1
|
Li W, Hao Y. Polo-Like Kinase 1 and DNA Damage Response. DNA Cell Biol 2024; 43:430-437. [PMID: 38959179 DOI: 10.1089/dna.2024.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
Polo-like kinase 1 (Plk1), an evolutionarily conserved serine/threonine protein kinase, is a key regulator involved in the mitotic process of the cell cycle. Mounting evidence suggests that Plk1 is also involved in a variety of nonmitotic events, including the DNA damage response, DNA replication, cytokinesis, embryonic development, apoptosis, and immune regulation. The DNA damage response (DDR) includes activation of the DNA checkpoint, DNA damage recovery, DNA repair, and apoptosis. Plk1 is not only an important target of the G2/M DNA damage checkpoint but also negatively regulates the G2/M checkpoint commander Ataxia telangiectasia-mutated (ATM), promotes G2/M phase checkpoint recovery, and regulates homologous recombination repair by interacting with Rad51 and BRCA1, the key factors of homologous recombination repair. This article briefly reviews the function of Plk1 in response to DNA damage.
Collapse
Affiliation(s)
- Wei Li
- Laboratory of Nuclear and Radiation Damage, Characteristic Medical Center, PLA Rocket Force, Beijing, China
- Department of Disease Prevention and Control, Characteristic Medical Center, PLA Rocket Force, Beijing, China
| | - Yongjian Hao
- Department of Disease Prevention and Control, Characteristic Medical Center, PLA Rocket Force, Beijing, China
| |
Collapse
|
2
|
Nawaf A. Mycotoxin source and its exposure causing mycotoxicoses. Bioinformation 2023; 19:348-357. [PMID: 37822835 PMCID: PMC10563570 DOI: 10.6026/97320630019348] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/30/2023] [Accepted: 04/30/2023] [Indexed: 10/13/2023] Open
Abstract
Mycotoxins are toxic compounds produced by fungi such as Aspergillus, Penicillium, Rhizopus, Fusarium spp., and mushrooms. They are present in the mycelium or in the spores of the fungus. They cause human health problems once ingested. This is common in countries with high ambient temperature and relative humidity such as in the tropical regions. The consumption of moldy food and feeds are injurious to people and animals. The linked acute and chronic diseases target organs in humans and animals. The clinical symptoms depend on the intrinsic toxic features of the mycotoxin, the quantity, and length of exposure. The diseases caused by ingesting mycotoxins are reffred as mycotoxicoses. Therefore, it is of interest to document known data on the mycotoxin source and its exposure causing human hazards leading to mycotoxicoses.
Collapse
Affiliation(s)
- Alshammari Nawaf
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
3
|
Alsherbiny MA, Bhuyan DJ, Radwan I, Chang D, Li CG. Metabolomic Identification of Anticancer Metabolites of Australian Propolis and Proteomic Elucidation of Its Synergistic Mechanisms with Doxorubicin in the MCF7 Cells. Int J Mol Sci 2021; 22:ijms22157840. [PMID: 34360606 PMCID: PMC8346082 DOI: 10.3390/ijms22157840] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/11/2022] Open
Abstract
The combination of natural products with standard chemotherapeutic agents offers a promising strategy to enhance the efficacy or reduce the side effects of standard chemotherapy. Doxorubicin (DOX), a standard drug for breast cancer, has several disadvantages, including severe side effects and the development of drug resistance. Recently, we reported the potential bioactive markers of Australian propolis extract (AP-1) and their broad spectrum of pharmacological activities. In the present study, we explored the synergistic interactions between AP-1 and DOX in the MCF7 breast adenocarcinoma cells using different synergy quantitation models. Biochemometric and metabolomics-driven analysis was performed to identify the potential anticancer metabolites in AP-1. The molecular mechanisms of synergy were studied by analysing the apoptotic profile via flow cytometry, apoptotic proteome array and measuring the oxidative status of the MCF7 cells treated with the most synergistic combination. Furthermore, label-free quantification proteomics analysis was performed to decipher the underlying synergistic mechanisms. Five prenylated stilbenes were identified as the key metabolites in the most active AP-1 fraction. Strong synergy was observed when AP-1 was combined with DOX in the ratio of 100:0.29 (w/w) as validated by different synergy quantitation models implemented. AP-1 significantly enhanced the inhibitory effect of DOX against MCF7 cell proliferation in a dose-dependent manner with significant inhibition of the reactive oxygen species (p < 0.0001) compared to DOX alone. AP-1 enabled the reversal of DOX-mediated necrosis to programmed cell death, which may be advantageous to decline DOX-related side effects. AP-1 also significantly enhanced the apoptotic effect of DOX after 24 h of treatment with significant upregulation of catalase, HTRA2/Omi, FADD together with DR5 and DR4 TRAIL-mediated apoptosis (p < 0.05), contributing to the antiproliferative activity of AP-1. Significant upregulation of pro-apoptotic p27, PON2 and catalase with downregulated anti-apoptotic XIAP, HSP60 and HIF-1α, and increased antioxidant proteins (catalase and PON2) may be associated with the improved apoptosis and oxidative status of the synergistic combination-treated MCF7 cells compared to the mono treatments. Shotgun proteomics identified 21 significantly dysregulated proteins in the synergistic combination-treated cells versus the mono treatments. These proteins were involved in the TP53/ATM-regulated non-homologous end-joining pathway and double-strand breaks repairs, recruiting the overexpressed BRCA1 and suppressed RIF1 encoded proteins. The overexpression of UPF2 was noticed in the synergistic combination treatment, which could assist in overcoming doxorubicin resistance-associated long non-coding RNA and metastasis of the MCF7 cells. In conclusion, we identified the significant synergy and highlighted the key molecular pathways in the interaction between AP-1 and DOX in the MCF7 cells together with the AP-1 anticancer metabolites. Further in vivo and clinical studies are warranted on this synergistic combination.
Collapse
Affiliation(s)
- Muhammad A. Alsherbiny
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Correspondence: (M.A.A.); (D.J.B.); (C.-G.L.)
| | - Deep J. Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
- Correspondence: (M.A.A.); (D.J.B.); (C.-G.L.)
| | - Ibrahim Radwan
- Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia;
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
| | - Chun-Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
- Correspondence: (M.A.A.); (D.J.B.); (C.-G.L.)
| |
Collapse
|
4
|
Zhao A, Zhang J, Liu Y, Jia X, Lu X, Wang Q, Ji T, Yang L, Xue J, Gao R, Yu Y, Yang A. Synergic radiosensitization of sinomenine hydrochloride and radioiodine on human papillary thyroid carcinoma cells. Transl Oncol 2021; 14:101172. [PMID: 34243014 PMCID: PMC8273215 DOI: 10.1016/j.tranon.2021.101172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/07/2021] [Accepted: 06/30/2021] [Indexed: 01/04/2023] Open
Abstract
This is the first time to study and find out that sinomenine hydrochloride and iodine-131 synergic enhance the apoptosis and regulate DNA repair and cell cycle checkpoint on papillary thyroid carcinoma cells. This is the first time to study and find out that sinomenine hydrochloride increased the radiosensitivity of papillary thyroid carcinoma cells and normal thyroid cells. This is the first time to study and find out that sinomenine hydrochloride could be a potential therapeutic radiosensitizer in papillary thyroid carcinoma radiotherapy after total thyroidectomy .
Radioiodine (131I) therapy is an important treatment for thyroid carcinoma. The response to radiotherapy sometimes limited by the development of radioresistance. Sinomenine hydrochloride(SH), was reported as a prospective radiosensitizer. This study was aim to evaluate synergic radiosensitization of SH and 131I on papillary thyroid carcinoma (PTC). We evaluated HTori-3, BCPAP and TPC-1 cells, the cell viability was evaluated by MTT. The experiment was divided into 4 groups: control group, SH (0.8 mM) group, I (131I 14.8 MBq/ml) group and ISH (SH 0.8 mM plus 131I 14.8 MBq/ml) group. Flow cytometry was used to investigate cell cycle phases and cell apoptosis. RT-PCR and western blotting were performed to determine the molecular changes. Compared to control group, SH significantly increased apoptosis and enhanced radiosensitivity of HTori-3 and PTC cells were related to the ratio of Bcl-2 to Bax protein downregulation and Fas, p21, p-ATM, p-Chk1, p-Chk2 and p53 protein expression upregulation in the ISH group (P < 0.05). Our results indicate that synergic radiosensitization of SH and iodine-131 on PTC cells and SH could be a potential therapeutic radiosensitizer in PTC radio therapy after total thyroidectomy.
Collapse
Affiliation(s)
- Aomei Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Jing Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Yan Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Xi Jia
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Xueni Lu
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Qi Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Ting Ji
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Lulu Yang
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Jianjun Xue
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Rui Gao
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Yan Yu
- Department of Public Health, Health Science Center of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Aimin Yang
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
5
|
Ando K, Nakagawara A. Acceleration or Brakes: Which Is Rational for Cell Cycle-Targeting Neuroblastoma Therapy? Biomolecules 2021; 11:biom11050750. [PMID: 34069817 PMCID: PMC8157238 DOI: 10.3390/biom11050750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 11/27/2022] Open
Abstract
Unrestrained proliferation is a common feature of malignant neoplasms. Targeting the cell cycle is a therapeutic strategy to prevent unlimited cell division. Recently developed rationales for these selective inhibitors can be subdivided into two categories with antithetical functionality. One applies a “brake” to the cell cycle to halt cell proliferation, such as with inhibitors of cell cycle kinases. The other “accelerates” the cell cycle to initiate replication/mitotic catastrophe, such as with inhibitors of cell cycle checkpoint kinases. The fate of cell cycle progression or arrest is tightly regulated by the presence of tolerable or excessive DNA damage, respectively. This suggests that there is compatibility between inhibitors of DNA repair kinases, such as PARP inhibitors, and inhibitors of cell cycle checkpoint kinases. In the present review, we explore alterations to the cell cycle that are concomitant with altered DNA damage repair machinery in unfavorable neuroblastomas, with respect to their unique genomic and molecular features. We highlight the vulnerabilities of these alterations that are attributable to the features of each. Based on the assessment, we offer possible therapeutic approaches for personalized medicine, which are seemingly antithetical, but both are promising strategies for targeting the altered cell cycle in unfavorable neuroblastomas.
Collapse
Affiliation(s)
- Kiyohiro Ando
- Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina, Saitama 362-0806, Japan
- Correspondence: (K.A.); (A.N.); Tel.: +81-48-722-1111 (K.A.); +81-942-50-8829 (A.N.)
| | - Akira Nakagawara
- Saga International Carbon Particle Beam Radiation Cancer Therapy Center, Saga HIMAT Foundation, 3049 Harakoga-Machi, Saga 841-0071, Japan
- Correspondence: (K.A.); (A.N.); Tel.: +81-48-722-1111 (K.A.); +81-942-50-8829 (A.N.)
| |
Collapse
|
6
|
Khan FH, Dervan E, Bhattacharyya DD, McAuliffe JD, Miranda KM, Glynn SA. The Role of Nitric Oxide in Cancer: Master Regulator or NOt? Int J Mol Sci 2020; 21:ijms21249393. [PMID: 33321789 PMCID: PMC7763974 DOI: 10.3390/ijms21249393] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Nitric oxide (NO) is a key player in both the development and suppression of tumourigenesis depending on the source and concentration of NO. In this review, we discuss the mechanisms by which NO induces DNA damage, influences the DNA damage repair response, and subsequently modulates cell cycle arrest. In some circumstances, NO induces cell cycle arrest and apoptosis protecting against tumourigenesis. NO in other scenarios can cause a delay in cell cycle progression, allowing for aberrant DNA repair that promotes the accumulation of mutations and tumour heterogeneity. Within the tumour microenvironment, low to moderate levels of NO derived from tumour and endothelial cells can activate angiogenesis and epithelial-to-mesenchymal transition, promoting an aggressive phenotype. In contrast, high levels of NO derived from inducible nitric oxide synthase (iNOS) expressing M1 and Th1 polarised macrophages and lymphocytes may exert an anti-tumour effect protecting against cancer. It is important to note that the existing evidence on immunomodulation is mainly based on murine iNOS studies which produce higher fluxes of NO than human iNOS. Finally, we discuss different strategies to target NO related pathways therapeutically. Collectively, we present a picture of NO as a master regulator of cancer development and progression.
Collapse
Affiliation(s)
- Faizan H. Khan
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), H91 YR71 Galway, Ireland; (F.H.K.); (E.D.); (D.D.B.); (J.D.M.)
| | - Eoin Dervan
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), H91 YR71 Galway, Ireland; (F.H.K.); (E.D.); (D.D.B.); (J.D.M.)
| | - Dibyangana D. Bhattacharyya
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), H91 YR71 Galway, Ireland; (F.H.K.); (E.D.); (D.D.B.); (J.D.M.)
| | - Jake D. McAuliffe
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), H91 YR71 Galway, Ireland; (F.H.K.); (E.D.); (D.D.B.); (J.D.M.)
| | - Katrina M. Miranda
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA;
| | - Sharon A. Glynn
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), H91 YR71 Galway, Ireland; (F.H.K.); (E.D.); (D.D.B.); (J.D.M.)
- Correspondence:
| |
Collapse
|
7
|
53BP1: A key player of DNA damage response with critical functions in cancer. DNA Repair (Amst) 2019; 73:110-119. [DOI: 10.1016/j.dnarep.2018.11.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023]
|
8
|
Engin AB, Engin A. DNA damage checkpoint response to aflatoxin B1. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 65:90-96. [PMID: 30594067 DOI: 10.1016/j.etap.2018.12.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/20/2018] [Accepted: 12/07/2018] [Indexed: 05/28/2023]
Abstract
Although most countries regulate the aflatoxin levels in food by legislations, high amounts of aflatoxin B1 (AFB1)-DNA adducts can still be detected in normal and tumorous tissue obtained from cancer patients. AFB1 cannot directly interact with DNA unless it is biotransformed to AFB1-8, 9-epoxide via cytochrome p450 enzymes. This metabolite spontaneously and irreversibly attaches to guanine residues to generate highly mutagenic DNA adducts. AFB1-induced mutation of ATM kinase results in the deterioration of the cell cycle checkpoint activation at the G2/M checkpoint site. Genomic instability and increased cancer risk due to A-T mutation is the result of diminished repair of DNA double strand breaks. The major point mutation caused by AFB1 is G-to-T transversion that is related with the high frequency of p53 mutation. Majority of AFB1 associated hepatocellular cancer cases carry TP53 mutant DNA, which is an indicator of AFB1 exposure, as well as hepatocellular cancer risk.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey.
| | - Atilla Engin
- Gazi University, Faculty of Medicine, Department of General Surgery, Ankara, Turkey
| |
Collapse
|
9
|
Zhang D, Dong Y, Zhao Y, Zhou C, Qian Y, Hegde ML, Wang H, Han S. Sinomenine hydrochloride sensitizes cervical cancer cells to ionizing radiation by impairing DNA damage response. Oncol Rep 2018; 40:2886-2895. [PMID: 30226618 PMCID: PMC6151895 DOI: 10.3892/or.2018.6693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/03/2018] [Indexed: 02/01/2023] Open
Abstract
The use of plant-based compounds derived from traditional medicine to improve human diseases has been gaining momentum, due to their high bioavailability and moderate adverse effects. Sinomenine is one such biomonomer alkali compound derived from Sinomenium acutum and is known for its anti-inflammatory and antitumor effects. However, the molecular mechanism(s) of its antitumor properties are not fully characterized. In the present study, we evaluated the radiosensitizing effects of the water-soluble sinomenine, sinomenine hydrochloride (SH) in human cervical cancer cell line (HeLa). SH sensitized HeLa cells to ionizing radiation (IR) by promoting accumulation of IR-induced DNA double-strand breaks (DSBs) and also by interfering with DNA damage checkpoint activation. We then investigated the molecular mechanisms underlying the SH-mediated cellular sensitization to IR and found that SH inhibited the expression of DNA damage response (DDR) factors Ku80 and Rad51 at the transcription level. Finally, the radiosensitizing activity of SH was confirmed in a cervical cancer mouse xenograft model. The combinatorial treatment of SH and IR significantly slowed the tumor growth rate compared with IR alone. Collectively, our study not only provides molecular insights into the novel role of SH in cellular response to IR, but also suggests a therapeutic potential of SH as a radiosensitizer in cervical cancer therapy.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yiping Dong
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ying Zhao
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Congya Zhou
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yuanjie Qian
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Muralidhar L Hegde
- Department of Radiation Oncology, Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Haibo Wang
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Suxia Han
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
10
|
Yin H, Jiang M, Peng X, Cui H, Zhou Y, He M, Zuo Z, Ouyang P, Fan J, Fang J. The molecular mechanism of G2M cell cycle arrest induced by AFB1 in the jejunum. Oncotarget 2018; 7:35592-35606. [PMID: 27232757 PMCID: PMC5094947 DOI: 10.18632/oncotarget.9594] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/12/2016] [Indexed: 12/16/2022] Open
Abstract
Aflatoxin B1 (AFB1) has potent hepatotoxic, carcinogenic, genotoxic, immunotoxic and other adverse effects in human and animals. The aim of this study was to investigate the molecular mechanism of G2/M cell cycle arrest induced by AFB1 in the jejunum of broilers. Broilers, as experimental animals, were fed 0.6 mg/kg AFB1 diet for 3 weeks. Our results showed that AFB1 reduced the jejunal villus height, villus height/crypt ratio and caused G2/M cell cycle arrest. The G2/M cell cycle was accompanied by the increase of ataxia telangiectasia mutated (ATM), p53, Chk2, p21 protein and mRNA expression, and the decrease of Mdm2, cdc25C, cdc2, cyclin B and proliferating cell nuclear antigen protein and mRNA expression. In conclusion, AFB1 blocked G2/M cell cycle by ATM pathway in the jejunum of broilers.
Collapse
Affiliation(s)
- Heng Yin
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Chengdu, Sichuan, PR China
| | - Min Jiang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Chengdu, Sichuan, PR China
| | - Xi Peng
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Chengdu, Sichuan, PR China.,College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Hengmin Cui
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Chengdu, Sichuan, PR China.,College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Yi Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Min He
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Zhicai Zuo
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Chengdu, Sichuan, PR China.,College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Junde Fan
- College of Biological and Agro-Forestry Engineering, Tongren University, Tongren, Guizhou, PR China
| | - Jing Fang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Chengdu, Sichuan, PR China.,College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| |
Collapse
|
11
|
Fang J, Yin H, Zheng Z, Zhu P, Peng X, Zuo Z, Cui H, Zhou Y, Ouyang P, Geng Y, Deng J. The Molecular Mechanisms of Protective Role of Se on the G 2/M Phase Arrest of Jejunum Caused by AFB 1. Biol Trace Elem Res 2018; 181:142-153. [PMID: 28484902 DOI: 10.1007/s12011-017-1030-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/19/2017] [Indexed: 12/13/2022]
Abstract
Aflatoxin B1 (AFB1) is the most toxic among the mycotoxins and causes detrimental health effects on human and animals. Selenium (Se) plays an important role in chemopreventive, antioxidant, anticarcinogen, and detoxification and involved in cell cycle regulation. The aim of this study was to explore the molecular mechanisms of selenium involved in inhibition of G2/M cell cycle arrest of broiler's jejunum. A total of 240 one-day-old healthy Cobb broilers were randomly divided into four groups and fed with basal diet (control group), 0.6 mg/kg AFB1 (AFB1 group), 0.4 mg/kg Se (+Se group), and 0.6 mg/kg AFB1 + 0.4 mg/kg Se (AFB1 + Se group) for 21 days, respectively. The histological observation and morphological analysis revealed that 0.4 mg/kg Se prevented the AFB1-associated lesions of jejunum including the shedding of the apical region of villi, the decreased villus height, and villus height/crypt ratio. The cell cycle analysis by flow cytometry showed that 0.4 mg/kg Se ameliorated the AFB1-induced G2/M phase arrest in jejunal cells. Moreover, the expressions of ATM, Chk2, p53, Mdm2, p21, PCNA, Cdc25, cyclin B, and Cdc2 analyzed by immunohistochemistry and qRT-PCR demonstrated that 0.4 mg/kg Se restored these parameters to be close to those in the control group. In conclusion, Se promoted cell cycle recovery from the AFB1-induced G2/M phase arrest by the molecular regulation of ATM pathway in the jejunum of broilers. The outcomes from the present study may lead to a better understanding of the nature of selenium's essentiality and its protective roles against AFB1.
Collapse
Affiliation(s)
- Jing Fang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Heng Yin
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Zhixiang Zheng
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Panpan Zhu
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Xi Peng
- College of Life Sciences, China West Normal University, Nanchong, 637002, Sichuan, People's Republic of China.
| | - Zhicai Zuo
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China.
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China.
| | - Hengmin Cui
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Yi Zhou
- Life Science Department, Sichuan Agricultural University, Ya'an, Sichuan, People's Republic of China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Junliang Deng
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| |
Collapse
|
12
|
Chen YJ, Tsai CH, Wang PY, Teng SC. SMYD3 Promotes Homologous Recombination via Regulation of H3K4-mediated Gene Expression. Sci Rep 2017. [PMID: 28630472 PMCID: PMC5476597 DOI: 10.1038/s41598-017-03385-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
SMYD3 is a methyltransferase highly expressed in many types of cancer. It usually functions as an oncogenic protein to promote cell cycle, cell proliferation, and metastasis. Here, we show that SMYD3 modulates another hallmark of cancer, DNA repair, by stimulating transcription of genes involved in multiple steps of homologous recombination. Deficiency of SMYD3 induces DNA-damage hypersensitivity, decreases levels of repair foci, and leads to impairment of homologous recombination. Moreover, the regulation of homologous recombination-related genes is via the methylation of H3K4 at the target gene promoters. These data imply that, besides its reported oncogenic abilities, SMYD3 may maintain genome integrity by ensuring expression levels of HR proteins to cope with the high demand of restart of stalled replication forks in cancers.
Collapse
Affiliation(s)
- Yun-Ju Chen
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Cheng-Hui Tsai
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Pin-Yu Wang
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Shu-Chun Teng
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan. .,Ph.D. Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei, 10051, Taiwan.
| |
Collapse
|
13
|
Dave JH, Vora HH, Ghosh NR, Trivedi TI. Mediator of DNA damage checkpoint protein 1 (MDC1) as a prognostic marker for patients with oral squamous cell carcinoma. J Oral Pathol Med 2017; 46:253-258. [PMID: 28161894 DOI: 10.1111/jop.12558] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND The mediator of DNA damage checkpoint protein 1 (MDC1) is involved in the regulation of cell cycle checkpoints and recruitment of several repair proteins to the site of DNA double-stranded breaks (DSBs). This study aimed to correlate the expression of MDC1 protein with clinicopathological parameters and to evaluate its prognostic significance in patients with oral squamous cell carcinoma (OSCC). METHODS MDC1 protein expression was evaluated immunohistochemically from untreated 100 patients with OSCC using modified H-score method. The association of MDC1 immunostaining was evaluated with clinicopathological parameters and disease outcome using univariate and multivariate survival analysis for relapse-free survival (RFS) and overall survival (OS). RESULTS Incidence of nuclear and cytoplasmic expression of MDC1 protein was 85% & 92%, respectively. Strong nuclear MDC1 protein expression was found to be significantly correlated with lymph node metastasis (P = 0.032). For RFS, Kaplan-Meier survival analysis demonstrated that presence of metastatic lymph node (P = 0.001), lymphatic permeation (P = 0.020), and nuclear MDC1 (P = 0.005) remained significant risk predictors. In multivariate survival analysis, nuclear MDC1 (P = 0.027) entered at step 2 after presence of metastatic lymph node (P = 0.002) at step 1 for predicting reduced RFS. In relation to treatment, OSCC patients exhibiting weak expression of nuclear MDC1 protein were benefited significantly when treated with surgery followed by radiation therapy (P = 0.001). CONCLUSION Thus, this study showed that MDC1 protein expression could be used as a prognostic marker in predicting relapse-free survival in patients with OSCC. OSCC patients expressing weak MDC1 protein could be benefited by adjuvant radiotherapy instead chemo-radiotherapy.
Collapse
Affiliation(s)
- Jigna Harshadbhai Dave
- Division of Molecular Endocrinology, Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Hemangini Hasit Vora
- Division of Immunohistochemistry & Flow cytometry, Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Nandita Radhabinod Ghosh
- Division of Molecular Endocrinology, Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Trupti Indravadan Trivedi
- Division of Molecular Endocrinology, Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| |
Collapse
|
14
|
Uzcanga G, Lara E, Gutiérrez F, Beaty D, Beske T, Teran R, Navarro JC, Pasero P, Benítez W, Poveda A. Nuclear DNA replication and repair in parasites of the genus Leishmania: Exploiting differences to develop innovative therapeutic approaches. Crit Rev Microbiol 2016; 43:156-177. [PMID: 27960617 DOI: 10.1080/1040841x.2016.1188758] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Leishmaniasis is a common tropical disease that affects mainly poor people in underdeveloped and developing countries. This largely neglected infection is caused by Leishmania spp, a parasite from the Trypanosomatidae family. This parasitic disease has different clinical manifestations, ranging from localized cutaneous to more harmful visceral forms. The main limitations of the current treatments are their high cost, toxicity, lack of specificity, and long duration. Efforts to improve treatments are necessary to deal with this infectious disease. Many approved drugs to combat diseases as diverse as cancer, bacterial, or viral infections take advantage of specific features of the causing agent or of the disease. Recent evidence indicates that the specific characteristics of the Trypanosomatidae replication and repair machineries could be used as possible targets for the development of new treatments. Here, we review in detail the molecular mechanisms of DNA replication and repair regulation in trypanosomatids of the genus Leishmania and the drugs that could be useful against this disease.
Collapse
Affiliation(s)
- Graciela Uzcanga
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador.,b Programa Prometeo , SENESCYT, Whymper E7-37 y Alpallana, Quito , Ecuador.,c Facultad de Ciencias Naturales y Ambientales, Universidad Internacional SEK Calle Alberto Einstein sn y 5ta transversal , Quito , Ecuador.,d Fundación Instituto de Estudios Avanzados-IDEA , Caracas , Venezuela
| | - Eliana Lara
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador.,e Institute of Human Genetics , CNRS UPR 1142, 141 rue de la Cardonille, Equipe Labellisée Ligue Contre le Cancer , Montpellier cedex 5 , France
| | - Fernanda Gutiérrez
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador
| | - Doyle Beaty
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador
| | - Timo Beske
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador
| | - Rommy Teran
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador
| | - Juan-Carlos Navarro
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador.,f Universidad Central de Venezuela, Instituto de Zoología y Ecología Tropical , Caracas , Venezuela.,g Facultad de Ciencias Naturales y Ambientales, Universidad Internacional SEK, Calle Alberto Einstein sn y 5ta transversal , Quito , Ecuador
| | - Philippe Pasero
- e Institute of Human Genetics , CNRS UPR 1142, 141 rue de la Cardonille, Equipe Labellisée Ligue Contre le Cancer , Montpellier cedex 5 , France
| | - Washington Benítez
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador
| | - Ana Poveda
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador
| |
Collapse
|
15
|
Spivak IM, Kuranova ML, Mavropulo-Stolyarenko GR, Surma SV, Shchegolev BF, Stefanov VE. Cell response to extremely weak static magnetic fields. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916030180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
16
|
Bernadotte A, Mikhelson VM, Spivak IM. Markers of cellular senescence. Telomere shortening as a marker of cellular senescence. Aging (Albany NY) 2016; 8:3-11. [PMID: 26805432 PMCID: PMC4761709 DOI: 10.18632/aging.100871] [Citation(s) in RCA: 285] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
The cellular senescence definition comes to the fact of cells irreversible proliferation disability. Besides the cell cycle arrest, senescent cells go through some morphological, biochemical, and functional changes which are the signs of cellular senescence. The senescent cells (including replicative senescence and stress-induced premature senescence) of all the tissues look alike. They are metabolically active and possess the set of characteristics in vitro and in vivo, which are known as biomarkers of aging and cellular senescence. Among biomarkers of cellular senescence telomere shortening is a rather elegant frequently used biomarker. Validity of telomere shortening as a marker for cellular senescence is based on theoretical and experimental data.
Collapse
Affiliation(s)
- Alexandra Bernadotte
- Karolinska Institute, Department of Medical Biochemistry and Biophysics, Stockholm, 14157, Sweden
- St. Petersburg Institute of Bioregulation and Gerontology, Russian Academy of Sciences, Saint-Petersburg, 197110 Russia
| | - Victor M. Mikhelson
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, 194064, Russia
| | - Irina M. Spivak
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, 194064, Russia
- Saint-Petersburg's State University, Saint-Petersburg, 199034, Russia
- Saint-Petersburg's Polytechnic State University, Saint-Petersburg, 195251 Russia
| |
Collapse
|
17
|
Wilson-Edell KA, Kehasse A, Scott GK, Yau C, Rothschild DE, Schilling B, Gabriel BS, Yevtushenko MA, Hanson IM, Held JM, Gibson BW, Benz CC. RPL24: a potential therapeutic target whose depletion or acetylation inhibits polysome assembly and cancer cell growth. Oncotarget 2015; 5:5165-76. [PMID: 24970821 PMCID: PMC4148130 DOI: 10.18632/oncotarget.2099] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Partial loss of large ribosomal subunit protein 24 (RPL24) function is known to protect mice against Akt or Myc-driven cancers, in part via translational inhibition of a subset of cap(eIF4E)-dependently translated mRNAs. The role of RPL24 in human malignancies is unknown. By analyzing a public dataset of matched human breast cancers and normal mammary tissue, we found that breast cancers express significantly more RPL24 than matched normal breast samples. Depletion of RPL24 in breast cancer cells by >70% reduced cell viability by 80% and decreased protein expression of the eIF4E-dependently translated proteins cyclin D1 (75%), survivin (46%) and NBS1 (30%) without altering GAPDH or beta-tubulin levels. RPL24 knockdown also reduced 80S subunit levels relative to 40S and 60S levels. These effects on expression of eIF4E-dependent proteins and ribosome assembly were mimicked by 2-24 h treatment with the pan-HDACi, trichostatin A (TSA), which induced acetylation of 15 different polysome-associated proteins including RPL24. Furthermore, HDAC6-selective inhibition or HDAC6 knockdown induced ribosomal protein acetylation. Via mass spectrometry, we found that 60S-associated, but not, polysome-associated, RPL24 undergoes HDACi-induced acetylation on K27. Thus, RPL24 K27 acetylation may play a role in ribosome assembly. These findings point toward a novel acetylation-dependent polysome assembly mechanism regulating tumorigenesis.
Collapse
Affiliation(s)
| | | | - Gary K Scott
- Buck Institute for Research on Aging; Novato, CA, USA
| | - Christina Yau
- Buck Institute for Research on Aging; Novato, CA, USA
| | | | | | - Bianca S Gabriel
- Buck Institute for Research on Aging; Novato, CA, USA. Master of Science in Biology Program; Dominican University; San Rafael, CA, USA
| | - Mariya A Yevtushenko
- Buck Institute for Research on Aging; Novato, CA, USA. Master of Science in Biology Program; Dominican University; San Rafael, CA, USA
| | | | - Jason M Held
- Buck Institute for Research on Aging; Novato, CA, USA
| | - Bradford W Gibson
- Buck Institute for Research on Aging; Novato, CA, USA. Department of Pharmaceutical Chemistry, University of California, San Francisco, CA USA
| | - Christopher C Benz
- Buck Institute for Research on Aging; Novato, CA, USA. Oncology-Hematology Division, Department of Medicine, University of California, San Francisco, CA USA
| |
Collapse
|
18
|
Cairns J, Peng Y, Yee VC, Lou Z, Wang L. Bora downregulation results in radioresistance by promoting repair of double strand breaks. PLoS One 2015; 10:e0119208. [PMID: 25742493 PMCID: PMC4351037 DOI: 10.1371/journal.pone.0119208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/11/2015] [Indexed: 02/07/2023] Open
Abstract
Following DNA double-strand breaks cells activate several DNA-damage response protein kinases, which then trigger histone H2AX phosphorylation and the accumulation of proteins such as MDC1, p53-binding protein 1, and breast cancer gene 1 at the damage site to promote DNA double-strand breaks repair. We identified a novel biomarker, Bora (previously called C13orf34), that is associated with radiosensitivity. In the current study, we set out to investigate how Bora might be involved in response to irradiation. We found a novel function of Bora in DNA damage repair response. Bora down-regulation increased colony formation in cells exposed to irradiation. This increased resistance to irradiation in Bora-deficient cells is likely due to a faster rate of double-strand breaks repair. After irradiation, Bora-knockdown cells displayed increased G2-M cell cycle arrest and increased Chk2 phosphorylation. Furthermore, Bora specifically interacted with the tandem breast cancer gene 1 C-terminal domain of MDC1 in a phosphorylation dependent manner, and overexpression of Bora could abolish irradiation induced MDC1 foci formation. In summary, Bora may play a significant role in radiosensitivity through the regulation of MDC1 and DNA repair.
Collapse
Affiliation(s)
- Junmei Cairns
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, 55905, United States of America
| | - Yi Peng
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, 44106, United States of America
| | - Vivien C. Yee
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, 44106, United States of America
| | - Zhenkun Lou
- Department of Oncology and Oncology Research, Mayo Clinic, Rochester, Minnesota, 55905, United States of America
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, 55905, United States of America
- * E-mail:
| |
Collapse
|
19
|
Weber TJ, Magnaldo T, Xiong Y. ALDH1A1 Deficiency in Gorlin Syndrome Suggests a Central Role for Retinoic Acid and ATM Deficits in Radiation Carcinogenesis. Proteomes 2014; 2:451-467. [PMID: 28250390 PMCID: PMC5302750 DOI: 10.3390/proteomes2030451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/11/2014] [Accepted: 09/01/2014] [Indexed: 12/14/2022] Open
Abstract
We hypothesize that aldehyde dehydrogenase 1A1 (ALDH1A1) deficiency will result in impaired ataxia-telangiectasia mutated (ATM) activation in a retinoic acid-sensitive fashion. Data supporting this hypothesis include (1) reduced ATM activation in irradiated primary dermal fibroblasts from ALDH1A1-deficient Gorlin syndrome patients (GDFs), relative to ALDH1A1-positive normal human dermal fibroblasts (NHDFs) and (2) increased ATM activation by X-radiation in GDFs pretreated with retinoic acid, however, the impact of donor variability on ATM activation in fibroblasts was not assessed and is a prudent consideration in future studies. Clonogenic survival of irradiated cells showed differential responses to retinoic acid as a function of treatment time. Long-term (5 Day) retinoic acid treatment functioned as a radiosensitizer and was associated with downregulation of ATM protein levels. Short-term (7 h) retinoic acid treatment showed a trend toward increased survival of irradiated cells and did not downregulate ATM protein levels. Using a newly developed IncubATR technology, which defines changes in bulk chemical bond patterns in live cells, we can discriminate between the NHDF and GDF phenotypes, but treatment of GDFs with retinoic acid does not induce reversion of bulk chemical bond patterns associated with GDFs toward the NHDF phenotype. Collectively, our preliminary investigation of the Gorlin phenotype has identified deficient ALDH1A1 expression associated with deficient ATM activation as a possible susceptibility factor that is consistent with the high incidence of spontaneous and radiation-induced carcinogenesis in these patients. The IncubATR technology exhibits sufficient sensitivity to detect phenotypic differences in live cells that may be relevant to radiation health effects.
Collapse
Affiliation(s)
- Thomas J Weber
- Systems Toxicology and Exposure Science, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | - Thierry Magnaldo
- Faculté de Médicine, 2ème étage, CNRS UMR 6267-INSERM U998-UNSA, Nice 06107 Cedex 2, France.
| | - Yijia Xiong
- College of Osteopathic Medicine of the Pacific-Northwest, Western University of Health Sciences, Lebanon, OR 97355, USA.
| |
Collapse
|
20
|
Guerra B, Iwabuchi K, Issinger OG. Protein kinase CK2 is required for the recruitment of 53BP1 to sites of DNA double-strand break induced by radiomimetic drugs. Cancer Lett 2013; 345:115-23. [PMID: 24333722 DOI: 10.1016/j.canlet.2013.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 11/26/2013] [Accepted: 11/29/2013] [Indexed: 12/26/2022]
Abstract
The ataxia telangiectasia mutated (ATM) signaling pathway responds rapidly to DNA double-strand breaks (DSBs) and it is characterized by recruitment of sensor, mediator, transducer and repair proteins to sites of DNA damage. Data suggest that CK2 is implicated in the early cellular response to DSBs. We demonstrate that CK2 binds constitutively the adaptor protein 53BP1 through the tandem Tudor domains and that the interaction is disrupted upon induction of DNA damage. Down-regulation of CK2 results in significant reduction of (i) 53BP1 foci formation, (ii) binding to dimethylated histone H4 and (iii) ATM autophosphorylation. Our data suggest that CK2 is required for 53BP1 accumulation at sites of DSBs which is a prerequisite for efficient activation of the ATM-mediated signaling pathway.
Collapse
Affiliation(s)
- Barbara Guerra
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| | - Kuniyoshi Iwabuchi
- Department of Biochemistry, Kanazawa Medical University, Ishikawa, Japan
| | - Olaf-Georg Issinger
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
21
|
Sermeus A, Rebucci M, Fransolet M, Flamant L, Desmet D, Delaive E, Arnould T, Michiels C. Differential effect of hypoxia on etoposide-induced DNA damage response and p53 regulation in different cell types. J Cell Physiol 2013; 228:2365-76. [DOI: 10.1002/jcp.24409] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 05/10/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Audrey Sermeus
- Laboratory of Biochemistry and Cellular Biology (URBC); NARILIS, University of Namur; Namur Belgium
| | - Magali Rebucci
- Laboratory of Biochemistry and Cellular Biology (URBC); NARILIS, University of Namur; Namur Belgium
| | - Maude Fransolet
- Laboratory of Biochemistry and Cellular Biology (URBC); NARILIS, University of Namur; Namur Belgium
| | - Lionel Flamant
- Laboratory of Biochemistry and Cellular Biology (URBC); NARILIS, University of Namur; Namur Belgium
| | - Déborah Desmet
- Laboratory of Biochemistry and Cellular Biology (URBC); NARILIS, University of Namur; Namur Belgium
| | - Edouard Delaive
- Laboratory of Biochemistry and Cellular Biology (URBC); NARILIS, University of Namur; Namur Belgium
| | - Thierry Arnould
- Laboratory of Biochemistry and Cellular Biology (URBC); NARILIS, University of Namur; Namur Belgium
| | - Carine Michiels
- Laboratory of Biochemistry and Cellular Biology (URBC); NARILIS, University of Namur; Namur Belgium
| |
Collapse
|
22
|
Gavvovidis I, Rost I, Trimborn M, Kaiser FJ, Purps J, Wiek C, Hanenberg H, Neitzel H, Schindler D. A novel MCPH1 isoform complements the defective chromosome condensation of human MCPH1-deficient cells. PLoS One 2012; 7:e40387. [PMID: 22952573 PMCID: PMC3431399 DOI: 10.1371/journal.pone.0040387] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 06/08/2012] [Indexed: 12/30/2022] Open
Abstract
Biallelic mutations in MCPH1 cause primary microcephaly (MCPH) with the cellular phenotype of defective chromosome condensation. MCPH1 encodes a multifunctional protein that notably is involved in brain development, regulation of chromosome condensation, and DNA damage response. In the present studies, we detected that MCPH1 encodes several distinct transcripts, including two major forms: full-length MCPH1 (MCPH1-FL) and a second transcript lacking the six 3′ exons (MCPH1Δe9–14). Both variants show comparable tissue-specific expression patterns, demonstrate nuclear localization that is mediated independently via separate NLS motifs, and are more abundant in certain fetal than adult organs. In addition, the expression of either isoform complements the chromosome condensation defect found in genetically MCPH1-deficient or MCPH1 siRNA-depleted cells, demonstrating a redundancy of both MCPH1 isoforms for the regulation of chromosome condensation. Strikingly however, both transcripts are regulated antagonistically during cell-cycle progression and there are functional differences between the isoforms with regard to the DNA damage response; MCPH1-FL localizes to phosphorylated H2AX repair foci following ionizing irradiation, while MCPH1Δe9–14 was evenly distributed in the nucleus. In summary, our results demonstrate here that MCPH1 encodes different isoforms that are differentially regulated at the transcript level and have different functions at the protein level.
Collapse
Affiliation(s)
- Ioannis Gavvovidis
- Department of Human Genetics, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Thompson LH. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat Res 2012; 751:158-246. [PMID: 22743550 DOI: 10.1016/j.mrrev.2012.06.002] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 06/09/2012] [Accepted: 06/16/2012] [Indexed: 12/15/2022]
Abstract
The faithful maintenance of chromosome continuity in human cells during DNA replication and repair is critical for preventing the conversion of normal diploid cells to an oncogenic state. The evolution of higher eukaryotic cells endowed them with a large genetic investment in the molecular machinery that ensures chromosome stability. In mammalian and other vertebrate cells, the elimination of double-strand breaks with minimal nucleotide sequence change involves the spatiotemporal orchestration of a seemingly endless number of proteins ranging in their action from the nucleotide level to nucleosome organization and chromosome architecture. DNA DSBs trigger a myriad of post-translational modifications that alter catalytic activities and the specificity of protein interactions: phosphorylation, acetylation, methylation, ubiquitylation, and SUMOylation, followed by the reversal of these changes as repair is completed. "Superfluous" protein recruitment to damage sites, functional redundancy, and alternative pathways ensure that DSB repair is extremely efficient, both quantitatively and qualitatively. This review strives to integrate the information about the molecular mechanisms of DSB repair that has emerged over the last two decades with a focus on DSBs produced by the prototype agent ionizing radiation (IR). The exponential growth of molecular studies, heavily driven by RNA knockdown technology, now reveals an outline of how many key protein players in genome stability and cancer biology perform their interwoven tasks, e.g. ATM, ATR, DNA-PK, Chk1, Chk2, PARP1/2/3, 53BP1, BRCA1, BRCA2, BLM, RAD51, and the MRE11-RAD50-NBS1 complex. Thus, the nature of the intricate coordination of repair processes with cell cycle progression is becoming apparent. This review also links molecular abnormalities to cellular pathology as much a possible and provides a framework of temporal relationships.
Collapse
Affiliation(s)
- Larry H Thompson
- Biology & Biotechnology Division, L452, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, United States.
| |
Collapse
|
24
|
Finn K, Lowndes NF, Grenon M. Eukaryotic DNA damage checkpoint activation in response to double-strand breaks. Cell Mol Life Sci 2012; 69:1447-73. [PMID: 22083606 PMCID: PMC11115150 DOI: 10.1007/s00018-011-0875-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 02/07/2023]
Abstract
Double-strand breaks (DSBs) are the most detrimental form of DNA damage. Failure to repair these cytotoxic lesions can result in genome rearrangements conducive to the development of many diseases, including cancer. The DNA damage response (DDR) ensures the rapid detection and repair of DSBs in order to maintain genome integrity. Central to the DDR are the DNA damage checkpoints. When activated by DNA damage, these sophisticated surveillance mechanisms induce transient cell cycle arrests, allowing sufficient time for DNA repair. Since the term "checkpoint" was coined over 20 years ago, our understanding of the molecular mechanisms governing the DNA damage checkpoint has advanced significantly. These pathways are highly conserved from yeast to humans. Thus, significant findings in yeast may be extrapolated to vertebrates, greatly facilitating the molecular dissection of these complex regulatory networks. This review focuses on the cellular response to DSBs in Saccharomyces cerevisiae, providing a comprehensive overview of how these signalling pathways function to orchestrate the cellular response to DNA damage and preserve genome stability in eukaryotic cells.
Collapse
Affiliation(s)
- Karen Finn
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | | | | |
Collapse
|
25
|
Deem AK, Li X, Tyler JK. Epigenetic regulation of genomic integrity. Chromosoma 2012; 121:131-51. [PMID: 22249206 DOI: 10.1007/s00412-011-0358-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 12/16/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
Abstract
Inefficient and inaccurate repair of DNA damage is the principal cause of DNA mutations, chromosomal aberrations, and carcinogenesis. Numerous multiple-step DNA repair pathways exist whose deployment depends on the nature of the DNA lesion. Common to all eukaryotic DNA repair pathways is the need to unravel the compacted chromatin structure to facilitate access of the repair machinery to the DNA and restoration of the original chromatin state afterward. Accordingly, our cells utilize a plethora of coordinated mechanisms to locally open up the chromatin structure to reveal the underlying DNA sequence and to orchestrate the efficient and accurate repair of DNA lesions. Here we review changes to the chromatin structure that are intrinsic to the DNA damage response and the available mechanistic insight into how these chromatin changes facilitate distinct stages of the DNA damage repair pathways to maintain genomic stability.
Collapse
Affiliation(s)
- Angela K Deem
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
26
|
Wilson KA, Colavito SA, Schulz V, Wakefield PH, Sessa W, Tuck D, Stern DF. NFBD1/MDC1 regulates Cav1 and Cav2 independently of DNA damage and p53. Mol Cancer Res 2011; 9:766-81. [PMID: 21551225 DOI: 10.1158/1541-7786.mcr-10-0317] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
NFBD1/MDC1 is involved in DNA damage checkpoint signaling and DNA repair. NFBD1 binds to the chromatin component γH2AX at sites of DNA damage, causing amplification of ataxia telangiectasia-mutated gene (ATM) pathway signaling and recruitment of DNA repair factors. Residues 508-995 of NFBD1 possess transactivation activity, suggesting a possible role of NFBD1 in transcription. Furthermore, NFBD1 influences p53-mediated transcription in response to adriamycin. We sought to determine the role of NFBD1 in ionizing radiation (IR)-responsive transcription and if NFBD1 influences transcription independently of p53. Using microarray analysis, we identified genes altered upon NFBD1 knockdown. Surprisingly, most NFBD1 regulated genes are regulated in both the absence and presence of IR, thus pointing toward a novel function for NFBD1 outside of the DNA damage response. Furthermore, NFBD1 knockdown regulated genes mostly independent of p53 knockdown. These genes are involved in pathways including focal adhesion signaling, carbohydrate metabolism, and insulin signaling. We found that CAV1 and CAV2 mRNA and protein levels are reduced by both NFBD1 knockdown and knockout independently of IR and p53. NFBD1-depleted cells exhibit some similar phenotypes to Cav1-depleted cells. Furthermore, like Cav1-depletion, NFBD1 shRNA increases Erk phosphorylation. Thus, Cav1 could act as a mediator of the DNA-damage independent effects of NFBD1 in mitogenic signaling.
Collapse
Affiliation(s)
- Kathleen A Wilson
- Yale University, 333 Cedar Street, P.O. Box 208023, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Al Rashid ST, Harding SM, Law C, Coackley C, Bristow RG. Protein-protein interactions occur between p53 phosphoforms and ATM and 53BP1 at sites of exogenous DNA damage. Radiat Res 2011; 175:588-98. [PMID: 21361779 DOI: 10.1667/rr2084.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We have previously shown that the Ser15-phosphorylated p53 phosphoform, p53(Ser15), can localize at sites of ionizing radiation-induced DNA damage. In this study, we hypothesized that the non-specific DNA binding domain (NSDBD) of the p53 carboxy-terminus (C-terminus) mediates chromatin anchoring at sites of DNA damage to interact with two key mediators of the DNA damage response (DDR): ATM and 53BP1. Exogenous YFP-p53 fusion constructs expressing C-terminus deletion mutants of p53 were transfected into p53-null H1299 cells and tracked by microscopy and biochemistry to determine relative chromatin-binding pre- and postirradiation. We observed that exogenous YFP-p53(WT) and YFP-p53(Δ367-393) associated with ATM(Ser1981) and 53BP1 in the nuclear, chromatin-bound fractions after DNA damage. Of interest, YFP-p53(Δ1-299) fusion proteins, which lack transcriptional trans-activation and the Ser15-residue, bound to ATM(Ser1981) but not to 53BP1. In support of these data, we used subnuclear UV-microbeam and immunoprecipitation analyses of irradiated normal human fibroblasts (HDFs) that confirmed an interaction between endogenous p53 and ATM or 53BP1. Based on these observations, we propose a model whereby a pre-existing pool of p53 responds immediately to radiation-induced DNA damage using the C-terminus to spatially facilitate protein-protein interactions and the DDR at sites of DNA damage.
Collapse
Affiliation(s)
- Shahnaz T Al Rashid
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
28
|
Salles D, Mencalha AL, Ireno IC, Wiesmüller L, Abdelhay E. BCR-ABL stimulates mutagenic homologous DNA double-strand break repair via the DNA-end-processing factor CtIP. Carcinogenesis 2010; 32:27-34. [PMID: 20974687 DOI: 10.1093/carcin/bgq216] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Expression of BCR-ABL oncoprotein in chronic myeloid leukemia (CML) promotes neoplastic transformation of hematopoietic stem cells through modulation of diverse pathways. CML is a multistep disease, which evolves as a chronic phase and progresses to blast crisis. This progression has been associated with the appearance and accumulation of new cytogenetic anomalies and mutations. The mechanisms underlying the genomic instability promoted by BCR-ABL remain obscure. Through comparative analysis of different DNA double-strand break (DSB) repair mechanisms as a function of the BCR-ABL status in human megakaryocytic and CML cell lines, we found that BCR-ABL upregulates error-prone DSB repair pathways [single-strand annealing (SSA) and non-homologous end joining] rather than the high-fidelity mechanism of homologous recombination. Intriguingly, expression analysis of DSB repair pathway choice determining factors revealed increased levels of the protein CtIP in BCR-ABL-positive cells, particularly in response to irradiation. Moreover, treatment with the BCR-ABL kinase inhibitor, Imatinib Mesylate, abolished CtIP accumulation. When we silenced CtIP expression in cells with functional BCR-ABL, SSA enhancement by BCR-ABL was completely abrogated. Importantly, we also provide evidence that BCR-ABL stimulates DSB end resection, which is mediated by CtIP. Briefly, BCR-ABL promotes mutagenic DSB repair with the DSB end-processing protein CtIP acting as the key mediator downstream of BCR-ABL.
Collapse
Affiliation(s)
- Daniela Salles
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Brazil.
| | | | | | | | | |
Collapse
|
29
|
Image-based quantitative determination of DNA damage signal reveals a threshold for G2 checkpoint activation in response to ionizing radiation. Genome Integr 2010; 1:10. [PMID: 20684759 PMCID: PMC2924841 DOI: 10.1186/2041-9414-1-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Accepted: 08/04/2010] [Indexed: 01/02/2023] Open
Abstract
Background Proteins involved in the DNA damage response accumulate as microscopically-visible nuclear foci on the chromatin flanking DNA double-strand breaks (DSBs). As growth of ionizing radiation (IR)-induced foci amplifies the ATM-dependent DNA damage signal, the formation of discrete foci plays a crucial role in cell cycle checkpoint activation, especially in cells exposed to lower doses of IR. However, there is no quantitative parameter for the foci which considers both the number and their size. Therefore, we have developed a novel parameter for DNA damage signal based on the image analysis of the foci and quantified the amount of the signal sufficient for G2 arrest. Results The parameter that we have developed here was designated as SOID. SOID is an abbreviation of Sum Of Integrated Density, which represents the sum of fluorescence of each focus within one nucleus. The SOID was calculated for individual nucleus as the sum of (area (total pixel numbers) of each focus) x (mean fluorescence intensity per pixel of each focus). Therefore, the SOID accounts for the number, size, and fluorescence density of IR-induced foci, and the parameter reflects the flux of DNA damage signal much more accurately than foci number. Using very low doses of X-rays, we performed a "two-way" comparison of SOID of Ser139-phosphorylated histone H2AX foci between G2-arrested cells and mitosis-progressing cells, and between mitosis-progressing cells in the presence or absence of ATM or Chk1/2 inhibitor, both of which abrogate IR-induced G2/M checkpoint. The analysis revealed that there was a threshold of DNA damage signal for G2 arrest, which was around 4000~5000 SOID. G2 cells with < 4000 SOID were neglected by G2/M checkpoint, and thus, the cells could progress to mitosis. Chromosome analysis revealed that the checkpoint-neglected and mitosis-progressing cells had approximately two chromatid breaks on average, indicating that 4000~5000 SOID was equivalent to a few DNA double strand breaks. Conclusions We developed a novel parameter for quantitative analysis of DNA damage signal, and we determined the threshold of DNA damage signal for IR-induced G2 arrest, which was represented by 4000~5000 SOID. The present study emphasizes that not only the foci number but also the size of the foci must be taken into consideration for the proper quantification of DNA damage signal.
Collapse
|
30
|
Mediator of DNA damage checkpoint protein 1 (MDC1) expression as a prognostic marker for nodal recurrence in early-stage breast cancer patients treated with breast-conserving surgery and radiation therapy. Breast Cancer Res Treat 2010; 126:601-7. [PMID: 20521098 DOI: 10.1007/s10549-010-0960-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 05/18/2010] [Indexed: 12/17/2022]
Abstract
The mediator of DNA damage checkpoint protein 1 (MDC1) regulates cell cycle checkpoints and recruits repair proteins to sites of double-stranded DNA damage using its BRCA1 carboxy-terminal (BRCT) domains. MDC1 under-expression has been associated with radiosensitivity in cells. The purpose of this study was to evaluate the clinico-pathologic and prognostic significance of MDC1 expression in a cohort of early-stage breast cancer patients treated with breast conservation therapy. Paraffin specimens from 489 women with early-stage breast cancer treated with breast conservation therapy were constructed into tissue microarrays. The arrays were stained for estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), and MDC1. This was correlated with clinico-pathologic factors and outcomes. MDC1 expression was evaluable in 351 cases (72%). Decreased MDC1 expression was found to be correlated with nodal failure (P = 0.05), but not ipsilateral breast relapse-free survival (IBRFS), distant metastasis-free survival (DMFS), or overall survival (OS). Subset analysis in node-negative patients revealed that decreased MDC1 expression predicted for nodal failure (P < 0.01). Our study is the first to assess the clinico-pathologic and prognostic significance of MDC1 expression in patients with early-stage breast cancer treated with lumpectomy and radiotherapy. MDC1 under-expression predicted for nodal failure, but not for IBRFS, DM, or OS. The role of other proteins involved in the DNA damage repair pathway and their effects on MDC1 expression, as well as the level of MDC1 expression in patients with BRCA1 mutations warrant further investigation.
Collapse
|
31
|
Abstract
Mammalian cells are barraged with endogenous metabolic byproducts and environmental insults that can lead to nearly a million genomic lesions per cell per day. Networks of proteins that repair these lesions are essential for genome maintenance, and a compromise in these pathways propagates mutations that can cause aging and cancer. The p53 tumor suppressor plays a central role in repairing the effects of DNA damage, and has therefore earned the title of "guardian of the genome." In this issue of Genes & Development, Wilhelm and colleagues (pp. 549-560) demonstrate that p73-an older sibling of p53-inhibits pathways that resolve DNA double-strand breaks.
Collapse
|
32
|
Lee J, Dunphy WG. Rad17 plays a central role in establishment of the interaction between TopBP1 and the Rad9-Hus1-Rad1 complex at stalled replication forks. Mol Biol Cell 2010; 21:926-35. [PMID: 20110345 PMCID: PMC2836973 DOI: 10.1091/mbc.e09-11-0958] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
This work provides novel mechanistic insights into how TopBP1 and the Rad9-Hus1-Rad1 (9-1-1) complex dock with one another at stalled replication forks. This step is necessary for the ATR-dependent activation of Chk1 during checkpoint responses. Rad17 is critical for the ATR-dependent activation of Chk1 during checkpoint responses. It is known that Rad17 loads the Rad9-Hus1-Rad1 (9-1-1) complex onto DNA. We show that Rad17 also mediates the interaction of 9-1-1 with the ATR-activating protein TopBP1 in Xenopus egg extracts. Studies with Rad17 mutants indicate that binding of ATP to Rad17 is essential for the association of 9-1-1 and TopBP1. Furthermore, hydrolysis of ATP by Rad17 is necessary for the loading of 9-1-1 onto DNA and the elevated, checkpoint-dependent accumulation of TopBP1 on chromatin. Significantly, a mutant 9-1-1 complex that cannot bind TopBP1 has a normal capacity to promote elevated accumulation of TopBP1 on chromatin. Taken together, we propose the following mechanism. First, Rad17 loads 9-1-1 onto DNA. Second, TopBP1 accumulates on chromatin in a manner that depends on both Rad17 and 9-1-1. Finally, 9-1-1 and TopBP1 dock in a Rad17-dependent manner before activation of Chk1.
Collapse
Affiliation(s)
- Joon Lee
- Division of Biology 147-75, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
33
|
van Vugt MATM, Gardino AK, Linding R, Ostheimer GJ, Reinhardt HC, Ong SE, Tan CS, Miao H, Keezer SM, Li J, Pawson T, Lewis TA, Carr SA, Smerdon SJ, Brummelkamp TR, Yaffe MB. A mitotic phosphorylation feedback network connects Cdk1, Plk1, 53BP1, and Chk2 to inactivate the G(2)/M DNA damage checkpoint. PLoS Biol 2010; 8:e1000287. [PMID: 20126263 PMCID: PMC2811157 DOI: 10.1371/journal.pbio.1000287] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 12/11/2009] [Indexed: 12/18/2022] Open
Abstract
DNA damage checkpoints arrest cell cycle progression to facilitate DNA repair. The ability to survive genotoxic insults depends not only on the initiation of cell cycle checkpoints but also on checkpoint maintenance. While activation of DNA damage checkpoints has been studied extensively, molecular mechanisms involved in sustaining and ultimately inactivating cell cycle checkpoints are largely unknown. Here, we explored feedback mechanisms that control the maintenance and termination of checkpoint function by computationally identifying an evolutionary conserved mitotic phosphorylation network within the DNA damage response. We demonstrate that the non-enzymatic checkpoint adaptor protein 53BP1 is an in vivo target of the cell cycle kinases Cyclin-dependent kinase-1 and Polo-like kinase-1 (Plk1). We show that Plk1 binds 53BP1 during mitosis and that this interaction is required for proper inactivation of the DNA damage checkpoint. 53BP1 mutants that are unable to bind Plk1 fail to restart the cell cycle after ionizing radiation-mediated cell cycle arrest. Importantly, we show that Plk1 also phosphorylates the 53BP1-binding checkpoint kinase Chk2 to inactivate its FHA domain and inhibit its kinase activity in mammalian cells. Thus, a mitotic kinase-mediated negative feedback loop regulates the ATM-Chk2 branch of the DNA damage signaling network by phosphorylating conserved sites in 53BP1 and Chk2 to inactivate checkpoint signaling and control checkpoint duration.
Collapse
Affiliation(s)
- Marcel A. T. M. van Vugt
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Alexandra K. Gardino
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Rune Linding
- Cellular and Molecular Logic Team Integrative Network Biology initiative (INBi) Section of Cell and Molecular Biology, The Institute of Cancer Research, London, United Kingdom
| | - Gerard J. Ostheimer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Departments of Biological Engineering and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - H. Christian Reinhardt
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Shao-En Ong
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Chris S. Tan
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Hua Miao
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Susan M. Keezer
- Cell Signaling Technologies, Danvers, Massachusetts, United States of America
| | - Jeijin Li
- Division of Molecular Structure, Medical Research Council (MRC) National Institute for Medical Research, London, United Kingdom
| | - Tony Pawson
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Timothy A. Lewis
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Steven A. Carr
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Stephen J. Smerdon
- Division of Molecular Structure, Medical Research Council (MRC) National Institute for Medical Research, London, United Kingdom
| | - Thijn R. Brummelkamp
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Michael B. Yaffe
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Departments of Biological Engineering and Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| |
Collapse
|
34
|
53BP1-dependent robust localized KAP-1 phosphorylation is essential for heterochromatic DNA double-strand break repair. Nat Cell Biol 2010; 12:177-84. [PMID: 20081839 DOI: 10.1038/ncb2017] [Citation(s) in RCA: 261] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 11/27/2009] [Indexed: 12/11/2022]
Abstract
DNA double-strand breaks (DSBs) trigger ATM (ataxia telangiectasia mutated) signalling and elicit genomic rearrangements and chromosomal fragmentation if misrepaired or unrepaired. Although most DSB repair is ATM-independent, approximately 15% of ionizing radiation (IR)-induced breaks persist in the absence of ATM-signalling. 53BP1 (p53-binding protein 1) facilitates ATM-dependent DSB repair but is largely dispensable for ATM activation or checkpoint arrest. ATM promotes DSB repair within heterochromatin by phosphorylating KAP-1 (KRAB-associated protein 1, also known as TIF1beta, TRIM28 or KRIP-1; ref. 2). Here, we show that the ATM signalling mediator proteins MDC1, RNF8, RNF168 and 53BP1 are also required for heterochromatic DSB repair. Although KAP-1 phosphorylation is critical for 53BP1-mediated repair, overall phosphorylated KAP-1 (pKAP-1) levels are only modestly affected by 53BP1 loss. pKAP-1 is transiently pan-nuclear but also forms foci overlapping with gammaH2AX in heterochromatin. Cells that do not form 53BP1 foci, including human RIDDLE (radiosensitivity, immunodeficiency, dysmorphic features and learning difficulties) syndrome cells, fail to form pKAP-1 foci. 53BP1 amplifies Mre11-NBS1 accumulation at late-repairing DSBs, concentrating active ATM and leading to robust, localized pKAP-1. We propose that ionizing-radiation induced foci (IRIF) spatially concentrate ATM activity to promote localized alterations in regions of chromatin otherwise inhibitory to repair.
Collapse
|
35
|
Abstract
The stability of the genome is constantly under attack from both endogenous and exogenous DNA damaging agents. These agents, as well as naturally occurring processes such as DNA replication and recombination can result in DNA double-strand breaks (DSBs). DSBs are potentially lethal and so eukaryotic cells have evolved an elaborate pathway, the DNA damage response, which detects the damage, recruits proteins to the DSBs, activates checkpoints to stall cell cycle progression and ultimately mediates repair of the damaged DNA. As the DSBs occur in the context of chromatin, execution of this response is partly orchestrated through the modification of the DNA-bound histone proteins. These histone modifications include the addition or removal of various chemical groups or small peptides and function to change the chromatin structure or to attract factors involved in the DNA damage response, and as such, are particularly important in the early stages of the DNA damage response. This review will focus on such modifications, the enzymes responsible and also highlights their importance by reporting known roles for these modifications in genome stability and disease.
Collapse
Affiliation(s)
- Jennifer E Chubb
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Galway, Ireland
| | | |
Collapse
|
36
|
Polubotko EA, Smirnova NV, Pleskach NM, Mikhelson VM, Spivak IM. Premature aging syndrome in ataxia telangiectasia patients. ACTA ACUST UNITED AC 2009. [DOI: 10.1134/s1990519x09050125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Abstract
53BP1 (p53-binding protein 1) is classified as a mediator/adaptor of the DNA-damage response, and is recruited to nuclear structures termed foci following genotoxic insult. In the present paper, we review the functions of 53BP1 in DNA-damage checkpoint activation and DNA repair, and the mechanisms of its recruitment and activation following DNA damage. We focus in particular on the role of covalent histone modifications in this process.
Collapse
|
38
|
Chapter 6 Application of New Methods for Detection of DNA Damage and Repair. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 277:217-51. [DOI: 10.1016/s1937-6448(09)77006-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|