in porcine aged oocytes. These findings increase our understanding of
the events that occur during postovulatory oocyte aging.
Collapse
Affiliation(s)
- Tao Lin
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China.,Division of Animal & Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Ling Sun
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China.,Division of Animal & Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Jae Eun Lee
- Division of Animal & Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - So Yeon Kim
- Division of Animal & Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Dong Il Jin
- Division of Animal & Dairy Science, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
8
|
Sirt1 is regulated by miR-135a and involved in DNA damage repair during mouse cellular reprogramming. Aging (Albany NY) 2020; 12:7431-7447. [PMID: 32335545 PMCID: PMC7202538 DOI: 10.18632/aging.103090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
Sirt1 facilitates the reprogramming of mouse somatic cells into induced pluripotent stem cells (iPSCs). It is regulated by micro-RNA and reported to be a target of miR-135a. However, their relationship and roles on cellular reprogramming remain unknown. In this study, we found negative correlations between miR-135a and Sirt1 during mouse embryonic stem cells differentiation and mouse embryonic fibroblasts reprogramming. We further found that the reprogramming efficiency was reduced by the overexpression of miR-135a precursor but induced by the miR-135a inhibitor. Co-immunoprecipitation followed by mass spectrometry identified 21 SIRT1 interacting proteins including KU70 and WRN, which were highly enriched for DNA damage repair. In accordance, Sirt1 activator resveratrol reduced DNA damage during the reprogramming process. Wrn was regulated by miR-135a and resveratrol partly rescued the impaired reprogramming efficiency induced by Wrn knockdown. This study showed Sirt1, being partly regulated by miR-135a, bound proteins involved in DNA damage repair and enhanced the iPSCs production.
Collapse
|
9
|
Glanzner WG, Gutierrez K, Rissi VB, de Macedo MP, Lopez R, Currin L, Dicks N, Baldassarre H, Agellon LB, Bordignon V. Histone Lysine Demethylases KDM5B and KDM5C Modulate Genome Activation and Stability in Porcine Embryos. Front Cell Dev Biol 2020; 8:151. [PMID: 32211412 PMCID: PMC7076052 DOI: 10.3389/fcell.2020.00151] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/24/2020] [Indexed: 12/16/2022] Open
Abstract
The lysine demethylases KDM5B and KDM5C are highly, but transiently, expressed in porcine embryos around the genome activation stage. Attenuation of KDM5B and KDM5C mRNA hampered embryo development to the blastocyst stage in fertilized, parthenogenetically activated and nuclear transfer embryos. While KDM5B attenuation increased H3K4me2-3 levels on D3 embryos and H3K4me1-2-3 on D5 embryos, KDM5C attenuation increased H3K9me1 on D3 embryos, and H3K9me1 and H3K4me1 on D5 embryos. The relative mRNA abundance of EIF1AX and EIF2A on D3 embryos, and the proportion of D4 embryos presenting a fluorescent signal for uridine incorporation were severely reduced in both KDM5B- and KDM5C-attenuated compared to control embryos, which indicate a delay in the initiation of the embryo transcriptional activity. Moreover, KDM5B and KDM5C attenuation affected DNA damage response and increased DNA double-strand breaks (DSBs), and decreased development of UV-irradiated embryos. Findings from this study revealed that both KDM5B and KDM5C are important regulators of early development in porcine embryos as their attenuation altered H3K4 and H3K9 methylation patterns, perturbed embryo genome activation, and decreased DNA damage repair capacity.
Collapse
Affiliation(s)
- Werner Giehl Glanzner
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Karina Gutierrez
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Vitor Braga Rissi
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | | | - Rosalba Lopez
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Luke Currin
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Naomi Dicks
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Hernan Baldassarre
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Luis B Agellon
- School of Human Nutrition, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
10
|
Venkateswaran K, Shrivastava A, Prasad AK, Parmar VS, Dwarakanath BS. Developing polyphenolic acetates as radiation countermeasure agents: current status and future perspectives. Drug Discov Today 2020; 25:781-786. [PMID: 32062010 DOI: 10.1016/j.drudis.2020.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/22/2020] [Accepted: 02/07/2020] [Indexed: 10/25/2022]
Abstract
Total-body exposure to ionizing radiation (TBI) results in life-threatening acute radiation syndrome (ARS), which encompasses hematopoietic and gastrointestinal (GI) injuries and results in dose-dependent morbidity and mortality. Management of ARS warrants the deployment of effective medical countermeasure agents (MCM) that protect against and/or mitigate lethal radiation injury. The polyphenolic acetate (PA) 7,8-diacetoxy-4-methylthiocoumarin (DAMTC) has been identified as a potential MCM against ARS by virtue of it mitigating the lethal effects of TBI in C57BL/6 mice. Herein, we describe current evidence, including mechanistic aspects, for the use of PAs as MCMs against ARS and provide perspectives for their further development as approved drugs for the mitigation of ARS.
Collapse
Affiliation(s)
| | | | - Ashok K Prasad
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Virinder S Parmar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India; Department of Chemistry and Environmental Science, Medgar Evers College, The City University of New York, New York NY, USA
| | | |
Collapse
|
11
|
Zhang B, Niu H, Cai Q, Liao M, Chen K, Chen Y, Cong P. Roscovitine and Trichostatin A promote DNA damage repair during porcine oocyte maturation. Reprod Fertil Dev 2019; 31:473-481. [DOI: 10.1071/rd18021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 08/17/2018] [Indexed: 11/23/2022] Open
Abstract
Faithful repair of DNA double-strand breaks in mammalian oocytes is essential for meiotic maturation and embryonic development. In the present study we investigated the roles of Roscovitine and Trichostatin A (TSA) in DNA damage recovery during invitro maturation of porcine oocytes. Etoposide was used to trigger DNA damage in oocytes. When these DNA-damaged oocytes were treated with 2μM Roscovitine, 50nM TSA or both for 22h, first polar body extrusion and blastocyst formation in all treated groups were significantly improved compared with the etoposide-only group. The most significant improvement was observed when Roscovitine was present. Further immunofluorescent analysis of γH2A.X, an indicator of DNA damage, indicated that DNA damage was significantly decreased in all treated groups. This observation was further supported by analysing the relative mRNA abundance of DNA repair-related genes, including meiotic recombination 11 homolog A (MRE11A), breast cancer type 1 susceptibility protein (BRCA1), Recombinant DNA Repair Protein 51 (RAD51), DNA-dependent protein kinase catalytic subunit (PRKDC) and X-ray cross complementing gene 4 (XRCC4). Compared with the etoposide-only group, the experimental group with combined treatment of Roscovitine and TSA showed a significant decrease of all genes at germinal vesicle and MII stages. The Roscovitine-only treatment group revealed a similar tendency. Together, these results suggest that Roscovitine and TSA treatments could increase the capacity of oocytes to recover from DNA damage by enlisting DNA repair processes.
Collapse
|
12
|
Improved Preimplantation Development of Porcine Cloned Embryos by Flavone Supplement as Antioxidant. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2018. [DOI: 10.12750/jet.2018.33.4.255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
13
|
de Macedo MP, Glanzner WG, Rissi VB, Gutierrez K, Currin L, Baldassarre H, Bordignon V. A fast and reliable protocol for activation of porcine oocytes. Theriogenology 2018; 123:22-29. [PMID: 30273737 DOI: 10.1016/j.theriogenology.2018.09.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/10/2018] [Accepted: 09/23/2018] [Indexed: 12/29/2022]
Abstract
Oocyte activation is physiologically triggered by the sperm during fertilization, however, production of porcine embryos by somatic cell nuclear transfer (SCNT), intracytoplasmic sperm injection (ICSI) or parthenogenetic activation (PA) requires artificial oocyte activation. Although effective protocols for artificial oocyte activation have been developed, current protocols require long exposures to non-specific inhibitors, which do not mimic the physiological process and may have detrimental consequences for embryo development. This study attempted to mimic the physiological activation events induced by fertilization, through the manipulation of Ca2+ and Zn2+ levels, and protein kinase C (PKC) as well as cyclin dependent kinase 1 (CDK1) activities, with the aim of developing an improved protocol for activation of porcine oocytes. In the first experiment, matured oocytes were exposed to ionomycin (Ion) for 5 min, and then treated with a specific CDK1 inhibitor (RO-3306) and/or PKC activator (OAG) for different time intervals. The highest rate of pronuclear (PN) formation (58.8%) was obtained when oocytes were treated with PKCa + CDK1i for 4 h. Second, PN formation and embryo development were evaluated in oocytes exposed for different times to a Zn2+ chelator (TPEN) following Ion treatment. This revealed that 15 min was the minimal exposure time to TPEN required to maximise oocyte activation and embryo development. Next, we observed that treatment with PKCa + CDK1i for 4 h after TPEN for 15 min decreased embryo development compared to TPEN alone. Lastly, we compared the efficiency of the Ion (5 min) plus TPEN (15 min) protocol (IT-20) with a control protocol used in our laboratory (CT-245) for production of PA, SCNT and ICSI embryos. In PA embryos, IT-20 resulted in higher cleavage (72% vs 49.2%) and blastocyst from cleaved embryos (65.5% vs 46.2%) compared to CT-245. In ICSI embryos, higher PN rates were obtained with the IT-20 protocol compared with CT-245 and the non-activated (N-A) group. Moreover, the two protocols were equally efficient for activation of SCNT embryos. Based on these findings, we propose that IT-20 is a fast and effective protocol for activation of porcine oocytes.
Collapse
Affiliation(s)
- Mariana P de Macedo
- Department of Animal Science, McGill University, Sainte-Anne de Bellevue, Quebec, Canada
| | - Werner G Glanzner
- Department of Animal Science, McGill University, Sainte-Anne de Bellevue, Quebec, Canada
| | - Vitor B Rissi
- Laboratory of Biotechnology and Animal Reproduction - BioRep, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Karina Gutierrez
- Department of Animal Science, McGill University, Sainte-Anne de Bellevue, Quebec, Canada
| | - Luke Currin
- Department of Animal Science, McGill University, Sainte-Anne de Bellevue, Quebec, Canada
| | - Hernan Baldassarre
- Department of Animal Science, McGill University, Sainte-Anne de Bellevue, Quebec, Canada
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte-Anne de Bellevue, Quebec, Canada.
| |
Collapse
|
14
|
Bohrer RC, Dicks N, Gutierrez K, Duggavathi R, Bordignon V. Double‐strand DNA breaks are mainly repaired by the homologous recombination pathway in early developing swine embryos. FASEB J 2018; 32:1818-1829. [DOI: 10.1096/fj.201700800r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Naomi Dicks
- Department of Animal ScienceMcGill UniversityMontrealQuebecCanada
| | - Karina Gutierrez
- Department of Animal ScienceMcGill UniversityMontrealQuebecCanada
| | - Raj Duggavathi
- Department of Animal ScienceMcGill UniversityMontrealQuebecCanada
| | - Vilceu Bordignon
- Department of Animal ScienceMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
15
|
Föll MC, Fahrner M, Gretzmeier C, Thoma K, Biniossek ML, Kiritsi D, Meiss F, Schilling O, Nyström A, Kern JS. Identification of tissue damage, extracellular matrix remodeling and bacterial challenge as common mechanisms associated with high-risk cutaneous squamous cell carcinomas. Matrix Biol 2017; 66:1-21. [PMID: 29158163 DOI: 10.1016/j.matbio.2017.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 01/03/2023]
Abstract
In this study we used a genetic extracellular matrix (ECM) disease to identify mechanisms associated with aggressive behavior of cutaneous squamous cell carcinoma (cSCC). cSCC is one of the most common malignancies and usually has a good prognosis. However, some cSCCs recur or metastasize and cause significant morbidity and mortality. Known factors that are associated with aggressiveness of cSCCs include tumor grading, size, localization and microinvasive behavior. To investigate molecular mechanisms that influence biologic behavior we used global proteomic and histologic analyses of formalin-fixed paraffin-embedded tissue of primary human cSCCs. We compared three groups: non-recurring, non-metastasizing low-risk sporadic cSCCs; metastasizing sporadic cSCCs; and cSCCs from patients with recessive dystrophic epidermolysis bullosa (RDEB). RDEB is a genetic skin blistering and ECM disease caused by collagen VII deficiency. Patients commonly suffer from high-risk early onset cSCCs that frequently metastasize. The results indicate that different processes are associated with formation of RDEB cSCCs compared to sporadic cSCCs. Sporadic cSCCs show signs of UV damage, whereas RDEB cSCCs have higher mutational rates and display tissue damage, inflammation and subsequent remodeling of the dermal ECM as tumor initiating factors. Interestingly the two high-risk groups - high-risk metastasizing sporadic cSCCs and RDEB cSCCs - are both associated with tissue damage and ECM remodeling in gene-ontology enrichment and Search Tool for the Retrieval of Interacting Genes/Proteins analyses. In situ histologic analyses validate these results. The high-risk cSCCs also show signatures of enhanced bacterial challenge. Histologic analyses confirm correlation of bacterial colonization with worse prognosis. Collectively, this unbiased study - performed directly on human patient material - reveals that common microenvironmental alterations linked to ECM remodeling and increased bacterial challenges are denominators of high-risk cSCCs. The proteins identified here could serve as potential diagnostic markers and therapeutic targets in high-risk cSCCs.
Collapse
Affiliation(s)
- Melanie C Föll
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Germany; Faculty of Biology, University of Freiburg, Germany
| | - Matthias Fahrner
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Germany; Faculty of Biology, University of Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Germany
| | - Christine Gretzmeier
- Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Germany
| | - Käthe Thoma
- Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Germany
| | - Martin L Biniossek
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Germany
| | - Dimitra Kiritsi
- Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Germany
| | - Frank Meiss
- Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Germany
| | - Oliver Schilling
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; BIOSS Centre for Biological Signaling Studies, University of Freiburg, Germany.
| | - Alexander Nyström
- Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Germany.
| | - Johannes S Kern
- Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Germany; Department of Dermatology, Royal Melbourne Hospital, Parkville and Box Hill Hospital - Monash University, Eastern Health Clinical School, Box Hill, Victoria, Australia
| |
Collapse
|
16
|
Dicks N, Bohrer RC, Gutierrez K, Michalak M, Agellon LB, Bordignon V. Relief of endoplasmic reticulum stress enhances DNA damage repair and improves development of pre-implantation embryos. PLoS One 2017; 12:e0187717. [PMID: 29099865 PMCID: PMC5669469 DOI: 10.1371/journal.pone.0187717] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/24/2017] [Indexed: 11/18/2022] Open
Abstract
Early-cleaving embryos are known to have better capacity to reach the blastocyst stage and produce better quality embryos compared to late-cleaving embryos. To investigate the significance of endoplasmic reticulum (ER) stress on early embryo cleavage kinetics and development, porcine embryos produced in vitro were separated into early- and late-cleaving groups and then cultured in the absence or presence of the ER stress inhibitor tauroursodeoxycholic acid (TUDCA). Developing embryos were collected at days 3 to 7 of culture for assessment of ER stress status, incidence of DNA double-strand breaks (DSBs), development and total cell number. In the absence of TUDCA treatment, late-cleaving embryos exhibited ER stress, higher incidence of DNA DSBs, as well as reductions in development to the blastocyst stage and total embryo cell numbers. Treatment of late-cleaving embryos with TUDCA mitigated these effects and markedly improved embryo quality and development. These results demonstrate the importance of stress coping responses in early developing embryos, and that reduction of ER stress is a potential means to improve embryo quality and developmental competence.
Collapse
Affiliation(s)
- Naomi Dicks
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Rodrigo C. Bohrer
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Karina Gutierrez
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Luis B. Agellon
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
- * E-mail: (VB); (LBA)
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
- * E-mail: (VB); (LBA)
| |
Collapse
|
17
|
Melatonin enhances the developmental competence of porcine somatic cell nuclear transfer embryos by preventing DNA damage induced by oxidative stress. Sci Rep 2017; 7:11114. [PMID: 28894150 PMCID: PMC5593819 DOI: 10.1038/s41598-017-11161-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/15/2017] [Indexed: 12/29/2022] Open
Abstract
Melatonin has antioxidant and scavenger effects in the cellular antioxidant system. This research investigated the protective effects and underlying mechanisms of melatonin action in porcine somatic cell nuclear transfer (SCNT) embryos. The results suggested that the developmental competence of porcine SCNT embryos was considerably enhanced after melatonin treatment. In addition, melatonin attenuated the increase in reactive oxygen species levels induced by oxidative stress, the decrease in glutathione levels, and the mitochondrial dysfunction. Importantly, melatonin inhibited phospho-histone H2A.X (γH2A.X) expression and comet tail formation, suggesting that γH2A.X prevents oxidative stress-induced DNA damage. The expression of genes involved in homologous recombination and non-homologous end-joining pathways for the repair of double-stranded breaks (DSB) was reduced upon melatonin treatment in porcine SCNT embryos at day 5 of development under oxidative stress condition. These results indicated that melatonin promoted porcine SCNT embryo development by preventing oxidative stress-induced DNA damage via quenching of free radical formation. Our results revealed a previously unrecognized regulatory effect of melatonin in response to oxidative stress and DNA damage. This evidence provides a novel mechanism for the improvement in SCNT embryo development associated with exposure to melatonin.
Collapse
|
18
|
Rissi VB, Glanzner WG, Mujica LKS, Antoniazzi AQ, Gonçalves PBD, Bordignon V. Effect of Cell Cycle Interactions and Inhibition of Histone Deacetylases on Development of Porcine Embryos Produced by Nuclear Transfer. Cell Reprogram 2016; 18:8-16. [PMID: 27281695 DOI: 10.1089/cell.2015.0052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The aim of this study was to evaluate if the positive effects of inhibiting histone deacetylase enzymes on cell reprogramming and development of somatic cell nuclear transfer (SCNT) embryos is affected by the cell cycle stage of nuclear donor cells and host oocytes at the time of embryo reconstruction. SCNT embryos were produced with metaphase II (MII) or telophase II (TII) cytoplasts and nuclear donor cells that were either at the G1-0 or G2/M stages. Embryos reconstructed with the different cell cycle combinations were treated or not with the histone deacetylase inhibitor (HDACi) Scriptaid for 15 h and then cultured in vitro for 7 days. Embryos reconstructed with MII-G1-0 and TII-G2/M developed to the blastocyst stage with a higher frequency compared to the other groups, confirming the importance of cell cycle interactions on cell reprogramming and SCNT embryo development. Treatment with HDACi improved development of SCNT embryos produced with MII but not TII cytoplasts, independently of the cell cycle stage of nuclear donor cells. These findings provide evidence that the positive effect of HDACi treatment on development of SCNT embryos depends upon cell cycle interactions between the host cytoplast and the nuclear donor cells.
Collapse
Affiliation(s)
- Vitor B Rissi
- 1 Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM) , Santa Maria, RS 97105-900, Brazil
| | - Werner G Glanzner
- 1 Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM) , Santa Maria, RS 97105-900, Brazil
| | - Lady K S Mujica
- 1 Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM) , Santa Maria, RS 97105-900, Brazil
| | - Alfredo Q Antoniazzi
- 1 Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM) , Santa Maria, RS 97105-900, Brazil
| | - Paulo B D Gonçalves
- 1 Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM) , Santa Maria, RS 97105-900, Brazil
| | - Vilceu Bordignon
- 2 Department of Animal Science, McGill University , Ste. Anne de Bellevue, Quebec, Canada , H9X 3V9
| |
Collapse
|
19
|
Nie JY, Zhu XX, Xie BK, Nong SQ, Ma QY, Xu HY, Yang XG, Lu YQ, Lu KH, Liao YY, Lu SS. Successful cloning of an adult breeding boar from the novel Chinese Guike No. 1 swine specialized strain. 3 Biotech 2016; 6:218. [PMID: 28330290 PMCID: PMC5055876 DOI: 10.1007/s13205-016-0525-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 09/15/2016] [Indexed: 11/26/2022] Open
Abstract
Somatic cloning, also known as somatic cell nuclear transfer (SCNT), is a promising technology which has been expected to rapidly extend the population of elaborately selected breeding boars with superior production performance. Chinese Guike No. 1 pig breed is a novel swine specialized strain incorporated with the pedigree background of Duroc and Chinese Luchuan pig breeds, thus inherits an excellent production performance. The present study was conducted to establish somatic cloning procedures of adult breeding boars from the Chinese Guike No. 1 specialized strain. Ear skin fibroblasts were first isolated from a three-year-old Chinese Guike No. 1 breeding boar, and following that, used as donor cell to produce nuclear transfer embryos. Such cloned embryos showed full in vitro development and with the blastocyst formation rate of 18.4 % (37/201, three independent replicates). Finally, after transferring of 1187 nuclear transfer derived embryos to four surrogate recipients, six live piglets with normal health and development were produced. The overall cloning efficiency was 0.5 % and the clonal provenance of such SCNT derived piglets was confirmed by DNA microsatellite analysis. All of the cloned piglets were clinically healthy and had a normal weight at 1 month of age. Collectively, the first successful cloning of an adult Chinese Guike No. 1 breeding boar may lay the foundation for future improving the pig production industry.
Collapse
Affiliation(s)
- Jun-Yu Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Xiang-Xing Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Bing-Kun Xie
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Sciences, Nanning, 530001, China
| | - Su-Qun Nong
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Sciences, Nanning, 530001, China
| | - Qing-Yan Ma
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Sciences, Nanning, 530001, China
| | - Hui-Yan Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Xiao-Gan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yang-Qing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Ke-Huan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yu-Ying Liao
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Sciences, Nanning, 530001, China.
| | - Sheng-Sheng Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
20
|
Effect of ATM and HDAC Inhibition on Etoposide-Induced DNA Damage in Porcine Early Preimplantation Embryos. PLoS One 2015; 10:e0142561. [PMID: 26556501 PMCID: PMC4640854 DOI: 10.1371/journal.pone.0142561] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/25/2015] [Indexed: 11/24/2022] Open
Abstract
Oocyte maturation and embryonic development are sensitive to DNA damage. Compared with somatic cells or oocytes, little is known about the response to DNA damage in early preimplantation embryos. In this study, we examined DNA damage checkpoints and DNA repair mechanisms in parthenogenetic preimplantation porcine embryos. We found that most of the etoposide-treated embryos showed delay in cleavage and ceased development before the blastocyst stage. In DNA-damaged embryos, the earliest positive TUNEL signals were detected on Day 5 of in vitro culture. Caffeine, which is an ATM (ataxia telangiectasia mutated) and ATR (ataxia telangiectasia and Rad3-related protein) kinase inhibitor, and KU55933, which is an ATM kinase inhibitor, were equally effective in rescuing the etoposide-induced cell-cycle blocks. This indicates that ATM plays a central role in the regulation of the checkpoint mechanisms. Treating the embryos with histone deacetylase inhibitors (HDACi) increased embryonic development and reduced etoposide-induced double-strand breaks (DSBs). The mRNA expression of genes involved in non-homologous end-joining (NHEJ) or homologous recombination (HR) pathways for DSB repair was reduced upon HDACi treatment in 5-day-old embryos. Furthermore, HDACi treatment increased the expression levels of pluripotency-related genes (OCT4, SOX2 and NANOG) and decreased the expression levels of apoptosis-related genes (CASP3 and BAX). These results indicate that early embryonic cleavage and development are disturbed by etoposide-induced DNA damage. ATMi (caffeine or KU55933) treatment bypasses the checkpoint while HDACi treatment improves the efficiency of DSB repair to increase the cleavage and blastocyst rate in porcine early preimplantation embryos.
Collapse
|
21
|
Bohrer RC, Coutinho ARS, Duggavathi R, Bordignon V. The Incidence of DNA Double-Strand Breaks Is Higher in Late-Cleaving and Less Developmentally Competent Porcine Embryos. Biol Reprod 2015; 93:59. [PMID: 26134870 DOI: 10.1095/biolreprod.115.130542] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 06/30/2015] [Indexed: 12/21/2022] Open
Abstract
Studies in different species, including human, mice, bovine, and swine, demonstrated that early-cleaving embryos have higher capacity to develop to the blastocyst stage and produce better quality embryos with superior capacity to establish pregnancy than late-cleaving embryos. It has also been shown that experimentally induced DNA damage delays embryo cleavage kinetics and reduces blastocyst formation. To gain additional insights into the effects of genome damage on embryo cleavage kinetics and development, the present study compared the occurrence of DNA double-strand breaks (DSBs) with the expression profile of genes involved in DNA repair and cell cycle control between early- and late-cleaving embryos. Porcine oocytes matured in vitro were activated, and then early-cleaving (before 24 h) and late-cleaving (between 24 and 48 h) embryos were identified and cultured separately. Developing embryos, on Days 3, 5, and 7, were used to evaluate the total cell number and presence of DSBs (by counting the number of immunofluorescent foci for phosphorylated histone H2A.x [H2AX139ph] and RAD51 proteins) and to quantify transcripts of genes involved in DNA repair and cell cycle control by quantitative RT-PCR. Early-cleaving embryos had fewer DSBs, lower transcript levels for genes encoding DNA repair and cell cycle checkpoint proteins, and more cells than late-cleaving embryos. Interestingly, at the blastocyst stage, embryos that developed from early- and late-cleaving groups had similar number of DSBs as well as transcript levels of genes induced by DNA damage. This indicates that only embryos with less DNA damage and/or superior capacity for DNA repair are able to progress to the blastocyst stage. Collectively, findings in this study revealed a negative correlation between the occurrence of DSBs and embryo cleavage kinetics and embryo developmental capacity to the blastocyst stage.
Collapse
Affiliation(s)
| | - Ana Rita S Coutinho
- Department of Animal Science, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Raj Duggavathi
- Department of Animal Science, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| |
Collapse
|
22
|
Sun H, Lu F, Zhu P, Liu X, Tian M, Luo C, Ruan Q, Ruan Z, Liu Q, Jiang J, Wei Y, Shi D. Effects of Scriptaid on the Histone Acetylation, DNA Methylation and Development of Buffalo Somatic Cell Nuclear Transfer Embryos. Cell Reprogram 2015; 17:404-14. [PMID: 26035741 DOI: 10.1089/cell.2014.0084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The present study was undertaken to examine the effect of Scriptaid treatment on histone acetylation, DNA methylation, expression of genes related to histone acetylation, and development of buffalo somatic cell nuclear transfer (SCNT) embryos. Treatment of buffalo SCNT embryos with 500 nM Scriptaid for 24 h resulted in a significant increase in the blastocyst formation rate (28.2% vs. 13.6%, p<0.05). Meanwhile, treatment of buffalo SCNT embryos with Scriptaid also resulted in higher acetylation levels of H3K18 and lower methylation levels of global DNA at the blastocyst stage, which was similar to fertilized counterparts. The expression levels of CBP, p300, HAT1, Dnmt1, and Dnmt3a in SCNT embryos treated with Scriptaid were significantly lower than the control group at the eight-cell stage (p<0.05), but the expression of HAT1 and Dnmt1a was higher than the control group at the blastocyst stage (p<0.05). When 96 blastocysts developed from Scriptaid-treated SCNT embryos were transferred into 48 recipients, 11 recipients (22.9%) became pregnant, whereas only one recipient (11.1%) became pregnant following transfer of 18 blastocysts developed from untreated SCNT embryos into nine recipients. These results indicate that treatment of buffalo SCNT embryos with Scriptaid can improve their developmental competence, and this action is mediated by resulting in a similar histone acetylation level and global DNA methylation level compared to in vitro-fertilized embryos through regulating the expression pattern of genes related to histone acetylation and DNA methylation.
Collapse
Affiliation(s)
- Hongliang Sun
- 1 Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University , Nanning 530004, People's Republic of China .,2 These authors contributed equally to this work
| | - Fenghua Lu
- 1 Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University , Nanning 530004, People's Republic of China .,2 These authors contributed equally to this work
| | - Peng Zhu
- 1 Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University , Nanning 530004, People's Republic of China
| | - Xiaohua Liu
- 1 Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University , Nanning 530004, People's Republic of China
| | - Mingming Tian
- 1 Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University , Nanning 530004, People's Republic of China
| | - Chan Luo
- 1 Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University , Nanning 530004, People's Republic of China
| | - Qiuyan Ruan
- 1 Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University , Nanning 530004, People's Republic of China
| | - Ziyun Ruan
- 1 Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University , Nanning 530004, People's Republic of China
| | - Qingyou Liu
- 1 Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University , Nanning 530004, People's Republic of China
| | - Jianrong Jiang
- 1 Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University , Nanning 530004, People's Republic of China
| | - Yingming Wei
- 1 Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University , Nanning 530004, People's Republic of China
| | - Deshun Shi
- 1 Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University , Nanning 530004, People's Republic of China
| |
Collapse
|
23
|
Huan Y, Zhu J, Huang B, Mu Y, Kong Q, Liu Z. Trichostatin A rescues the disrupted imprinting induced by somatic cell nuclear transfer in pigs. PLoS One 2015; 10:e0126607. [PMID: 25962071 PMCID: PMC4427324 DOI: 10.1371/journal.pone.0126607] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/06/2015] [Indexed: 11/25/2022] Open
Abstract
Imprinting disorders induced by somatic cell nuclear transfer (SCNT) usually lead to the abnormalities of cloned animals and low cloning efficiency. Histone deacetylase inhibitors have been shown to improve gene expression, genomic methylation reprogramming and the development of cloned embryos, however, the imprinting statuses in these treated embryos and during their subsequent development remain poorly studied. In this study, we investigated the dynamics of H19/Igf2 methylation and transcription in porcine cloned embryos treated with trichostatin A (TSA), and examined H19/Igf2 imprinting patterns in cloned fetuses and piglets. Our results showed that compared with the maintenance of H19/Igf2 methylation in fertilized embryos, cloned embryos displayed aberrant H19/Igf2 methylation and lower H19/Igf2 transcripts. When TSA enhanced the development of cloned embryos, the disrupted H19/Igf2 imprinting was largely rescued in these treated embryos, more similar to those detected in fertilized counterparts. Further studies displayed that TSA effectively rescued the disrupted imprinting of H19/Igf2 in cloned fetuses and piglets, prevented the occurrence of cloned fetus and piglet abnormalities, and enhanced the full-term development of cloned embryos. In conclusion, our results demonstrated that aberrant imprinting induced by SCNT led to the abnormalities of cloned fetuses and piglets and low cloning efficiency, and TSA rescued the disrupted imprinting in cloned embryos, fetuses and piglets, and prevented the occurrence of cloned fetus and piglet abnormalities, thereby improving the development of cloned embryos. This study would have important implications in improving cloning efficiency and the health of cloned animals.
Collapse
Affiliation(s)
- Yanjun Huan
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, China
| | - Jiang Zhu
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Bo Huang
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Yanshuang Mu
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Qingran Kong
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
- * E-mail:
| |
Collapse
|