1
|
Zhang H, Wen N, Gong X, Li X. Application of triboelectric nanogenerator (TENG) in cancer prevention and adjuvant therapy. Colloids Surf B Biointerfaces 2024; 242:114078. [PMID: 39018914 DOI: 10.1016/j.colsurfb.2024.114078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/15/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024]
Abstract
Cancer is a malignant tumor that kills about 940,000 people worldwide each year. In addition, about 30-77 % of cancer patients will experience cancer metastasis and recurrence, which can increase the cancer mortality rate without prompt treatment. According to the US Food and Drug Administration, wearable devices can detect several physiological indicators of patients to reflect their health status and adjuvant cancer treatment. Based on the triboelectric effect and electrostatic induction phenomenon, triboelectric nanopower generation (TENG) technology can convert mechanical energy into electricity and drive small electronic devices. This article reviewed the research status of TENG in the areas of cancer prevention and adjuvant therapy. TENG can be used for cancer prevention with advanced sensors. At the same time, electrical stimulation generated by TENG can also be used to help inhibit the growth of cancer cells to reduce the proliferation, recurrence, and metastasis of cancer cells. This review will promote the practical application of TENG in healthcare and provide clean and sustainable energy solutions for wearable bioelectronic systems.
Collapse
Affiliation(s)
- Haohao Zhang
- Nanjing Institute of Technology, Jiangning District, Nanjing City, Jiangsu Province 211167, China
| | - Ning Wen
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xiaoran Gong
- Nanjing Institute of Technology, Jiangning District, Nanjing City, Jiangsu Province 211167, China
| | - Xue Li
- Nanjing Institute of Technology, Jiangning District, Nanjing City, Jiangsu Province 211167, China.
| |
Collapse
|
2
|
Deng H, Zeng L, Chang K, Lv Y, Du H, Lu S, Liu Y, Zhou P, Mao H, Hu C. Grass carp (Ctenopharyngodon idellus) Cdc25a down-regulates IFN 1 expression by reducing TBK1 phosphorylation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 118:104014. [PMID: 33460677 DOI: 10.1016/j.dci.2021.104014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
In vertebrates, TANK Binding Kinase 1 (TBK1) plays an important role in innate immunity, mainly because it can mediate production of interferon to resist the invasion of pathogens. In mammals, cell division cycle-25a (Cdc25a) is a member of the Cdc25 family of cell division cycle proteins. It is a phosphatase that plays an important role in cell cycle regulation by dephosphorylating its substrate proteins. Currently, many phosphatases are reported to play a role in innate immunity. This is because the phosphatases can shut down or reduce immune signaling pathways by down-regulating phosphorylation signals. However, there are no reports on fish Cdc25a in innate immunity. In this paper, we conducted a preliminary study on the involvement of grass carp Cdc25a in innate immunity. First, we cloned the full-length cDNA of grass carp Cdc25a (CiCdc25a), and found that it shares the highest genetic relationship with that of Anabarilius grahami through phylogenetic tree comparison. In grass carp tissues and CIK cells, the expression of CiCdc25a mRNA was up-regulated under poly (I:C) stimulation. Therefore, CiCdc25a can respond to poly (I:C). The subcellular localization results showed that CiCdc25a is distributed both in the cytoplasm and nucleus. We also found that CiCdc25a can down-regulate the expression of IFN 1 with or without poly (I:C) stimulation. In other words, the down-regulation of IFN1 by CiCdc25a is independent of poly (I:C) stimulation. Further functional studies have shown that the inhibition of IFN1 expression by CiCdc25a may be related to decrease of TBK1 activity. We also confirmed that the phosphorylation of TBK1 at Ser172 is essential for production of IFN 1. In short, CiCdc25a can interact with TBK1 and subsequently inhibits the phosphorylation of TBK1, thereby weakens TBK1 activity. These results indicated that grass carp Cdc25a down-regulates IFN 1 expression by reducing TBK1 phosphorylation.
Collapse
Affiliation(s)
- Hang Deng
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Liugen Zeng
- Nanchang Academy of Agricultural Sciences, Nanchang, 330038, China
| | - Kaile Chang
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Yangfeng Lv
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Hailing Du
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Shina Lu
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Yapeng Liu
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Pengcheng Zhou
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Huiling Mao
- College of Life Science, Nanchang University, Nanchang 330031, China.
| | - Chengyu Hu
- College of Life Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
3
|
Gelaude A, Marin M, Cailliau K, Jeseta M, Lescuyer‐Rousseau A, Vandame P, Nevoral J, Sedmikova M, Martoriati A, Bodart J. Nitric Oxide Donor
s
‐Nitroso‐
n
‐Acetyl Penicillamine (SNAP) Alters Meiotic Spindle Morphogenesis in
Xenopus
Oocytes. J Cell Biochem 2015; 116:2445-54. [DOI: 10.1002/jcb.25211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/22/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Armance Gelaude
- Université Lillel, Sciences et TechnologiesRégulation des Signaux de Division Team, UMR 8576 CNRS, FR3688 CNRSVilleneuve dAscqFrance
| | - Matthieu Marin
- Université Lillel, Sciences et TechnologiesRégulation des Signaux de Division Team, UMR 8576 CNRS, FR3688 CNRSVilleneuve dAscqFrance
| | - Katia Cailliau
- Université Lillel, Sciences et TechnologiesRégulation des Signaux de Division Team, UMR 8576 CNRS, FR3688 CNRSVilleneuve dAscqFrance
| | - Michal Jeseta
- Veterinary Research InstituteBrno ‐ Genetics and ReproductionBrnoCzech Republic
| | - Arlette Lescuyer‐Rousseau
- Université Lillel, Sciences et TechnologiesRégulation des Signaux de Division Team, UMR 8576 CNRS, FR3688 CNRSVilleneuve dAscqFrance
| | - Pauline Vandame
- Université Lillel, Sciences et TechnologiesRégulation des Signaux de Division Team, UMR 8576 CNRS, FR3688 CNRSVilleneuve dAscqFrance
| | - Jan Nevoral
- Czech University of Life Sciences in PragueFaculty of AgrobiologyFood and Natural Resources, Department of Veterinary SciencesPragueCzech Republic
| | - Marketa Sedmikova
- Czech University of Life Sciences in PragueFaculty of AgrobiologyFood and Natural Resources, Department of Veterinary SciencesPragueCzech Republic
| | - Alain Martoriati
- Université Lillel, Sciences et TechnologiesRégulation des Signaux de Division Team, UMR 8576 CNRS, FR3688 CNRSVilleneuve dAscqFrance
| | - Jean‐François Bodart
- Université Lillel, Sciences et TechnologiesRégulation des Signaux de Division Team, UMR 8576 CNRS, FR3688 CNRSVilleneuve dAscqFrance
| |
Collapse
|
4
|
Shin ES, Sorenson CM, Sheibani N. PEDF expression regulates the proangiogenic and proinflammatory phenotype of the lung endothelium. Am J Physiol Lung Cell Mol Physiol 2013; 306:L620-34. [PMID: 24318110 DOI: 10.1152/ajplung.00188.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Pigment epithelium-derived factor (PEDF) is a multifunctional protein with important roles in regulation of inflammation and angiogenesis. It is produced by various cell types, including endothelial cells (EC). However, the cell autonomous impact of PEDF on EC function needs further investigation. Lung EC prepared from PEDF-deficient (PEDF-/-) mice were more migratory and failed to undergo capillary morphogenesis in Matrigel compared with wild type (PEDF+/+) EC. Although no significant differences were observed in the rates of apoptosis in PEDF-/- EC compared with PEDF+/+ cells under basal or stress conditions, PEDF-/- EC proliferated at a slower rate. PEDF-/- EC also expressed increased levels of proinflammatory markers, including vascular endothelial growth factor, inducible nitric oxide synthase, vascular cell adhesion molecule-1, as well as altered cellular junctional organization, and nuclear localization of β-catenin. The PEDF-/- EC were also more adhesive, expressed decreased levels of thrombospondin-2, tenascin-C, and osteopontin, and increased fibronectin. Furthermore, we showed lungs from PEDF-/- mice exhibited increased expression of macrophage marker F4/80, along with increased thickness of the vascular walls, consistent with a proinflammatory phenotype. Together, our data suggest that the PEDF expression makes significant contribution to modulation of the inflammatory and angiogenic phenotype of the lung endothelium.
Collapse
Affiliation(s)
- Eui Seok Shin
- Dept. of Ophthalmology and Visual Sciences, Univ. of Wisconsin, 600 Highland Ave., K6/458 CSC, Madison, WI 53792-4673.
| | | | | |
Collapse
|
5
|
Majumdar U, Biswas P, Subhra Sarkar T, Maiti D, Ghosh S. Regulation of cell cycle and stress responses under nitrosative stress in Schizosaccharomyces pombe. Free Radic Biol Med 2012; 52:2186-200. [PMID: 22561704 DOI: 10.1016/j.freeradbiomed.2012.03.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/13/2012] [Accepted: 03/30/2012] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) acts as a signaling molecule in numerous physiological processes but excess production generates nitrosative stress in cells. The exact protective mechanism used by cells to combat nitrosative stress is unclear. In this study, the fission yeast Schizosaccharomyces pombe has been used as a model system to explore cell cycle regulation and stress responses under nitrosative stress. Exposure to an NO donor results in mitotic delay in cells through G2/M checkpoint activation and initiates rereplication. Western blot analysis of phosphorylated Cdc2 revealed that the G2/M block in the cell cycle was due to retention of its inactive phosphorylated form. Interestingly, nitrosative stress results in inactivation of Cdc25 through S-nitrosylation that actually leads to cell cycle delay. From differential display analysis, we identified plo1, spn4, and rga5, three cell cycle-related genes found to be differentially expressed under nitrosative stress. Exposure to nitrosative stress also results in abnormal septation and cytokinesis in S. pombe. In summary we propose a novel molecular mechanism of cell cycle control under nitrosative stress based on our experimental results and bioinformatics analysis.
Collapse
Affiliation(s)
- Uddalak Majumdar
- Department of Biochemistry, University College of Science, Calcutta University, Kolkata 700019, West Bengal, India
| | | | | | | | | |
Collapse
|
6
|
Jia M, Mateoiu C, Souchelnytskyi S. Protein tyrosine nitration in the cell cycle. Biochem Biophys Res Commun 2011; 413:270-6. [DOI: 10.1016/j.bbrc.2011.08.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 08/17/2011] [Indexed: 01/19/2023]
|
7
|
Goh SH, Hong SH, Hong SH, Lee BC, Ju MH, Jeong JS, Cho YR, Kim IH, Lee YS. eIF3m expression influences the regulation of tumorigenesis-related genes in human colon cancer. Oncogene 2010; 30:398-409. [DOI: 10.1038/onc.2010.422] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Lemaire M, Ducommun B, Nebreda AR. UV-induced downregulation of the CDC25B protein in human cells. FEBS Lett 2010; 584:1199-204. [DOI: 10.1016/j.febslet.2010.02.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 02/11/2010] [Accepted: 02/17/2010] [Indexed: 10/19/2022]
|