1
|
Nobrega M, Bisarro Dos Reis M, Ferreira de Souza M, Hugo Furini H, Costa Brandão Berti F, Larissa Melo Souza I, Mingorance Carvalho T, Zanata SM, Emilio Fuganti P, Malheiros D, Maria de Souza Fonseca Ribeiro E, Mara de Syllos Cólus I. Comparative analysis of extracellular vesicles miRNAs (EV-miRNAs) and cell-free microRNAs (cf-miRNAs) reveals that EV-miRNAs are more promising as diagnostic and prognostic biomarkers for prostate cancer. Gene 2024:149186. [PMID: 39708932 DOI: 10.1016/j.gene.2024.149186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
MicroRNAs can be found intracellularly incorporated into extracellular vesicles (EV-miRNAs) or extracellularly as cell-free miRNAs (cf-miRNAs). This study aimed to compare the diagnostic and prognostic potential of four miRNAs with recognized roles in prostate cancer as cf-miRNAs and EV-miRNAs, obtained from liquid biopsies (LB). Total RNA was isolated from whole plasma and plasma EVs from 15 controls (CTR) and 30 patients (20 with localized prostate cancer (PCa), 10 with metastatic prostate cancer (mPCa)). The miRNAs were quantified by RT-qPCR and the relative expression of these miRNAs was compared between the three groups, and their associations with clinicopathological parameters were assessed. Receiver operating characteristic (ROC) curves were performed to evaluate the diagnostic potential of the miRNAs in discriminating different groups. Overall, EV-miRNAs showed higher expression compared to cf-miRNAs. All EV-miRNAs analyzed showed diagnostic potential with an area under the curve (AUC) above 0.744. EV-miR-21-5p, EV-miR-375-3p, and EV-miR-1290-3p were overexpressed in PCa and mPCa compared to CTR, while EV-miR-200c-3p was overexpressed only in mPCa in comparison to CTR. Remarkably, EV-miR-375-3p and EV-miR-1290-3p could differentiate mPCa with ISUP ≥ 3, demonstrating their prognostic potential. In addition, EV-miR-1290-3p and EV-4-miR-panel detected patients with PSA > 10 ng/mL. Cf-miRNAs performed lower than EV-miRNAs, which can be explained by the greater stability and specificity of EV-miRNAs, making them superior to cf-miRNA. The results show that LB, a non-invasive strategy, is clinically feasible to identify EV-miRNAs as biomarkers for PCa and may provide additional information for assessing PCa risk stratification.
Collapse
Affiliation(s)
- Monyse Nobrega
- Department of General Biology, State University of Londrina, Londrina, Paraná, Brazil
| | | | | | - Hector Hugo Furini
- Department of General Biology, State University of Londrina, Londrina, Paraná, Brazil
| | - Fernanda Costa Brandão Berti
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Ingrid Larissa Melo Souza
- Department of Cell and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil; Laboratory for Applied Science and Technology in Health (LACTAS), Carlos Chagas Institute, FIOCRUZ/PR, Curitiba, Paraná, Brazil
| | - Tamyres Mingorance Carvalho
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Silvio M Zanata
- Department of Cell and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil.
| | | | - Danielle Malheiros
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Paraná, Brazil.
| | | | | |
Collapse
|
2
|
Gonzalez-Candia A, Figueroa EG, Krause BJ. Pharmacological and molecular mechanisms of miRNA-based therapies for targeting cardiovascular dysfunction. Biochem Pharmacol 2024; 228:116318. [PMID: 38801924 DOI: 10.1016/j.bcp.2024.116318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Advances in understanding gene expression regulation through epigenetic mechanisms have contributed to elucidating the regulatory mechanisms of noncoding RNAs as pharmacological targets in several diseases. MicroRNAs (miRs) are a class of evolutionarily conserved, short, noncoding RNAs regulating in a concerted manner gene expression at the post-transcriptional level by targeting specific sequences of the 3'-untranslated region of mRNA. Conversely, mechanisms of cardiovascular disease (CVD) remain largely elusive due to their life-course origins, multifactorial pathophysiology, and co-morbidities. In this regard, CVD treatment with conventional medications results in therapeutic failure due to progressive resistance to monotherapy, which overlooks the multiple factors involved, and reduced adherence to poly-pharmacology approaches. Consequently, considering its role in regulating complete gene pathways, miR-based drugs have appreciably progressed into preclinical and clinical testing. This review summarizes the current knowledge about the mechanisms of miRs in cardiovascular disease, focusing specifically on describing how clinical chemistry and physics have improved the stability of the miR molecule. In addition, a comprehensive review of the main miRs involved in cardiovascular disease and the clinical trials in which these molecules are used as active pharmacological molecules is provided.
Collapse
Affiliation(s)
- Alejandro Gonzalez-Candia
- Laboratory of Fetal Neuroprogramming (www.neurofetal-lab.cl), Institute of Health Sciences, Universidad de O'Higgins, Rancagua, Chile
| | - Esteban G Figueroa
- Laboratory of Fetal Neuroprogramming (www.neurofetal-lab.cl), Institute of Health Sciences, Universidad de O'Higgins, Rancagua, Chile
| | - Bernardo J Krause
- Institute of Health Sciences, Universidad de O'Higgins, Rancagua, Chile.
| |
Collapse
|
3
|
Singh VK, Rajak N, Singh Y, Singh AK, Giri R, Garg N. Role of MicroRNA-21 in Prostate Cancer Progression and Metastasis: Molecular Mechanisms to Therapeutic Targets. Ann Surg Oncol 2024; 31:4795-4808. [PMID: 38758485 DOI: 10.1245/s10434-024-15453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
The role of noncoding RNA has made remarkable progress in understanding progression, metastasis, and metastatic castration-resistant prostate cancer (mCRPC). A better understanding of the miRNAs has enhanced our knowledge of their targeting mainly at the therapy level in solid tumors, such as prostate cancer (PCa). microRNAs (miRNAs) belong to a class of endogenous RNA that deficit encoded proteins. Therefore, the role of miRNAs has been well-coined in the progression and development of PCa. miR-21 has a dual nature in its work both as a tumor suppressor and oncogenic role, but most of the recent studies showed that miR-21 is a tumor promoter and also is involved in castration-resistant prostate cancer (CRPC). Upregulation of miR-21 suppresses programmed cell death and inducing metastasis and castration resistant in PCa. miR-21 is involved in the different stages, such as proliferation, angiogenesis, migration, and invasion, and plays an important role in the progression, metastasis, and advanced stages of PCa. Recently, various studies directly linked the role of high levels of miR-21 with a poor therapeutic response in the patient of PCa. In the present review, we have explained the molecular mechanisms/pathways of miR-21 in PCa progression, metastasis, and castration resistant and summarized the role of miR-21 in diagnosis and therapeutic levels in PCa. In addition, we have spotlighted the recent therapeutic strategies for targeting different stages of PCa.
Collapse
Affiliation(s)
- Vipendra Kumar Singh
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, India
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, D.C., DC, USA
| | - Naina Rajak
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, India
| | - Yashasvi Singh
- Department of Urology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, India
| | - Ankit Kumar Singh
- University Department of Botany Lalit Narayan Mithila University, Darbhanga, Bihar, India
| | - Rajanish Giri
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, India
| | - Neha Garg
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, India.
| |
Collapse
|
4
|
Hoffmann M, Ermler TF, Hoffmann F, Alexa R, Kranz J, Steinke N, Leypold S, Gaisa NT, Saar M. Therapeutic and Diagnostic Potential of Folic Acid Receptors and Glycosylphosphatidylinositol (GPI) Transamidase in Prostate Cancer. Cancers (Basel) 2024; 16:2008. [PMID: 38893127 PMCID: PMC11170984 DOI: 10.3390/cancers16112008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Due to the proliferation-induced high demand of cancer cells for folic acid (FA), significant overexpression of folate receptors 1 (FR1) is detected in most cancers. To our knowledge, a detailed characterization of FR1 expression and regulation regarding therapeutic and diagnostic feasibilities in prostate cancer (PCa) has not been described. In the present study, cell cultures, as well as tissue sections, were analyzed using Western blot, qRT-PCR and immunofluorescence. In addition, we utilized FA-functionalized lipoplexes to characterize the potential of FR1-targeted delivery into PCa cells. Interestingly, we detected a high level of FR1-mRNA in healthy prostate epithelial cells and healthy prostate tissue. However, we were able to show that PCa cells in vitro and PCa tissue showed a massively enhanced FR1 membrane localization where the receptor can finally gain its function. We were able to link these changes to the overexpression of GPI-transamidase (GPI-T) by image analysis. PCa cells in vitro and PCa tissue show the strongest overexpression of GPI-T and thereby induce FR1 membrane localization. Finally, we utilized FA-functionalized lipoplexes to selectively transfer pDNA into PCa cells and demonstrate the therapeutic potential of FR1. Thus, FR1 represents a very promising candidate for targeted therapeutic transfer pathways in PCa and in combination with GPI-T, may provide predictive imaging in addition to established diagnostics.
Collapse
Affiliation(s)
- Marco Hoffmann
- Department of Urology and Pediatric Urology, University Medical Center RWTH Aachen, 52074 Aachen, Germany; (T.F.E.)
- Center for Integrated Oncology (CIO), University Hospital RWTH Aachen, 52074 Aachen, Germany (S.L.); (N.T.G.)
| | - Thomas Frank Ermler
- Department of Urology and Pediatric Urology, University Medical Center RWTH Aachen, 52074 Aachen, Germany; (T.F.E.)
- Center for Integrated Oncology (CIO), University Hospital RWTH Aachen, 52074 Aachen, Germany (S.L.); (N.T.G.)
| | - Felix Hoffmann
- Department of Urology and Pediatric Urology, University Medical Center RWTH Aachen, 52074 Aachen, Germany; (T.F.E.)
- Center for Integrated Oncology (CIO), University Hospital RWTH Aachen, 52074 Aachen, Germany (S.L.); (N.T.G.)
| | - Radu Alexa
- Department of Urology and Pediatric Urology, University Medical Center RWTH Aachen, 52074 Aachen, Germany; (T.F.E.)
- Center for Integrated Oncology (CIO), University Hospital RWTH Aachen, 52074 Aachen, Germany (S.L.); (N.T.G.)
| | - Jennifer Kranz
- Department of Urology and Pediatric Urology, University Medical Center RWTH Aachen, 52074 Aachen, Germany; (T.F.E.)
- Center for Integrated Oncology (CIO), University Hospital RWTH Aachen, 52074 Aachen, Germany (S.L.); (N.T.G.)
- Department of Urology and Kidney Transplantation, Martin Luther University, 06097 Halle (Saale), Germany
| | - Nathalie Steinke
- Center for Integrated Oncology (CIO), University Hospital RWTH Aachen, 52074 Aachen, Germany (S.L.); (N.T.G.)
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
| | - Sophie Leypold
- Center for Integrated Oncology (CIO), University Hospital RWTH Aachen, 52074 Aachen, Germany (S.L.); (N.T.G.)
- Institute of Pathology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Nadine Therese Gaisa
- Center for Integrated Oncology (CIO), University Hospital RWTH Aachen, 52074 Aachen, Germany (S.L.); (N.T.G.)
- Institute of Pathology, University Hospital RWTH Aachen, 52074 Aachen, Germany
- Institute of Pathology, University Hospital Ulm, 89081 Ulm, Germany
| | - Matthias Saar
- Department of Urology and Pediatric Urology, University Medical Center RWTH Aachen, 52074 Aachen, Germany; (T.F.E.)
- Center for Integrated Oncology (CIO), University Hospital RWTH Aachen, 52074 Aachen, Germany (S.L.); (N.T.G.)
| |
Collapse
|
5
|
Saadh MJ, Mahdi MS, Allela OQB, Alazzawi TS, Ubaid M, Rakhimov NM, Athab ZH, Ramaiah P, Chinnasamy L, Alsaikhan F, Farhood B. Critical role of miR-21/exosomal miR-21 in autophagy pathway. Pathol Res Pract 2024; 257:155275. [PMID: 38643552 DOI: 10.1016/j.prp.2024.155275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024]
Abstract
Activation of autophagy, a process of cellular stress response, leads to the breakdown of proteins, organelles, and other parts of the cell in lysosomes, and can be linked to several ailments, such as cancer, neurological diseases, and rare hereditary syndromes. Thus, its regulation is very carefully monitored. Transcriptional and post-translational mechanisms domestically or in whole organisms utilized to control the autophagic activity, have been heavily researched. In modern times, microRNAs (miRNAs) are being considered to have a part in post-translational orchestration of the autophagic activity, with miR-21 as one of the best studied miRNAs, it is often more than expressed in cancer cells. This regulatory RNA is thought to play a major role in a plethora of processes and illnesses including growth, cancer, cardiovascular disease, and inflammation. Different studies have suggested that a few autophagy-oriented genes, such as PTEN, Rab11a, Atg12, SIPA1L2, and ATG5, are all targeted by miR-21, indicating its essential role in the regulation.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | | | - Tuqa S Alazzawi
- College of dentist, National University of Science and Technology, Dhi Qar, Iraq
| | | | - Nodir M Rakhimov
- Department of Oncology, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan; Department of Oncology, Tashkent State Dental Institute, Tashkent, Uzbekistan
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia jSchool of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Renna FJ, Gonzalez CD, Vaccaro MI. Decoding the Versatile Landscape of Autophagic Protein VMP1 in Cancer: A Comprehensive Review across Tissue Types and Regulatory Mechanisms. Int J Mol Sci 2024; 25:3758. [PMID: 38612567 PMCID: PMC11011780 DOI: 10.3390/ijms25073758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Autophagy, a catabolic process orchestrating the degradation of proteins and organelles within lysosomes, is pivotal for maintaining cellular homeostasis. However, its dual role in cancer involves preventing malignant transformation while fostering progression and therapy resistance. Vacuole Membrane Protein 1 (VMP1) is an essential autophagic protein whose expression, per se, triggers autophagy, being present in the whole autophagic flux. In pancreatic cancer, VMP1-whose expression is linked to the Kirsten Rat Sarcoma Virus (KRAS) oncogene-significantly contributes to disease promotion, progression, and chemotherapy resistance. This investigation extends to breast cancer, colon cancer, hepatocellular carcinoma, and more, highlighting VMP1's nuanced nature, contingent on specific tissue contexts. The examination of VMP1's interactions with micro-ribonucleic acids (miRNAs), including miR-21, miR-210, and miR-124, enhances our understanding of its regulatory network in cancer. Additionally, this article discusses VMP1 gene fusions, especially with ribosomal protein S6 kinase B1 (RPS6KB1), shedding light on potential implications for tumor malignancy. By deciphering the molecular mechanisms linking VMP1 to cancer progression, this exploration paves the way for innovative therapeutic strategies to disrupt these pathways and potentially improve treatment outcomes.
Collapse
Affiliation(s)
- Felipe J. Renna
- Instituto de Bioquimica y Medicina Molecular Prof Alberto Boveris (IBIMOL), CONICET, Universidad de Buenos Aires, Buenos Aires C1113AAC, Argentina;
| | - Claudio D. Gonzalez
- Instituto de Investigaciones, IUC, Medicina Traslacional, Hospital Universitario CEMIC, Buenos Aires C1431FWN, Argentina;
| | - Maria I. Vaccaro
- Instituto de Bioquimica y Medicina Molecular Prof Alberto Boveris (IBIMOL), CONICET, Universidad de Buenos Aires, Buenos Aires C1113AAC, Argentina;
- Instituto de Investigaciones, IUC, Medicina Traslacional, Hospital Universitario CEMIC, Buenos Aires C1431FWN, Argentina;
| |
Collapse
|
7
|
Khalaji A, Mehrtabar S, Jabraeilipour A, Doustar N, Rahmani Youshanlouei H, Tahavvori A, Fattahi P, Alavi SMA, Taha SR, Fazlollahpour-Naghibi A, Shariat Zadeh M. Inhibitory effect of microRNA-21 on pathways and mechanisms involved in cardiac fibrosis development. Ther Adv Cardiovasc Dis 2024; 18:17539447241253134. [PMID: 38819836 PMCID: PMC11143841 DOI: 10.1177/17539447241253134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/18/2024] [Indexed: 06/01/2024] Open
Abstract
Cardiac fibrosis is a pivotal cardiovascular disease (CVD) process and represents a notable health concern worldwide. While the complex mechanisms underlying CVD have been widely investigated, recent research has highlighted microRNA-21's (miR-21) role in cardiac fibrosis pathogenesis. In this narrative review, we explore the molecular interactions, focusing on the role of miR-21 in contributing to cardiac fibrosis. Various signaling pathways, such as the RAAS, TGF-β, IL-6, IL-1, ERK, PI3K-Akt, and PTEN pathways, besides dysregulation in fibroblast activity, matrix metalloproteinases (MMPs), and tissue inhibitors of MMPs cause cardiac fibrosis. Besides, miR-21 in growth factor secretion, apoptosis, and endothelial-to-mesenchymal transition play crucial roles. miR-21 capacity regulatory function presents promising insights for cardiac fibrosis. Moreover, this review discusses numerous approaches to control miR-21 expression, including antisense oligonucleotides, anti-miR-21 compounds, and Notch signaling modulation, all novel methods of cardiac fibrosis inhibition. In summary, this narrative review aims to assess the molecular mechanisms of cardiac fibrosis and its essential miR-21 function.
Collapse
Affiliation(s)
- Amirreza Khalaji
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Mehrtabar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nadia Doustar
- Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Amir Tahavvori
- Department of Internal Medicine, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Payam Fattahi
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Seyed Reza Taha
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Andarz Fazlollahpour-Naghibi
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | |
Collapse
|
8
|
Jain DP, Dinakar YH, Kumar H, Jain R, Jain V. The multifaceted role of extracellular vesicles in prostate cancer-a review. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:481-498. [PMID: 37842237 PMCID: PMC10571058 DOI: 10.20517/cdr.2023.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/08/2023] [Accepted: 07/20/2023] [Indexed: 10/17/2023]
Abstract
Prostate cancer is the second most prominent form of cancer in men and confers the highest mortality after lung cancer. The term "extracellular vesicles" refers to minute endosomal-derived membrane microvesicles and it was demonstrated that extracellular vesicles affect the environment in which tumors originate. Extracellular vesicles' involvement is also established in the development of drug resistance, angiogenesis, stemness, and radioresistance in various cancers including prostate cancer. Extracellular vesicles influence the general environment, processes, and growth of prostate cancer and can be a potential area that offers a significant lead in prostate cancer therapy. In this review, we have elaborated on the multifaceted role of extracellular vesicles in various processes involved in the development of prostate cancer, and their multitude of applications in the diagnosis and treatment of prostate cancer through the encapsulation of various bioactives.
Collapse
Affiliation(s)
- Divya Prakash Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Yirivinti Hayagreeva Dinakar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| |
Collapse
|
9
|
Shukla KK, Choudhary GR, Sankanagoudar S, Sanjeev S, Vishnoi JR, Pareek P, Pilla KK, Pandey SN, Sharma P. Deregulation of miR-10b and miR-21 Correlate with Cancer Stem Cells Expansion through the Apoptotic Pathway in Prostate Cancer. Asian Pac J Cancer Prev 2023; 24:2105-2119. [PMID: 37378942 PMCID: PMC10505899 DOI: 10.31557/apjcp.2023.24.6.2105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND MicroRNAs are small, non-coding RNA molecules that regulate important cellular processes such as tumorigenesis, cell proliferation, and apoptosis. Cancer stem cells are a subset of cells that control metastasis and cell proliferation. In this study, we focus on the roles of miR-10b, miR-21 and correlate with cancer stem cells through the apoptotic pathway in different stages of prostate cancer (PCa). METHODS In total, 45 patients, each group with Benign prostatic hyperplasia (BPH), localised PCa, and metastatic PCa, were recruited. MicroRNA and gene expression were estimated through quantitative polymerase chain reaction. Flow cytometry was used to characterise prostate cancer stem cells (PCSCs), estimate reactive oxygen species (ROS), apoptosis and chemiluminescent immunoassay was used to estimate interleukin 6 (IL-6), tumour necrosis factor (TNF-α), prostate-specific antigen (PSA), and testosterone. RESULTS The fold change mean expressions of miR-21, miR-10b, Cytochrome C, and B-cell lymphoma 2 (BCL-2) were significantly upregulated in localised and metastatic PCa compared with BPH. In contrast, the mean fold change expressions of Bcl-2-associated X protein (BAX), Caspase-3, Caspase-9, and Second mitochondria-derived activator of caspase (SMAC) were lower in localised and metastatic PCa compared to BPH. The levels of IL-6, TNF-α, ROS, PSA and testosterone also showed a significant increase while apoptosis was decreased in both localized PCa and metastatic PCa as compared with BPH. In bioinformatics analyses, we found a similar pattern of miRNAs and gene expression in PCa databases. Our study also found a high expression of CD44+/CD24- and CD44+/CD133+ in localised and metastatic PCa compared with BPH. CONCLUSION Our findings suggest miR-10b and miR-21 promote PCSCs and may target apoptotic genes involved in PCa pathogenesis; these miRNAs could be used as diagnosis biomarkers of PCa. In PCa pathogenesis and PCSCs regulation, the interaction between these two players is crucial and will help develop new PCa therapeutic targets.
Collapse
Affiliation(s)
- Kamla Kant Shukla
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | - Gautam Ram Choudhary
- Department of Urology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | | | - Sanjeev Sanjeev
- Department of Surgical Oncology, Atal Bihari Vajpayee Medical University, Lucknow, India.
| | - Jeevan Ram Vishnoi
- Department of Surgical Oncology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | - Puneet Pareek
- Department of Radiation Oncology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | - Kiran Kumar Pilla
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | - Sachchida N. Pandey
- Department of Pathology (Transplant Immunology and Genetics) Muljibhai Patel Urology Hospital, Dr. Virendra Desai Road, Nadiad Gujarat-387001 India.
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| |
Collapse
|
10
|
Kravchuk EV, Ashniev GA, Gladkova MG, Orlov AV, Vasileva AV, Boldyreva AV, Burenin AG, Skirda AM, Nikitin PI, Orlova NN. Experimental Validation and Prediction of Super-Enhancers: Advances and Challenges. Cells 2023; 12:cells12081191. [PMID: 37190100 DOI: 10.3390/cells12081191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Super-enhancers (SEs) are cis-regulatory elements of the human genome that have been widely discussed since the discovery and origin of the term. Super-enhancers have been shown to be strongly associated with the expression of genes crucial for cell differentiation, cell stability maintenance, and tumorigenesis. Our goal was to systematize research studies dedicated to the investigation of structure and functions of super-enhancers as well as to define further perspectives of the field in various applications, such as drug development and clinical use. We overviewed the fundamental studies which provided experimental data on various pathologies and their associations with particular super-enhancers. The analysis of mainstream approaches for SE search and prediction allowed us to accumulate existing data and propose directions for further algorithmic improvements of SEs' reliability levels and efficiency. Thus, here we provide the description of the most robust algorithms such as ROSE, imPROSE, and DEEPSEN and suggest their further use for various research and development tasks. The most promising research direction, which is based on topic and number of published studies, are cancer-associated super-enhancers and prospective SE-targeted therapy strategies, most of which are discussed in this review.
Collapse
Affiliation(s)
- Ekaterina V Kravchuk
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, MSU, 1-12, 119991 Moscow, Russia
| | - German A Ashniev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, MSU, 1-12, 119991 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskiye Gory, MSU, 1-73, 119234 Moscow, Russia
| | - Marina G Gladkova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskiye Gory, MSU, 1-73, 119234 Moscow, Russia
| | - Alexey V Orlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Anastasiia V Vasileva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Anna V Boldyreva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Alexandr G Burenin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Artemiy M Skirda
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Petr I Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Natalia N Orlova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| |
Collapse
|
11
|
de Nóbrega M, Dos Reis MB, Pereira ÉR, de Souza MF, de Syllos Cólus IM. The potential of cell-free and exosomal microRNAs as biomarkers in liquid biopsy in patients with prostate cancer. J Cancer Res Clin Oncol 2022; 148:2893-2910. [PMID: 35922694 DOI: 10.1007/s00432-022-04213-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/14/2022] [Indexed: 12/19/2022]
Abstract
PURPOSE Prostate cancer (PCa) is the 4th most diagnosed cancer and the 8th leading cause of cancer-related death worldwide. Currently, clinical risk stratification models including factors like PSA levels, Gleason score, and digital rectal examination are used for this purpose. There is a need for novel biomarkers that can distinguish between indolent and aggressive pathology and reduce the risk of overdiagnosis/overtreatment. Liquid biopsy has a non-invasive character, can lead to less morbidity and provide new biomarkers, such as miRNAs, that regulate diverse important cellular processes. Here, we report an extended revision about the role of cell-free and exosomal miRNAs (exomiRNAs) as biomarkers for screening, diagnosis, prognosis, or treatment of PCa. METHODS A comprehensive review of the published literature was conducted focusing on the usefulness, advantages, and clinical applications of cell-free and exomiRNAs in serum and plasma. Using PubMed database 53 articles published between 2012 and 2021 were selected and discussed from the perspective of their use as diagnostic, prognostic and therapeutic biomarkers for PCa. RESULTS We identify 119 miRNAs associated with PCa development and the cell-free and exosomal miR-21, miR-141, miR-200c, and miR-375 were consistently associated with progression in multiple cohorts/studies. However, standardized experimental procedures, and well-defined and clinically relevant cohort studies are urgently needed to confirm the biomarker potential of cell-free and exomiRNAs in serum or plasma. CONCLUSION Cell-free and exomiRNAs in serum or plasma are promising tools for be used as non-invasive biomarkers for diagnostic, prognosis, therapy improvement and clinical outcome prediction in PCa patients.
Collapse
Affiliation(s)
- Monyse de Nóbrega
- Department of General Biology, Laboratory of Mutagenesis and Oncogenetics, Center of Biologic Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PR-445, Km 380-University Campus, Londrina, PR, CEP 86057-970, Brazil
| | - Mariana Bisarro Dos Reis
- Barretos Cancer Hospital (Molecular Oncology Research Center), Barretos, SP, CEP 14784-400, Brazil
| | - Érica Romão Pereira
- Department of General Biology, Laboratory of Mutagenesis and Oncogenetics, Center of Biologic Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PR-445, Km 380-University Campus, Londrina, PR, CEP 86057-970, Brazil
| | - Marilesia Ferreira de Souza
- Department of General Biology, Laboratory of Mutagenesis and Oncogenetics, Center of Biologic Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PR-445, Km 380-University Campus, Londrina, PR, CEP 86057-970, Brazil
| | - Ilce Mara de Syllos Cólus
- Department of General Biology, Laboratory of Mutagenesis and Oncogenetics, Center of Biologic Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PR-445, Km 380-University Campus, Londrina, PR, CEP 86057-970, Brazil.
| |
Collapse
|
12
|
Deng ZM, Chen GH, Dai FF, Liu SY, Yang DY, Bao AY, Cheng YX. The clinical value of miRNA-21 in cervical cancer: A comprehensive investigation based on microarray datasets. PLoS One 2022; 17:e0267108. [PMID: 35486636 PMCID: PMC9053781 DOI: 10.1371/journal.pone.0267108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/03/2022] [Indexed: 11/19/2022] Open
Abstract
Previous work has demonstrated that the expression of microRNA-21 (miR-21) is implicated in cervical cancer (CC). However, little is known regarding its associations with clinical parameters. We first conducted a meta-analysis using data from Gene Expression Omnibus (GEO) microarrays and The Cancer Genome Atlas (TCGA). Then, enrichment analysis and hub gene screening were performed by bioinformatic methods. Finally, the role of the screened target genes in CC was explored. According to the meta-analysis, the expression of miR-21 in cancer tissues was higher than in adjacent nontumor tissues (P < 0.05). In addition, 46 genes were predicted as potential targets of miR-21. After enrichment analyses, it was detected that these genes were enriched in various cancer pathways, including the phosphatidylinositol signaling system and mammalian target of rapamycin (mTOR) signaling pathway. In this study, bioinformatic tools and meta-analysis validated that miR-21 may function as a highly sensitive and specific marker for the diagnosis of CC, which may provide a novel approach to the diagnosis and treatment of CC.
Collapse
Affiliation(s)
- Zhi-Min Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Gan-Hong Chen
- Department of Pathology, The People’s Hospital of Honghu, Honghu, Hubei, China
| | - Fang-Fang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shi-Yi Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dong-Yong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - An-Yu Bao
- Department of Clinical laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- * E-mail: (AYB); (YXC)
| | - Yan-Xiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- * E-mail: (AYB); (YXC)
| |
Collapse
|
13
|
Role of MicroRNAs in Neuroendocrine Prostate Cancer. Noncoding RNA 2022; 8:ncrna8020025. [PMID: 35447888 PMCID: PMC9029336 DOI: 10.3390/ncrna8020025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 11/25/2022] Open
Abstract
Therapy-induced neuroendocrine prostate cancer (t-NEPC/NEPC) is an aggressive variant of prostate cancer (PCa) that frequently emerges in castration-resistant prostate cancer (CRPC) under the selective pressure of androgen receptor (AR)-targeted therapies. This variant is extremely aggressive, metastasizes to visceral organs, tissues, and bones despite low serum PSA, and is associated with poor survival rates. It arises via a reversible trans-differentiation process, referred to as ‘neuroendocrine differentiation’ (NED), wherein PCa cells undergo a lineage switch and exhibit neuroendocrine features, characterized by the expression of neuronal markers such as enolase 2 (ENO2), chromogranin A (CHGA), and synaptophysin (SYP). The molecular and cellular mechanisms underlying NED in PCa are complex and not clearly understood, which contributes to a lack of effective molecular biomarkers for diagnosis and therapy of this variant. NEPC is thought to derive from prostate adenocarcinomas by clonal evolution. A characteristic set of genetic alterations, such as dual loss of retinoblastoma (RB1) and tumor protein (TP53) tumor suppressor genes and amplifications of Aurora kinase A (AURKA), NMYC, and EZH2, has been reported to drive NEPC. Recent evidence suggests that microRNAs (miRNAs) are important epigenetic players in driving NED in advanced PCa. In this review, we highlight the role of miRNAs in NEPC. These studies emphasize the diverse role that miRNAs play as oncogenes and tumor suppressors in driving NEPC. These studies have unveiled the important role of cellular processes such as the EMT and cancer stemness in determining NED in PCa. Furthermore, miRNAs are involved in intercellular communication between tumor cells and stromal cells via extracellular vesicles/exosomes that contribute to lineage switching. Recent studies support the promising potential of miRNAs as novel diagnostic biomarkers and therapeutic targets for NEPC.
Collapse
|
14
|
Seputra KP, Purnomo BB, Susianti H, Kalim H, Purnomo AF. miRNA-21 as Reliable Serum Diagnostic Biomarker Candidate for Metastatic Progressive Prostate Cancer: Meta-analysis Approach. Med Arch 2022; 75:347-350. [PMID: 35169355 PMCID: PMC8740671 DOI: 10.5455/medarh.2021.75.347-350] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/10/2021] [Indexed: 11/30/2022] Open
Abstract
Background: Prostate cancer is the second leading cause of cancer death in men, moreover when it develops metastasis. However, PSA detection in serum as current gold standard to measure disease progressivity had wide variability leading to confounding outcomes. MicroRNA-21 has diagnostic values for cancer over period of time researched, yet results are still inconclusive. Objective: The aim of the study was to conduct recent meta-analysis to assess reliability of miRNA-21 as diagnostic biomarker especially in progressivity of prostate cancer. Methods: Published papers from PubMed, Science Direct, and Embase” as of 1 July 2021 assessing circulating miRNA-21 in progressivity of prostate cancer patients were analyzed using Comprehensive Meta-Analysis tool. Pooled sensitivity, specificity, positive and negative likelihood ratio (LR) and SROC assessed with 95 % confidence intervals were estimated using fixed-effects or random-effects models. Results: In total, we included 6 papers total of 651 samples reporting miRNA-21 capability of detecting progressive prostate cancer. The pooled sensitivity and specificity showed 0.91 (95% CI 0.88-0.94, I2=0%) and 0.89 (95% CI 0.85-0.92, I2=44.8%), respectively. Positive and negative likelihood ratio showed 7.18 (95% CI 4.31-11.96, I2=56%) and 0.11 (95% CI 0.07-0.16, I2=11.8%). SROC were assessed and got Area Under Curve around 97.4%. Conclusion: miRNA-21 could serve as biomarkers of prostate cancer progressivity since remarkable diagnostic value of circulating miRNA-21 in prostate cancer metastasis process.
Collapse
Affiliation(s)
- Kurnia Penta Seputra
- Department of Urology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | | | - Hani Susianti
- Department of Clinical Pathology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Handono Kalim
- Department of Internal Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | | |
Collapse
|
15
|
Bai X, Bian Z. MicroRNA-21 Is a Versatile Regulator and Potential Treatment Target in Central Nervous System Disorders. Front Mol Neurosci 2022; 15:842288. [PMID: 35173580 PMCID: PMC8841607 DOI: 10.3389/fnmol.2022.842288] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of endogenous, non-coding, single-stranded RNAs with a length of approximately 22 nucleotides that are found in eukaryotes. miRNAs are involved in the regulation of cell differentiation, proliferation, invasion, apoptosis, and metabolism by regulating the expression of their target genes. Emerging studies have suggested that various miRNAs play key roles in the pathogenesis of central nervous system (CNS) disorders and may be viable therapeutic targets. In particular, miR-21 has prominently emerged as a focus of increasing research on the mechanisms of its involvement in CNS disorders. Herein, we reviewed recent studies on the critical roles of miR-21, including its dysregulated expression and target genes, in the regulation of pathophysiological processes of CNS disorders, with a special focus on apoptosis and inflammation. Collectively, miR-21 is a versatile regulator in the progression of CNS disorders and could be a promising biomarker and therapeutic target for these diseases. An in-depth understanding of the mechanisms by which miR-21 affects the pathogenesis of CNS disorders could pave the way for miR-21 to serve as a therapeutic target for these conditions.
Collapse
Affiliation(s)
- Xue Bai
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhigang Bian
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Zhigang Bian,
| |
Collapse
|
16
|
Amirfallah A, Knutsdottir H, Arason A, Hilmarsdottir B, Johannsson OT, Agnarsson BA, Barkardottir RB, Reynisdottir I. Hsa-miR-21-3p associates with breast cancer patient survival and targets genes in tumor suppressive pathways. PLoS One 2021; 16:e0260327. [PMID: 34797887 PMCID: PMC8604322 DOI: 10.1371/journal.pone.0260327] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/06/2021] [Indexed: 12/22/2022] Open
Abstract
Breast cancer is the cancer most often diagnosed in women. MicroRNAs (MIRs) are short RNA molecules that bind mRNA resulting in their downregulation. MIR21 has been shown to be an oncomiR in most cancer types, including breast cancer. Most of the effects of miR-21 have been attributed to hsa-miR-21-5p that is transcribed from the leading strand of MIR21, but hsa-miR-21-3p (miR-21-3p), transcribed from the lagging strand, is much less studied. The aim of the study is to analyze whether expression of miR-21-3p is prognostic for breast cancer. MiR-21-3p association with survival, clinical and pathological characteristics was analyzed in a large breast cancer cohort and validated in three separate cohorts, including TCGA and METABRIC. Analytical tools were also used to infer miR-21-3p function and to identify potential target genes and functional pathways. The results showed that in the exploration cohort, high miR-21-3p levels associated with shorter survival and lymph node positivity. In the three validation cohorts, high miR-21-3p levels associated with pathological characteristics that predict worse prognosis. Specifically, in the largest validation cohort, METABRIC (n = 1174), high miR-21-3p levels associated with large tumors, a high grade, lymph node and HER2 positivity, and shorter breast-cancer-specific survival (HR = 1.38, CI 1.13–1.68). This association remained significant after adjusting for confounding factors. The genes with expression levels that correlated with miR-21-3p were enriched in particular pathways, including the epithelial-to-mesenchymal transition and proliferation. Among the most significantly downregulated targets were MAT2A and the tumor suppressive genes STARD13 and ZNF132. The results from this study emphasize that both 3p- and 5p-arms from a MIR warrant independent study. The data show that miR-21-3p overexpression in breast tumors is a marker of worse breast cancer progression and it affects genes in pathways that drive breast cancer by down-regulating tumor suppressor genes. The results suggest miR-21-3p as a potential biomarker.
Collapse
Affiliation(s)
- Arsalan Amirfallah
- Cell Biology Unit, Department of Pathology, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
- Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Hildur Knutsdottir
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Adalgeir Arason
- Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Molecular Pathology Unit, Department of Pathology, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
| | - Bylgja Hilmarsdottir
- Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Molecular Pathology Unit, Department of Pathology, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
| | - Oskar T. Johannsson
- Department of Pathology, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
| | - Bjarni A. Agnarsson
- Department of Oncology, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Rosa B. Barkardottir
- Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Molecular Pathology Unit, Department of Pathology, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
| | - Inga Reynisdottir
- Cell Biology Unit, Department of Pathology, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
- Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- * E-mail:
| |
Collapse
|
17
|
Kachris S, Papadaki C, Rounis K, Tsitoura E, Kokkinaki C, Nikolaou C, Sourvinos G, Mavroudis D. Circulating miRNAs as Potential Biomarkers in Prostate Cancer Patients Undergoing Radiotherapy. Cancer Manag Res 2021; 13:8257-8271. [PMID: 34754245 PMCID: PMC8572024 DOI: 10.2147/cmar.s325246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/21/2021] [Indexed: 12/21/2022] Open
Abstract
Introduction Disease recurrence is a major concern in patients with localized prostate cancer (PCa) following treatment with radiotherapy (RT), and few studies have evaluated the clinical relevance of microRNAs (miRNAs) prior and post-RT. Purpose We aimed to investigate the significance of miRNAs in the outcomes of prostate cancer patients undergoing radiotherapy and to identify the related pathways through bioinformatics analysis. Materials and Methods The expression levels of miR-21, miR-106b, miR-141 and miR-375 involved in the response to radiotherapy were assessed by RT-qPCR in the serum of PCa patients (n=56) prior- and post-RT. Results Low expression levels of miR-106b prior-RT were associated with extracapsular extension and seminal vesicles invasion by the tumor (p=0.031 and 0.044, respectively). In the high-risk subgroup (n=47), post-RT expression levels of miR-21 were higher in patients with biochemical relapse (BR) compared to non-relapse (p=0.043). Also, in the salvage treatment subgroup (post-operative BR; n=20), post-RT expression levels of miR-21 and miR-106b were higher in patients with BR compared to non-relapse (p=0.043 and p=0.032, respectively). In the whole group of patients, high expression levels of miR-21 prior-RT and of miR-106b post-RT were associated with significantly shorter overall survival (OS; p=0.049 and p=0.050, respectively). No associations were observed among miR-141 and miR-375 expression levels with clinicopathological features or treatment outcome. Bioinformatics analysis revealed significant enrichment in DNA damage response pathways. Conclusion Circulating miRNAs prior or post-RT may hold prognostic implications in patients with PCa.
Collapse
Affiliation(s)
- Stefanos Kachris
- Department of Radiation Oncology, University General Hospital, Heraklion, Crete, Greece
| | - Chara Papadaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Konstantinos Rounis
- Department of Medical Oncology, University General Hospital, Heraklion, Crete, Greece
| | - Eliza Tsitoura
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Chrysanthi Kokkinaki
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Christoforos Nikolaou
- Department of Biology, University of Crete, Heraklion, Crete, Greece.,Institute of Molecular Biology and Biotechnology (IMBB), Foundation of Research and Technology (FORTH), Heraklion, Crete, Greece.,Institute of Bioinnovation, Biomedical Science Research Center "Alexander Fleming", Athens, Greece
| | - George Sourvinos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Dimitrios Mavroudis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, Crete, Greece.,Department of Medical Oncology, University General Hospital, Heraklion, Crete, Greece
| |
Collapse
|
18
|
Abstract
MicroRNAs (miRNAs), a class of small noncoding RNA, posttranscriptionally regulate the expression of genes. Aberrant expression of miRNA is reported in various types of cancer. Since the first report of oncomiR-21 involvement in the glioma, its upregulation was reported in multiple cancers and was allied with high oncogenic property. In addition to the downregulation of tumor suppressor genes, the miR-21 is also associated with cancer resistance to various chemotherapy. The recent research is appraising miR-21 as a promising cancer target and biomarker for early cancer detection. In this review, we briefly explain the biogenesis and regulation of miR-21 in cancer cells. Additionally, the review features the assorted genes/pathways regulated by the miR-21 in various cancer and cancer stem cells.
Collapse
|
19
|
Pengjam Y, Prajantasen T, Tonwong N, Panichayupakaranant P. Downregulation of miR-21 gene expression by CRE-Ter to modulate osteoclastogenesis: De Novo mechanism. Biochem Biophys Rep 2021; 26:101002. [PMID: 33997317 PMCID: PMC8099503 DOI: 10.1016/j.bbrep.2021.101002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 02/05/2023] Open
Abstract
miR-21 expression stimulates osteoclast cells in the context of osteoclastogenesis. A previous report showed that NFκB-miR-21 pathway could serve as an innovative alternative to devise therapeutics for healing diabetic ulcers. Furthermore, our study demonstrated that a highly water-soluble curcuminoids-rich extract (CRE-Ter) inhibits osteoclastogenesis through NFκB pathway. The interplay between miR-21 and CRE-Ter in osteoclastogenesis has not yet been investigated. In this study, we examined the relation of CRE-Ter and miR-21 gene expression in receptor of the nuclear factor κB (NFκB) ligand (RANKL) - induced murine monocyte/macrophage RAW 264.7 cells, osteoclast cells, in osteoclastogenesis. Effect of CRE-Ter on generation of intracellular reactive oxygen species (ROS) was estimated by dichlorofluorescein diacetate (DCFH-DA). The results reveal that CRE-Ter reduced expression levels of miR-21 gene in osteoclasts. The inhibitory effects of CRE-Ter on in vitro osteoclastogenesis were evaluated by reduction in tartrate-resistant acid phosphatase (TRAP) content, and by reduction in expression levels of an osteoclast-specific gene, cathepsin K. Treatment of the osteoclast cells with CRE-Ter suppressed RANKL-induced NFκB activation including phospho-NFκB-p65, and phospho IκBα proteins. Western blot analysis revealed that NFκB inhibitor up-regulated CRE-Ter-promoted expression of phospho-NFκB-p65. In addition, CRE-Ter dose-dependently inhibited phospho-Akt expression. CRE-Ter also dose-dependently reduced DNA binding activity of NFκB and Akt as revealed by EMSA. ChIP assay revealed binding of NFκB-p65 to miR-21 promoters. In conclusion, our results demonstrate that CRE-Ter downregulates miR-21 gene expression in osteoclasts via a de novo mechanism, NFκB- Akt-miR-21 pathway.
Collapse
Affiliation(s)
- Yutthana Pengjam
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Thanet Prajantasen
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Natda Tonwong
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Pharkphoom Panichayupakaranant
- Phytomedicine and Pharmaceutical Biotechnology Excellent Center (PPBEC), Faculty of Pharmaceutical Sciences Prince of Songkla University, Songkhla, 90110, Thailand
| |
Collapse
|
20
|
Wan Y, Hoyle RG, Xie N, Wang W, Cai H, Zhang M, Ma Z, Xiong G, Xu X, Huang Z, Liu X, Li J, Wang C. A Super-Enhancer Driven by FOSL1 Controls miR-21-5p Expression in Head and Neck Squamous Cell Carcinoma. Front Oncol 2021; 11:656628. [PMID: 33937067 PMCID: PMC8085558 DOI: 10.3389/fonc.2021.656628] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022] Open
Abstract
MiR-21-5p is one of the most common oncogenic miRNAs that is upregulated in many solid cancers by inhibiting its target genes at the posttranscriptional level. However, the upstream regulatory mechanisms of miR-21-5p are still not well documented in cancers. Here, we identify a super-enhancer associated with the MIR21 gene (MIR21-SE) by analyzing the MIR21 genomic regulatory landscape in head and neck squamous cell carcinoma (HNSCC). We show that the MIR21-SE regulates miR-21-5p expression in different HNSCC cell lines and disruption of MIR21-SE inhibits miR-21-5p expression. We also identified that a key transcription factor, FOSL1 directly controls miR-21-5p expression by interacting with the MIR21-SE in HNSCC. Moreover, functional studies indicate that restoration of miR-21-5p partially abrogates FOSL1 depletion-mediated inhibition of cell proliferation and invasion. Clinical studies confirmed that miR-21-5p expression is positively correlated with FOSL1 expression. These findings suggest that FOSL1-SE drives miR-21-5p expression to promote malignant progression of HNSCC
Collapse
Affiliation(s)
- Yuehan Wan
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Rosalie G Hoyle
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Nan Xie
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Department of Oral Pathology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Wenjin Wang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Hongshi Cai
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Ming Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Zhikun Ma
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Gan Xiong
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Xiuyun Xu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Zhengxian Huang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Xiqiang Liu
- Department of Oral and Maxillofacial Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiong Li
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States.,Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Cheng Wang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
21
|
Akoto T, Bhagirath D, Saini S. MicroRNAs in treatment-induced neuroendocrine differentiation in prostate cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:804-818. [PMID: 33426506 PMCID: PMC7793563 DOI: 10.20517/cdr.2020.30] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Prostate cancer is a condition commonly associated with men worldwide. Androgen deprivation therapy remains one of the targeted therapies. However, after some years, there is biochemical recurrence and metastatic progression into castration-resistant prostate cancer (CRPC). CRPC cases are treated with second-line androgen deprivation therapy, after which, these CRPCs transdifferentiate to form neuroendocrine prostate cancer (NEPC), a highly aggressive variant of CRPC. NEPC arises via a reversible transdifferentiation process, known as neuroendocrine differentiation (NED), which is associated with altered expression of lineage markers such as decreased expression of androgen receptor and increased expression of neuroendocrine lineage markers including enolase 2, chromogranin A and synaptophysin. The etiological factors and molecular basis for NED are poorly understood, contributing to a lack of adequate molecular biomarkers for its diagnosis and therapy. Therefore, there is a need to fully understand the underlying molecular basis for this cancer. Recent studies have shown that microRNAs (miRNAs) play a key epigenetic role in driving therapy-induced NED in prostate cancer. In this review, we briefly describe the role of miRNAs in prostate cancer and CRPCs, discuss some key players in NEPCs and elaborate on miRNA dysregulation as a key epigenetic process that accompanies therapy-induced NED in metastatic CRPC. This understanding will contribute to better clinical management of the disease.
Collapse
Affiliation(s)
- Theresa Akoto
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912, USA
| | - Divya Bhagirath
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| | - Sharanjot Saini
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
22
|
MicroRNA-21-Enriched Exosomes as Epigenetic Regulators in Melanomagenesis and Melanoma Progression: The Impact of Western Lifestyle Factors. Cancers (Basel) 2020; 12:cancers12082111. [PMID: 32751207 PMCID: PMC7464294 DOI: 10.3390/cancers12082111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
DNA mutation-induced activation of RAS-BRAF-MEK-ERK signaling associated with intermittent or chronic ultraviolet (UV) irradiation cannot exclusively explain the excessive increase of malignant melanoma (MM) incidence since the 1950s. Malignant conversion of a melanocyte to an MM cell and metastatic MM is associated with a steady increase in microRNA-21 (miR-21). At the epigenetic level, miR-21 inhibits key tumor suppressors of the RAS-BRAF signaling pathway enhancing proliferation and MM progression. Increased MM cell levels of miR-21 either result from endogenous upregulation of melanocytic miR-21 expression or by uptake of miR-21-enriched exogenous exosomes. Based on epidemiological data and translational evidence, this review provides deeper insights into environmentally and metabolically induced exosomal miR-21 trafficking beyond UV-irradiation in melanomagenesis and MM progression. Sources of miR-21-enriched exosomes include UV-irradiated keratinocytes, adipocyte-derived exosomes in obesity, airway epithelium-derived exosomes generated by smoking and pollution, diet-related exosomes and inflammation-induced exosomes, which may synergistically increase the exosomal miR-21 burden of the melanocyte, the transformed MM cell and its tumor environment. Several therapeutic agents that suppress MM cell growth and proliferation attenuate miR-21 expression. These include miR-21 antagonists, metformin, kinase inhibitors, beta-blockers, vitamin D, and plant-derived bioactive compounds, which may represent new options for the prevention and treatment of MM.
Collapse
|
23
|
Ge Y, Wang Q, Shao W, Zhao Y, Shi Q, Yuan Q, Cui L. Circulating let-7f-5p improve risk prediction of prostate cancer in patients with benign prostatic hyperplasia. J Cancer 2020; 11:4542-4549. [PMID: 32489471 PMCID: PMC7255360 DOI: 10.7150/jca.45077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Although the prostate-specific antigen (PSA) testing was widely used for early detection of prostate cancer (PCa), it is difficult for PSA to distinguish the PCa from benign prostatic hyperplasia (BPH) patients. Emerging evidence has shown that microRNA (miRNA) was a promising biomarker for PCa screening. Methods: We applied miRNA profiling from microarray or high-throughput sequencing in Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases to identify the differentially expressed miRNAs in PCa patients (n = 1,017) and controls (n = 413). Then, qRT-PCR analysis was used to validate the expression of candidate miRNAs in our independent cohort, include 66 PCa cases and 63 BPH patients diagnosed by biopsy. The area under the receiver operating characteristic curve (AUC) was conducted to evaluate the diagnostic efficacy of miRNAs and PSA. Results: In the microarray analysis, we identified two consistently differently expressed miRNAs (miR-103a-3p and let-7f-5p) between PCa patients and controls. In the subsequent qRT-PCR analysis, the let-7f-5p was upregulated in PCa compared with BPH patients (P=2.17E-07), but no statistically difference of miR-103a-3p expression was observed (P=0.456). The AUC was 0.904 for combination of lef-7f-5p and PSA, which was significantly higher than that of let-7f-5p (0.782) or PSA (0.795) alone (P=7.55E-04 and P=2.09E-03, respectively). Besides, the results of decision curve analysis and nomogram prediction indicated that combination of let-7f-5p and PSA had superior predictive accuracy of PCa. Conclusions: Our study suggests that plasma let-7f-5p combining PSA could serve as potentially diagnostic biomarkers for PCa.
Collapse
Affiliation(s)
- Yuqiu Ge
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Qiangdong Wang
- Department of Urology, Huaiyin Hospital of Huai'an City, Huai'an, China.,Department of Urology, Huaiyin People's Hospital of Huai'an City, Huai'an, China
| | - Wei Shao
- Department of Science and Technology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - You Zhao
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Qianqian Shi
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Qinbo Yuan
- Department of Urology, Huaiyin Hospital of Huai'an City, Huai'an, China.,Department of Urology, Huaiyin People's Hospital of Huai'an City, Huai'an, China
| | - Li Cui
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
24
|
Labbé M, Hoey C, Ray J, Potiron V, Supiot S, Liu SK, Fradin D. microRNAs identified in prostate cancer: Correlative studies on response to ionizing radiation. Mol Cancer 2020; 19:63. [PMID: 32293453 PMCID: PMC7087366 DOI: 10.1186/s12943-020-01186-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
As the most frequently diagnosed non-skin cancer in men and a leading cause of cancer-related death, understanding the molecular mechanisms that drive treatment resistance in prostate cancer poses a significant clinical need. Radiotherapy is one of the most widely used treatments for prostate cancer, along with surgery, hormone therapy, and chemotherapy. However, inherent radioresistance of tumor cells can reduce local control and ultimately lead to poor patient outcomes, such as recurrence, metastasis and death. The underlying mechanisms of radioresistance have not been fully elucidated, but it has been suggested that miRNAs play a critical role. miRNAs are small non-coding RNAs that regulate gene expression in every signaling pathway of the cell, with one miRNA often having multiple targets. By fine-tuning gene expression, miRNAs are important players in modulating DNA damage response, cell death, tumor aggression and the tumor microenvironment, and can ultimately affect a tumor's response to radiotherapy. Furthermore, much interest has focused on miRNAs found in biofluids and their potential utility in various clinical applications. In this review, we summarize the current knowledge on miRNA deregulation after irradiation and the associated functional outcomes, with a focus on prostate cancer. In addition, we discuss the utility of circulating miRNAs as non-invasive biomarkers to diagnose, predict response to treatment, and prognosticate patient outcomes.
Collapse
Affiliation(s)
- Maureen Labbé
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Christianne Hoey
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Jessica Ray
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Vincent Potiron
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- Institut de Cancérologie de L'Ouest René Gauducheau, Saint-Herblain, France
| | - Stéphane Supiot
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- Institut de Cancérologie de L'Ouest René Gauducheau, Saint-Herblain, France
| | - Stanley K Liu
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.
- Department of Radiation Oncology, University of Toronto and Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.
| | - Delphine Fradin
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.
| |
Collapse
|
25
|
Qi T, Song C, He J, Shen W, Kong D, Shi H, Tan L, Pan R, Tang S, Lee HK. Highly Sensitive Detection of Multiple MicroRNAs by High-Performance Liquid Chromatography Coupled with Long and Short Probe-Based Recycling Amplification. Anal Chem 2020; 92:5033-5040. [DOI: 10.1021/acs.analchem.9b05301] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tong Qi
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, People’s Republic of China
| | - Chang Song
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, People’s Republic of China
| | - Jing He
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, People’s Republic of China
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, People’s Republic of China
| | - Dezhao Kong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, People’s Republic of China
| | - Haiwei Shi
- Jiangsu Institute for Food and Drug Control, Nanjing 210019, Jiangsu Province, People’s Republic of China
- Key Laboratory for Impurity Profile of Chemical Drugs, National Medical Products Administration, Nanjing 210019, Jiangsu Province, People’s Republic of China
| | - Li Tan
- Jiangsu Institute for Food and Drug Control, Nanjing 210019, Jiangsu Province, People’s Republic of China
- Key Laboratory for Impurity Profile of Chemical Drugs, National Medical Products Administration, Nanjing 210019, Jiangsu Province, People’s Republic of China
| | - Ruirong Pan
- Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, People’s Republic of China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, People’s Republic of China
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
26
|
Androgen-Regulated microRNAs (AndroMiRs) as Novel Players in Adipogenesis. Int J Mol Sci 2019; 20:ijms20225767. [PMID: 31744106 PMCID: PMC6888160 DOI: 10.3390/ijms20225767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022] Open
Abstract
The development, homeostasis, or increase of the adipose tissue is driven by the induction of the adipogenic differentiation (adipogenesis) of undifferentiated mesenchymal stem cells (MSCs). Adipogenesis can be inhibited by androgen stimulation of these MSCs resulting in the transcription initiation or repression of androgen receptor (AR) regulated genes. AR not only regulates the transcription of protein-coding genes but also the transcription of several non-coding microRNAs involved in the posttranscriptional gene regulation (herein designated as AndroMiRs). As microRNAs are largely involved in differentiation processes such as adipogenesis, the involvement of AndroMiRs in the androgen-mediated inhibition of adipogenesis is likely, however, not yet intensively studied. In this review, existing knowledge about adipogenesis-related microRNAs and AndroMiRs is summarized, and putative cross-links are drawn, which are still prone to experimental validation.
Collapse
|
27
|
Abstract
RNA structures play a pivotal role in many biological processes and the progression of human disease, making them an attractive target for therapeutic development. Often RNA structures operate through the formation of complexes with RNA-binding proteins, however, much like protein-protein interactions, RNA-protein interactions span large surface areas and often lack traditional druggable properties, making it challenging to target them with small molecules. Peptides provide much greater surface areas and therefore greater potential for forming specific and high affinity interactions with RNA. In this chapter, we discuss our approach for engineering peptides that bind to structured RNAs by highlighting methods and design strategies from previous successful projects aimed at inhibiting the HIV Tat-TAR interaction and the biogenesis of oncogenic microRNAs.
Collapse
Affiliation(s)
- Matthew J Walker
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, WA, United States.
| |
Collapse
|
28
|
Zennami K, Choi SM, Liao R, Li Y, Dinalankara W, Marchionni L, Rafiqi FH, Kurozumi A, Hatano K, Lupold SE. PDCD4 Is an Androgen-Repressed Tumor Suppressor that Regulates Prostate Cancer Growth and Castration Resistance. Mol Cancer Res 2019; 17:618-627. [PMID: 30518628 PMCID: PMC6359980 DOI: 10.1158/1541-7786.mcr-18-0837] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/09/2018] [Accepted: 11/21/2018] [Indexed: 12/11/2022]
Abstract
Androgen receptor (AR) transcriptional activity contributes to prostate cancer development and castration resistance. The growth and survival pathways driven by AR remain incompletely defined. Here, we found PDCD4 to be a new target of AR signaling and a potent regulator of prostate cancer cell growth, survival, and castration resistance. The 3' untranslated region of PDCD4 is directly targeted by the androgen-induced miRNA, miR-21. Androgen treatment suppressed PDCD4 expression in a dose responsive and miR-21-dependent manner. Correspondingly, AR inhibition dose-responsively induced PDCD4 expression. Using data from prostate cancer tissue samples in The Cancer Genome Atlas (TCGA), we found a significant and inverse correlation between miR-21 and PDCD4 mRNA and protein levels. Higher Gleason grade tumors exhibited significantly higher levels of miR-21 and significantly lower levels of PDCD4 mRNA and protein. PDCD4 knockdown enhanced androgen-dependent cell proliferation and cell-cycle progression, inhibited apoptosis, and was sufficient to drive androgen-independent growth. On the other hand, PDCD4 overexpression inhibited miR-21-mediated growth and androgen independence. The stable knockdown of PDCD4 in androgen-dependent prostate cancer cells enhanced subcutaneous tumor take rate in vivo, accelerated tumor growth, and was sufficient for castration-resistant tumor growth. IMPLICATIONS: This study provides the first evidence that PDCD4 is an androgen-suppressed protein capable of regulating prostate cancer cell proliferation, apoptosis, and castration resistance. These results uncover miR-21 and PDCD4-regulated pathways as potential new targets for castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Kenji Zennami
- Department of Urology, The James Buchanan Brady Urologic Institute, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Su Mi Choi
- Department of Urology, The James Buchanan Brady Urologic Institute, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Ross Liao
- Department of Urology, The James Buchanan Brady Urologic Institute, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Ying Li
- Department of Urology, The James Buchanan Brady Urologic Institute, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Wikum Dinalankara
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Luigi Marchionni
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Fatema H Rafiqi
- Department of Urology, The James Buchanan Brady Urologic Institute, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Akira Kurozumi
- Department of Urology, The James Buchanan Brady Urologic Institute, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Koji Hatano
- Department of Urology, The James Buchanan Brady Urologic Institute, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Shawn E Lupold
- Department of Urology, The James Buchanan Brady Urologic Institute, Johns Hopkins School of Medicine, Baltimore, Maryland.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
29
|
You C, Jin L, Xu Q, Shen B, Jiao X, Huang X. Expression of miR-21 and miR-138 in colon cancer and its effect on cell proliferation and prognosis. Oncol Lett 2018; 17:2271-2277. [PMID: 30675293 PMCID: PMC6341732 DOI: 10.3892/ol.2018.9864] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/31/2018] [Indexed: 12/11/2022] Open
Abstract
Effect of miR-21 and miR-138 on the proliferation of colon cancer cells and their association with prognosis were investigated. Expression levels of miR-21 and miR-138 in colorectal cancer and normal adjacent tissues were compared. Differential expression of miR-21 and miR-138 in colon cancer tissues with different clinicopathological features were analyzed. miR-21 and miR-138 expression vectors were established and transfected into cells of colon cancer cell line SW480. Methyl thiazolyl tetrazolium (MTT) assay was used to detect the proliferation of SW480 cells. Kaplan-Meier method and log-rank test were used to study the relationship between miR-21 and miR-138 expression and prognosis. Cox proportional hazards model was used to analyze the factors related to prognosis of colon cancer. Expression level of miR-21 in colon cancer tissues was significantly higher than that in adjacent tissues, and expression level of miR-138 was lower in cancer tissues than in adjacent tissues (P<0.001). Expression of miR-21 and miR-138 was associated with the degree of differentiation, lymph node metastasis, distant metastasis, and TNM stage (P<0.05). miR-21 promotes proliferation of colon cancer cell line SW480, and miR-138 inhibits cell proliferation. Survival analysis showed that the survival time of patients with high expression of miR-21 was significantly shorter than that of patients with low expression of miR-21, while survival time of patients with high expression of miR-138 was significantly longer than that of patients with low expression of miR-138 (log-rank, P<0.05). miR-21 is highly expressed in colon cancer tissues and is positively associated with the degree of malignancy of patients but negatively associated with survival. miR-138 expression is low in colon cancer tissues and is negatively associated with the degree of malignancy of patients but positively associated with survival. miR-21 and miR-138 may be involved in the regulation of colon cancer cell proliferation.
Collapse
Affiliation(s)
- Changxuan You
- Department of Medical Oncology, Nanfang Hospital, Guangzhou, Guangdong 510515, P.R. China
| | - Liming Jin
- Department of General Surgery, The Affiliated People's Hospital, Hangzhou College, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Qi Xu
- Department of Abdominal Μedical Οncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Bo Shen
- Department of Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Xuelong Jiao
- Department of General Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xuewu Huang
- Department of Oncology Center, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| |
Collapse
|
30
|
Kumar B, Rosenberg AZ, Choi SM, Fox-Talbot K, De Marzo AM, Nonn L, Brennen WN, Marchionni L, Halushka MK, Lupold SE. Cell-type specific expression of oncogenic and tumor suppressive microRNAs in the human prostate and prostate cancer. Sci Rep 2018; 8:7189. [PMID: 29739972 PMCID: PMC5940660 DOI: 10.1038/s41598-018-25320-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/19/2018] [Indexed: 02/06/2023] Open
Abstract
MiR-1 and miR-143 are frequently reduced in human prostate cancer (PCa), while miR-141 and miR-21 are frequently elevated. Consequently, these miRNAs have been studied as cell-autonomous tumor suppressors and oncogenes. However, the cell-type specificity of these miRNAs is not well defined in prostate tissue. Through two different microdissection techniques, and droplet digital RT-PCR, we quantified these miRNAs in the stroma and epithelium of radical prostatectomy specimens. In contrast to their purported roles as cell-autonomous tumor suppressors, we found miR-1 and miR-143 expression to be predominantly stromal. Conversely, miR-141 was predominantly epithelial. miR-21 was detected in both stroma and epithelium. Strikingly, the levels of miR-1 and miR-143 were significantly reduced in tumor-associated stroma, but not tumor epithelium. Gene expression analyses in human cell lines, tissues, and prostate-derived stromal cultures support the cell-type selective expression of miR-1, miR-141, and miR-143. Analyses of the PCa Genome Atlas (TCGA-PRAD) showed a strong positive correlation between stromal markers and miR-1 and miR-143, and a strong negative correlation between stromal markers and miR-141. In these tumors, loss of miR-1 and gain of miR-21 was highly associated with biochemical recurrence. These data shed new light on stromal and epithelial miRNA expression in the PCa tumor microenvironment.
Collapse
Affiliation(s)
- Binod Kumar
- The James Buchanan Brady Urologic Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Avi Z Rosenberg
- The Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Su Mi Choi
- The James Buchanan Brady Urologic Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Karen Fox-Talbot
- The Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Angelo M De Marzo
- The James Buchanan Brady Urologic Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA.,The Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Larisa Nonn
- The Department of Pathology, University of Illinois, Chicago, IL, USA
| | - W Nathaniel Brennen
- The Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Luigi Marchionni
- The Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Marc K Halushka
- The Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.,The Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Shawn E Lupold
- The James Buchanan Brady Urologic Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA. .,The Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
31
|
Lü Y, Han B, Yu H, Cui Z, Li Z, Wang J. Berberine regulates the microRNA-21-ITGΒ4-PDCD4 axis and inhibits colon cancer viability. Oncol Lett 2018; 15:5971-5976. [PMID: 29564000 DOI: 10.3892/ol.2018.7997] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 05/16/2017] [Indexed: 12/12/2022] Open
Abstract
Berberine is sourced from multiple medicinal herb resources and is easy to extract. With the advantages of low price, safety and convenience, berberine may have potential for wide clinical use. The present study aimed to investigate whether berberine inhibited the viability of colon cancer and whether it regulated the three-gene network microRNA (miR)-21-integrin β4 (ITGβ4)-programmed cell death 4 (PDCD4). It was demonstrated that berberine treatment suppressed colon cancer cell viability, and induced apoptosis and activated caspase-3 activity in the human colon carcinoma HCT116 cell line. Berberine inhibited miR-21 expression and promoted ITGβ4 and PDCD4 protein expression in the HCT116 cell line. Overexpression of miR-21 reduced the anti-cancer effects of berberine on cell viability, apoptosis rate and caspase-3 activity of the HCT116 cell line. However, it was revealed that the overexpression of miR-21 also suppressed ITGβ4 and PDCD4 protein expression in the HCT116 cell line. In conclusion, miR-21, ITGβ4 and PDCD4 are involved in the anti-cancer effects of berberine on cell viability and apoptosis in the HCT116 cell line.
Collapse
Affiliation(s)
- Yanfeng Lü
- Department of Anoproctology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Bingbing Han
- Microcirculation Laboratory, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Hualong Yu
- Department of Anoproctology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Zhenghua Cui
- Department of Anoproctology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Zhiwen Li
- Department of Anoproctology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Jianxin Wang
- Department of Anoproctology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
32
|
Mostoufi-Afshar S, Tabatabaei M, Ghahramani Seno MM. Mycobacterium avium subsp. paratuberculosis induces differential cytosine methylation at miR-21 transcription start site region. IRANIAN JOURNAL OF VETERINARY RESEARCH 2018; 19:262-269. [PMID: 30774666 PMCID: PMC6361596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/06/2018] [Accepted: 08/28/2018] [Indexed: 06/09/2023]
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP), as an obligate intracellular bacterium, causes paratuberculosis (Johne's disease) in ruminants. Plus, MAP has consistently been isolated from Crohn's disease (CD) lesions in humans; a notion implying possible direct causative effect for MAP in CD development. Infections caused by MAP are refractory to treatment and in many cases the treatment does not easily resolve the infection. Studying the molecular mechanisms of host-pathogen interaction is helpful in identifying possible drug targets. In this line, it has already been shown that in macrophages infected with various bacteria, including mycobacteria, micro RNA 21 (miR-21) is upregulated, a change that results in diminished macrophages clearance ability and favours pathogens survival within the cells. However, the molecular mechanism(s) by which the intracellular bacteria induce miR-21 expression is not known. In order to verify possible effects from epigenetic changes induced by intracellular bacteria, we studied the cytosine methylation changes at the transcription start regions of miR-21 in THP-1 macrophages infected with MAP. For this purpose, genomic DNA was extracted from infected cells and the methylation status at the region of interest was evaluated by bisulfite conversion method. Our work showed that MAP directs de-methylation of the cystosines at CpG di-nucleotides in this region, while non-CpG cytosines of this region did not show significant changes. Interestingly, the CpG cytosines that were differentially methylated in the infected macrophages occur at the binding sites of the transcription factors already known to regulate miR-21 expression.
Collapse
Affiliation(s)
- S. Mostoufi-Afshar
- Graduated from School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - M. Tabatabaei
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - M. M. Ghahramani Seno
- Department of Basic Sciences, and Division of Biotechnology, Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
33
|
Detection of circulating miRNAs: comparative analysis of extracellular vesicle-incorporated miRNAs and cell-free miRNAs in whole plasma of prostate cancer patients. BMC Cancer 2017; 17:730. [PMID: 29121858 PMCID: PMC5679326 DOI: 10.1186/s12885-017-3737-z] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 10/30/2017] [Indexed: 12/11/2022] Open
Abstract
Background Circulating cell-free miRNAs have emerged as promising minimally-invasive biomarkers for early detection, prognosis and monitoring of cancer. They can exist in the bloodstream incorporated into extracellular vesicles (EVs) and ribonucleoprotein complexes. However, it is still debated if EVs contain biologically meaningful amounts of miRNAs and may provide a better source of miRNA biomarkers than whole plasma. The aim of this study was to systematically compare the diagnostic potential of prostate cancer-associated miRNAs in whole plasma and in plasma EVs. Methods RNA was isolated from whole plasma and plasma EV samples from a well characterised cohort of 50 patient with prostate cancer (PC) and 22 patients with benign prostatic hyperplasia (BPH). Nine miRNAs known to have a diagnostic potential for PC in cell-free blood were quantified by RT-qPCR and the relative quantities were compared between patients with PC and BPH and between PC patients with Gleason score ≥ 8 and ≤6. Results Only a small fraction of the total cell-free miRNA was recovered from the plasma EVs, however the EV-incorporated and whole plasma cell-free miRNA profiles were clearly different. Four of the miRNAs analysed showed a diagnostic potential in our patient cohort. MiR-375 could differentiate between PC and BPH patients when analysed in the whole plasma, while miR-200c-3p and miR-21-5p performed better when analysed in plasma EVs. EV-incorporated but not whole plasma Let-7a-5p level could distinguish PC patients with Gleason score ≥ 8 vs ≤6. Conclusions This study demonstrates that for some miRNA biomarkers EVs provide a more consistent source of RNA than whole plasma, while other miRNAs show better diagnostic performance when tested in the whole plasma.
Collapse
|
34
|
Kanwal R, Plaga AR, Liu X, Shukla GC, Gupta S. MicroRNAs in prostate cancer: Functional role as biomarkers. Cancer Lett 2017; 407:9-20. [DOI: 10.1016/j.canlet.2017.08.011] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/03/2017] [Accepted: 08/06/2017] [Indexed: 12/19/2022]
|
35
|
Wu CW, Storey KB. Regulation of Smad mediated microRNA transcriptional response in ground squirrels during hibernation. Mol Cell Biochem 2017; 439:151-161. [PMID: 28780752 DOI: 10.1007/s11010-017-3144-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/02/2017] [Indexed: 11/25/2022]
Abstract
Mammalian hibernation is a state of dormancy that is used by some animals to survive through the unfavorable conditions of winter, and is characterized by coordinated suppression of basal metabolism that is supported by global inhibition of energy/ATP-consuming processes. In this study, we examine the regulation of the anti-proliferatory TGF-β/Smad transcription factor signaling pathway in the liver tissue of the hibernating 13-lined ground squirrel Ictidomys tridecemlineatus. The TGF-β/Smad signaling pathway is known to mediate cell cycle arrest through induction of cell cycle dependent kinase inhibitors, and more recently, has been shown to regulate a wide range of cellular processes via its control of microRNA biosynthesis. We show that phosphorylation levels of the Smad3 protein at its activation residue is increased by ~1.5-fold during torpor, and this is associated with an increase in nuclear localization and DNA binding activity of Smad3. Expression levels of several TGF-β induced microRNAs previously described in human cells were also activated in ground squirrel during torpor. Among these were miR-21, miR-23a, and miR-107, which contain either the conserved R-SBE or R-SBE related motif found in microRNAs that are post-transcriptionally processed by Smad proteins. We show that levels of miR-21 were highly elevated at multiple stages of torpor, and predicted gene targets of miR-21 were enriched to multiple pro-growth cellular processes. Overall, we provide evidence that show the Smad3 transcription factor is activated in ground squirrels during torpor, and suggest a role for this signaling pathway in mediating anti-proliferatory signals via its transcriptional control of cell cycle inhibitors and downstream microRNAs.
Collapse
Affiliation(s)
- Cheng-Wei Wu
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
36
|
Zhou Y, Tian T, Zhu Y, Jaffar Ali D, Hu F, Qi Y, Sun B, Xiao Z. Exosomes Transfer Among Different Species Cells and Mediating miRNAs Delivery. J Cell Biochem 2017; 118:4267-4274. [PMID: 28422319 DOI: 10.1002/jcb.26077] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/18/2017] [Indexed: 12/18/2022]
Abstract
Exosomes, the natural vehicles of intercellular communication, transfer proteins, mRNAs, and microRNAs (miRNAs) and mediate many physiological and pathological processes. It is not clear that whether exosomal miRNAs could regulate gene expression across species, though some studies suggest interactions of exosomal miRNAs between cells. In this report, we have isolated exosomes from rat PC12 cells and assessed their internalization by human cancer Hela cells. The internalized exosomes were located in Hela lysosomes. Human PTEN expression was significantly deregulated due to miR-21 delivered by rat cell exosomes. Our results prove that exosomes could incorporate between cells of different species and could regulate the protein expressions in the recipient cells by delivering the enclosed miRNAs. Thus our study foreshadows a futuristic treatment approach of utilizing miRNA enclosed exosome vehicles sans species concerns in combating various diseases/ regulating abnormal proteins. J. Cell. Biochem. 118: 4267-4274, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yueyuan Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Tian Tian
- Department of Neurobiology, Nanjing Medical University, 101 Longmian Avenu, Nanjing, 211166, China
| | - Yanliang Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Doulathunnisa Jaffar Ali
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Feihu Hu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuhua Qi
- Key Laboratories of Enteric Pathogenic Microbiology, Ministry of Health, Microbiological Laboratory, Jiangsu Center for Disease Prevention and Control (CDC), 172 Jiangsu Rd, Nanjing, 210009, China
| | - Bo Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zhongdang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
37
|
Shukla KK, Misra S, Pareek P, Mishra V, Singhal B, Sharma P. Recent scenario of microRNA as diagnostic and prognostic biomarkers of prostate cancer. Urol Oncol 2016; 35:92-101. [PMID: 27890424 DOI: 10.1016/j.urolonc.2016.10.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 10/24/2016] [Accepted: 10/26/2016] [Indexed: 12/11/2022]
Abstract
Prostate cancer (CaP) is a leading cause of cancer death and displays a broad range of clinical behavior from relatively indolent to aggressive metastatic disease. Due to the alteration and incomplete characterization of the CaP genomic markers, the quest for novel cellular metabolic regulatory molecules like micro RNA (miRNA) as a biomarker could be considered for the prognosis and treatment of CaP in future. In this article, we review the existing literature pertaining to CaP. Study provides a comprehensive miRNA profile expressed in CaP. Beside the miRNA expressed in the tumor tissue, circulating miRNAs have been found highly stable and are both detectable and quantifiable in a range of accessible bio fluids; therefore, miRNA has the potential to be useful diagnostic, prognostic and predictive biomarker. Along with being an important molecule in modulation of CaP progression, the miRNA have certain limitations such as lack of stable expression of multiple target genes and often disrupt entire signaling networks of cellular metabolic pathways. We conclude that: The alteration of miRNA and their role played in cellular regulatory networks would be the next target of basic research in CaP. The miRNAs identified may be validated and modeled to understand their role in CaP, using bioinformatics. There is an immediate unmet need in the translational approach of identified miRNAs. The characterization of miRNAs involved in CaP is still incomplete: adequate validation studies are required to corroborate current results.
Collapse
Affiliation(s)
- Kamla Kant Shukla
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | - Sanjeev Misra
- Department of Surgical Oncology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Puneet Pareek
- Department of Radiation Oncology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Vivek Mishra
- Department of Biotechnology, IFTM University, Moradabad, Uttar Pradesh, India
| | - Barkha Singhal
- Department of Biology, Texas Woman׳s University, Denton, TX, USA
| | - Parveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
38
|
Wei Y, Schober A. MicroRNA regulation of macrophages in human pathologies. Cell Mol Life Sci 2016; 73:3473-95. [PMID: 27137182 PMCID: PMC11108364 DOI: 10.1007/s00018-016-2254-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/15/2016] [Accepted: 04/26/2016] [Indexed: 12/19/2022]
Abstract
Macrophages play a crucial role in the innate immune system and contribute to a broad spectrum of pathologies, like in the defence against infectious agents, in inflammation resolution, and wound repair. In the past several years, microRNAs (miRNAs) have been demonstrated to play important roles in immune diseases by regulating macrophage functions. In this review, we will summarize the role of miRNAs in the differentiation of monocytes into macrophages, in the classical and alternative activation of macrophages, and in the regulation of phagocytosis and apoptosis. Notably, miRNAs preferentially target genes related to the cellular cholesterol metabolism, which is of key importance for the inflammatory activation and phagocytic activity of macrophages. miRNAs functionally link various mechanisms involved in macrophage activation and contribute to initiation and resolution of inflammation. miRNAs represent promising diagnostic and therapeutic targets in different conditions, such as infectious diseases, atherosclerosis, and cancer.
Collapse
Affiliation(s)
- Yuanyuan Wei
- Experimental Vascular Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Pettenkoferstrasse 9, 80336, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802, Munich, Germany
| | - Andreas Schober
- Experimental Vascular Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Pettenkoferstrasse 9, 80336, Munich, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802, Munich, Germany.
| |
Collapse
|
39
|
Yang B, Liu Z, Ning H, Zhang K, Pan D, Ding K, Huang W, Kang XL, Wang Y, Chen X. MicroRNA-21 in peripheral blood mononuclear cells as a novel biomarker in the diagnosis and prognosis of prostate cancer. Cancer Biomark 2016; 17:223-30. [PMID: 27434290 DOI: 10.3233/cbm-160634] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Bing Yang
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Zheng Liu
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Hao Ning
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Kai Zhang
- Department of Urology, Shougang Hospital of Peking University, Beijing, China
| | - Dongliang Pan
- Department of Urology, Shougang Hospital of Peking University, Beijing, China
| | - Kejia Ding
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Wei Huang
- Department of Urology, Shougang Hospital of Peking University, Beijing, China
| | - Xin-Li Kang
- Department of Urology, Shougang Hospital of Peking University, Beijing, China
| | - Yang Wang
- Department of Urology, Shougang Hospital of Peking University, Beijing, China
| | - Xiang Chen
- Department of Urology, Shougang Hospital of Peking University, Beijing, China
| |
Collapse
|
40
|
Recent trends in microRNA research into breast cancer with particular focus on the associations between microRNAs and intrinsic subtypes. J Hum Genet 2016; 62:15-24. [PMID: 27439682 DOI: 10.1038/jhg.2016.89] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/11/2016] [Accepted: 06/13/2016] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate the function of target genes at the post-transcriptional phase. miRNAs are considered to have roles in the development, progression and metastasis of cancer. Recent studies have indicated that particular miRNA signatures are correlated with tumor aggressiveness, response to drug therapy and patient outcome in breast cancer. On the other hand, in routine clinical practice, the treatment regimens for breast cancer are determined based on the intrinsic subtype of the primary tumor. Previous studies have shown that miRNA expression profiles of each intrinsic subtypes of breast cancer differ. In hormone receptor-positive/human epidermal growth factor receptor 2 (HER2)-negative breast cancer, miRNA expressions are found to be correlated with endocrine therapy resistance, progesterone receptor expression and heat shock protein activity. Some miRNAs are associated with resistance to HER2-targeted therapy and HER3 expression in HER2-positive breast cancer. In triple-negative breast cancer, miRNA expressions are found to be associated with BRCA mutations, immune system, epithelial-mesenchymal transition, cancer stem cell properties and androgen receptor expression. As it has been clarified that the expression levels and functions of miRNA differ among the various subtypes of breast cancer, and it is necessary to take account of the characteristics of each breast cancer subtype during research into the roles of miRNA in breast cancer. In addition, the discovery of the roles played by miRNAs in breast cancer might provide new opportunities for the development of novel strategies for diagnosing and treating breast cancer.
Collapse
|
41
|
Dong J, Bi B, Zhang L, Gao K. GLIPR1 inhibits the proliferation and induces the differentiation of cancer-initiating cells by regulating miR-16 in osteosarcoma. Oncol Rep 2016; 36:1585-91. [PMID: 27460987 DOI: 10.3892/or.2016.4949] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/30/2016] [Indexed: 11/06/2022] Open
Abstract
Osteosarcoma is a common, highly malignant and metastatic bone cancer. Elucidation of the molecular mechanisms of osteosarcoma may further help us to understand the pathogenesis of the disease, and offer novel targets for effective therapies. Human glioma pathogenesis-related protein 1 (GLIPR1) has been found to be downregulated in human cancers. However, its roles have not been reported in osteosarcoma. In the present study, we demonstrated that GLIPR1 protein was downregulated in osteosarcoma. Its overexpression inhibited the proliferation, migration and invasion and induced the differentiation of cancer-initiating cells (CICs) in osteosarcoma. Moreover, GLIPR1 overexpression upregulated miR-16 in osteosarcoma cells. The upregulation suppressed proliferation, migration and invasion as well as induced differentiation of CICs in osteosarcoma. Thus, we conclude that GLIPR1 inhibited the proliferation, migration and invasion and induced the differentiation of CICs by regulating miR-16 in osteosarcoma. The present study provides direct evidence that GLIPR1 is a bona fide tumor suppressor and identified GLIPR1 and miR-16 as key components for regulating the proliferation, migration, invasion and CICs in osteosarcoma.
Collapse
Affiliation(s)
- Jian Dong
- Department of Orthopedics, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Binna Bi
- Department of Orthopedics, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Lianhai Zhang
- Department of Emergency Surgery, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277102, P.R. China
| | - Kaituo Gao
- Department of Orthopedics, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| |
Collapse
|
42
|
Kojima S, Goto Y, Naya Y. The roles of microRNAs in the progression of castration-resistant prostate cancer. J Hum Genet 2016; 62:25-31. [PMID: 27278789 DOI: 10.1038/jhg.2016.69] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 04/28/2016] [Accepted: 05/10/2016] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) is one of the leading causes of cancer-related death in men. PCa is androgen-dependent, and androgen-deprivation therapy is effective for first-line hormonal treatment, but the androgen-independent phenotype of PCa eventually develops, which is difficult to treat and has no effective cure. Recently, microRNAs have been discovered to have important roles in the initiation and progression of PCa, suggesting their use in diagnosis, predicting prognosis and development of treatment for castration-resistant PCa (CRPC). Understanding the networks of microRNAs and their target genes is necessary to ascertain their roles and importance in the development and progression of PCa. This review summarizes the current knowledge about microRNAs regulating PCa progression and elucidates the mechanism of progression to CRPC.
Collapse
Affiliation(s)
- Satoko Kojima
- Department of Urology, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Yusuke Goto
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yukio Naya
- Department of Urology, Teikyo University Chiba Medical Center, Ichihara, Japan
| |
Collapse
|
43
|
Measuring the Expression of microRNAs Regulated by Androgens. Methods Mol Biol 2016. [PMID: 27246339 DOI: 10.1007/978-1-4939-3724-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The discovery of microRNAs (miRNAs) provided yet another mechanism of gene expression regulation. miRNAs have recently been also implicated in many diseases, including prostate cancer (PC). As PC is a highly androgen-dependent disease, extensive effort has been invested to identify the miRNAs that are androgen regulated. However, relatively few of them have been shown to be directly androgen regulated in PC. In this chapter we introduce the commonly used techniques to study the androgen regulation of miRNAs. The most cost-effective tool to profile global miRNA expression is microarray-based hybridization, whereas real-time quantitative reverse transcription PCR (qRT-PCR) is commonly used for the study of individual miRNAs.
Collapse
|
44
|
Wang J, Zhu Y, Jin F, Tang L, He Z, He Z. Differential expression of circulating microRNAs in blood and haematoma samples from patients with intracerebral haemorrhage. J Int Med Res 2016; 44:419-32. [PMID: 27020596 PMCID: PMC5536709 DOI: 10.1177/0300060516630852] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/14/2016] [Indexed: 12/19/2022] Open
Abstract
Objective To measure the differential expression of microRNAs (miRNAs) in peripheral blood samples from patients with intracerebral haemorrhage (ICH) and to measure the levels of hsa-miR-21-5p in peripheral blood and haematoma samples from patients with ICH. Methods This case–control study enrolled individuals with ICH in the putamen treated by craniotomy and age- and sex-matched healthy control subjects. Serum miRNA expression profiles were determined in the patient and control groups using miRNA polymerase chain reaction (PCR) arrays. The ICH-related miRNA hsa-miR-21-5p was selected and its differential expression was assessed in peripheral blood and haematoma specimens from patients with ICH compared with peripheral blood samples controls using real-time PCR. Results Seven patients and five control subjects were included in the miRNA expression profile analysis; and 31 patients and 22 control subjects provided samples for the real-time PCR of hsa-miR-21-5p expression. A total of 59 miRNAs were significantly downregulated in patients with ICH. Relative hsa-miR-21-5p levels of 0.43 and 0.31 for peripheral blood and haematoma samples, respectively, were obtained in the patient group compared with the control subjects. Conclusion Hsa-miR-21-5p levels were significantly reduced in both peripheral blood and haematoma samples in patients with ICH.
Collapse
Affiliation(s)
- Jialu Wang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ying Zhu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Feng Jin
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ling Tang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zhenwei He
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zhiyi He
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
45
|
Mizuguchi Y, Takizawa T, Yoshida H, Uchida E. Dysregulated miRNA in progression of hepatocellular carcinoma: A systematic review. Hepatol Res 2016; 46:391-406. [PMID: 26490438 DOI: 10.1111/hepr.12606] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 10/13/2015] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most frequent cancer and the third cause of cancer-related mortality worldwide. The primary risk factor for HCC is liver cirrhosis secondary to persistent infection with hepatitis B virus or hepatitis C virus. Although a number of cellular phenomena and molecular events have been reported to facilitate tumor initiation, progression and metastasis, the exact etiology of HCC has not yet been fully uncovered. miRNA, a class of non-coding RNA, negatively regulate post-transcriptional processes that participate in crucial biological processes, including development, differentiation, apoptosis and proliferation. In the liver, specific miRNA can be negative regulators of gene expression. Recent studies have uncovered the contribution of miRNA to cancer pathogenesis as they can function as oncogenes or tumor suppressor genes. In addition, other studies have demonstrated their potential value in the clinical management of patients with HCC as some miRNA may be used as prognostic or diagnostic markers. In this review, we summarize the current knowledge about the roles of miRNA in the carcinogenesis and progression of HCC.
Collapse
Affiliation(s)
| | | | - Hiroshi Yoshida
- Department of Surgery, Nippon Medical School Hospital, Tokyo, Japan
| | - Eiji Uchida
- Department of Surgery, Nippon Medical School Hospital, Tokyo, Japan
| |
Collapse
|
46
|
Abstract
Prostate cancer (PCa) is the most common male malignancy and the second highest cause of cancer-related mortality in United States. MicroRNAs (miRNAs) are small non-coding RNAs that represent a new mechanism to regulate mRNA post-transcriptionally. It is involved in diverse physiological and pathophysiological process. Dysregulation of miRNAs has been associated with the multistep progression of PCa from prostatic intraepithelial neoplasia (PIN), localized adenocarcinoma to metastatic castration-resistance PCa (CRPC). Identification of unique miRNA could provide new biomarkers for PCa and develop into therapeutic strategies. In this review, we will summarize a broad spectrum of both tumor suppressive and oncogenic miRNAs, and their mechanisms contribute to prostate carcinogenesis.
Collapse
Affiliation(s)
- U-Ging Lo
- Departments of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Diane Yang
- Departments of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jer-Tsong Hsieh
- Departments of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
47
|
Stuopelytė K, Daniūnaitė K, Jankevičius F, Jarmalaitė S. Detection of miRNAs in urine of prostate cancer patients. Medicina (B Aires) 2016; 52:116-24. [DOI: 10.1016/j.medici.2016.02.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/23/2016] [Accepted: 02/29/2016] [Indexed: 11/25/2022] Open
|
48
|
Yu X, Li Z. The role of miRNAs in cutaneous squamous cell carcinoma. J Cell Mol Med 2015; 20:3-9. [PMID: 26508273 PMCID: PMC4717857 DOI: 10.1111/jcmm.12649] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/08/2015] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRs) are small, noncoding RNAs that negatively regulate gene expressions at posttranscriptional level. Each miR can control hundreds of gene targets and play important roles in various biological and pathological processes such as hematopoiesis, organogenesis, cell apoptosis and proliferation. Aberrant miR expression contributes to initiation and cell progression of cancers. Accumulating studies have found that miRs play a significant role in cutaneous squamous cell carcinoma (cSCC). Deregulations of miRs may contribute to cSCC carcinogenesis is through acting as oncogenic or tumour suppressive miRs. In this study, we summarized the recent data available on cSCC‐associated miRs. In particular, we will discuss the contribution of miR to the initiation and progression of cSCCs. Although there are many obstacles to be overcome, clinical use of miRs as biomarkers for diagnosis, prediction of prognosis and target for therapies, will be a promising area in the future with more expression and functional role of miRs revealed.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
49
|
|
50
|
Dong B, Shi Z, Wang J, Wu J, Yang Z, Fang K. IL-6 Inhibits the Targeted Modulation of PDCD4 by miR-21 in Prostate Cancer. PLoS One 2015; 10:e0134366. [PMID: 26252635 PMCID: PMC4529187 DOI: 10.1371/journal.pone.0134366] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 07/08/2015] [Indexed: 11/20/2022] Open
Abstract
Prostate cancer is the most common cancer among men in the Unites States. The cytokine IL-6 activates several prostate cancer pathways, but its upstream trans-signaling pathway remains poorly understood. In this study, we evaluated the role of IL-6 in PDCD4 gene expression and how the microRNA miR-21 regulates this process in prostate cancer cell lines PC-3 and LNCaP. The expression pattern of PDCD4 from samples from human prostate cancer, precancerous lesions, and benign prostatic hyperplasia was investigated by immunohistochemistry. PDCD4 transcription and translation were detected by quantitative real-time PCR (qRT-PCR) and Western blot analysis, respectively. The targeted modulation of PDCD4 by miR-21 was analyzed in PC-3 and LNCaP cells, and the effect of IL-6 on the expression of PDCD4 was studied in vitro. PDCD4 expression in samples from the 3 tissue types progressively increased, and the expression levels of PDCD4 and prostate-specific antigen were negatively correlated. The levels of PDCD4 mRNA and protein in PC-3 and LNCaP cells transfected with anti–miR-21 constructs were lower than those in control cells. The expression of PDCD4 was inhibited by IL-6, but this effect was weakened in cell lines with low expression of miR-21. Our study demonstrates that the regulation of PDCD4 by miR-21 is targeted and IL-6 inhibits expression of the PDCD4 gene in PC-3 and LNCaP cells through the targeted function of miR-21 on PDCD4. These findings support the feasibility of future efforts for diagnosis and gene therapy for prostate cancer that are based on IL-6, miR-21, and PDCD4.
Collapse
Affiliation(s)
- Biao Dong
- Department of Urology, the Second Hospital of Kunming Medical University, Kunming, Yunnan, China
- Urology Institute of Yunnan Province, Kunming, Yunnan, China
| | - Zhihao Shi
- The Emergency Center of The General Hospital of Jinan Military Region, Jinan, Shandong, China
| | - Jiaping Wang
- Department of Urology, the Second Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jing Wu
- Department of Biochemistry, The Primary Medical College of Kunming Medical University, Kunming, Yunnan, China
| | - Zhaoqing Yang
- Institute of Medical Biology, Chinese Academy of Medical Science &Peking Union Medical University, Kunming, Yunnan, China
| | - Kewei Fang
- Department of Urology, the Second Hospital of Kunming Medical University, Kunming, Yunnan, China
- Urology Institute of Yunnan Province, Kunming, Yunnan, China
- * E-mail:
| |
Collapse
|