1
|
Reunov A, Yakovlev K, Hu J, Reunova Y, Komkova A, Alexandrova Y, Pimenova E, Tiefenbach J, Krause H. Close association between vasa-positive germ plasm granules and mitochondria correlates with cytoplasmic localization of 12S and 16S mtrRNAs during zebrafish spermatogenesis. Differentiation 2019; 109:34-41. [PMID: 31494397 DOI: 10.1016/j.diff.2019.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 11/16/2022]
Abstract
The phenomenon of the cytoplasmic localisation of mitochondrial ribosomal subunits (12 S mitochondrial rRNA and 16 S mitochondrial rRNA) has been discovered by scientific teams working with spermatogenic cells of mice. Previous reports showed that the release of mitochondrial substance occurs during interaction of mitochondria with the germ plasm granules (GG). To determine if the interplay between the vasa-positive GG and the mitochondria is associated with cytoplasmic localisation of mtrRNAs, we studied the spermatogenic cells of zebrafish, Danio rerio. It was revealed that in type A undifferentiated spermatogonia the GG did not contact mitochondria, and the extra-mitochondrial localisation of the mtrRNAs was not found. In type A differentiated spermatogonia, the amount of GG in contact with mitochondria increased, but the extra-mitochondrial localisation of the mtrRNAs was not found either. In type B late spermatogonia, which are pre-meiotic cells, the GG/mitochondrion complexes were typically found in contact with the nucleus. This stage was associated with the intra-mitochondrial localisation of GG-originated vasa and extra-mitochondrial localisation of 12 S mtrRNA and 16 S mtrRNA. Until the onset of meiosis, which was determined by the observation of synaptonemal complexes in zygotene-pachytene spermatocytes I, the GG/mitochondrion complexes disappeared, but both types of mtrRNAs persisted in the cytoplasm of spermatids and spermatozoa.
Collapse
Affiliation(s)
- Arkadiy Reunov
- National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690041, Russia; St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada.
| | - Konstantin Yakovlev
- National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Jack Hu
- Donnelly Ctr., 160 College St., University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Yulia Reunova
- National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Alina Komkova
- National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Yana Alexandrova
- National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Evgenia Pimenova
- National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Jens Tiefenbach
- Donnelly Ctr., 160 College St., University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Henry Krause
- Donnelly Ctr., 160 College St., University of Toronto, Toronto, ON M5S 3E1, Canada
| |
Collapse
|
2
|
Kachaev ZM, Lebedeva LA, Kozlov EN, Toropygin IY, Schedl P, Shidlovskii YV. Paip2 is localized to active promoters and loaded onto nascent mRNA in Drosophila. Cell Cycle 2018; 17:1708-1720. [PMID: 29995569 DOI: 10.1080/15384101.2018.1496738] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Paip2 (Poly(A)-binding protein - interacting protein 2) is a conserved metazoan-specific protein that has been implicated in regulating the translation and stability of mRNAs. However, we have found that Paip2 is not restricted to the cytoplasm but is also found in the nucleus in Drosophila embryos, salivary glands, testes, and tissue culture cells. Nuclear Paip2 is associated with chromatin, and in chromatin immunoprecipitation experiments it maps to the promoter regions of active genes. However, this chromatin association is indirect, as it is RNA-dependent. Thus, Paip2 is one more item in the growing list of translation factors that are recruited to mRNAs co-transcriptionally.
Collapse
Affiliation(s)
- Zaur M Kachaev
- a Laboratory of Gene Expression Regulation in Development , Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia
| | - Lyubov A Lebedeva
- a Laboratory of Gene Expression Regulation in Development , Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia
| | - Eugene N Kozlov
- a Laboratory of Gene Expression Regulation in Development , Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia
| | - Ilya Y Toropygin
- d Center of Common Use "Human Proteome" , V.I. Orekhovich Research Institute of Biomedical Chemistry , Moscow , Russia
| | - Paul Schedl
- a Laboratory of Gene Expression Regulation in Development , Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia.,b Department of Molecular Biology , Princeton University , Princeton , NJ , USA
| | - Yulii V Shidlovskii
- a Laboratory of Gene Expression Regulation in Development , Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia.,c Department of Biology and General Genetics , I.M. Sechenov First Moscow State Medical University , Moscow , Russia
| |
Collapse
|
3
|
RNA helicase Spn-E is required to maintain Aub and AGO3 protein levels for piRNA silencing in the germline of Drosophila. Eur J Cell Biol 2016; 95:311-22. [PMID: 27320195 DOI: 10.1016/j.ejcb.2016.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/14/2016] [Accepted: 06/03/2016] [Indexed: 10/21/2022] Open
Abstract
Germline-specific RNA helicase Spindle-E (Spn-E) is known to be essential for piRNA silencing in Drosophila that takes place mainly in the perinuclear nuage granules. Loss-of-function spn-E mutations lead to tandem Stellate genes derepression in the testes and retrotransposon mobilization in the ovaries. However, Spn-E functions in the piRNA pathway are still obscure. Analysis of total library of short RNAs from the testes of spn-E heterozygous flies revealed the presence of abundant piRNA ping-pong pairs originating from Su(Ste) transcripts. The abundance of these ping-pong pairs were sharply reduced in the library from the testes of spn-E mutants. Thus we found that ping-pong mechanism contributed to Su(Ste) piRNA generation in the testes. The lack of Spn-E caused a significant drop of protein levels of key ping-pong participants, Aubergine (Aub) and AGO3 proteins of PIWI subfamily, in the germline of both males and females, but did not disrupt of their assembly in nuage granules. We found that observed decline of the protein expression was not caused by suppression of aub and ago3 transcription as well as total transcription, indicating possible contribution of Spn-E to post-transcriptional regulation.
Collapse
|
4
|
Luo LF, Hou CC, Yang WX. Small non-coding RNAs and their associated proteins in spermatogenesis. Gene 2015; 578:141-57. [PMID: 26692146 DOI: 10.1016/j.gene.2015.12.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/30/2015] [Accepted: 12/08/2015] [Indexed: 12/26/2022]
Abstract
The importance of the gene regulation roles of small non-coding RNAs and their protein partners is of increasing focus. In this paper, we reviewed three main small RNA species which appear to affect spermatogenesis. MicroRNAs (miRNAs) are single stand RNAs derived from transcripts containing stem-loops and hairpins which target corresponding mRNAs and affect their stability or translation. Many miRNA species have been found to be related to normal male germ cell development. The biogenesis of piRNAs is still largely unknown but several models have been proposed. Some piRNAs and PIWIs target transposable elements and it is these that may be active in regulating translation or stem cell maintenance. endo-siRNAs may also participate in sperm development. Some possible interactions between different kinds of small RNAs have even been suggested. We also show that male germ granules are seen to have a close relationship with a considerable number of mRNAs and small RNAs. Those special structures may also participate in sperm development.
Collapse
Affiliation(s)
- Ling-Feng Luo
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cong-Cong Hou
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
|
6
|
Kramer S. RNA in development: how ribonucleoprotein granules regulate the life cycles of pathogenic protozoa. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:263-84. [PMID: 24339376 DOI: 10.1002/wrna.1207] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 10/22/2013] [Accepted: 10/29/2013] [Indexed: 12/11/2022]
Abstract
Ribonucleoprotein (RNP) granules are important posttranscriptional regulators of messenger RNA (mRNA) fate. Several types of RNP granules specifically regulate gene expression during development of multicellular organisms and are commonly referred to as germ granules. The function of germ granules is not entirely understood and probably diverse, but it is generally agreed that one main function is posttranscriptional regulation of gene expression during early development, when transcription is silent. One example is the translational repression of maternally derived mRNAs in oocytes. Here, I hope to show that the need for regulation of gene expression by RNP granules is not restricted to animal development, but plays an equally important role during the development of pathogenic protozoa. Apicomplexa and Trypanosomatidae have complex life cycles with frequent host changes. The need to quickly adapt gene expression to a new environment as well as the ability to suppress translation to survive latencies is critical for successful completion of life cycles. Posttranscriptional gene regulation is not necessarily simpler in protozoa. Apicomplexa surprise with the presence of micro RNA (miRNAs) and upstream open reading frames (µORFs). Trypanosomes have an unusually large repertoire of different RNP granule types. A better understanding of RNP granules in protozoa may help to gain insight into the evolutionary origin of RNP granules: Trypanosomes for example have two types of granules with interesting similarities to animal germ granules.
Collapse
Affiliation(s)
- Susanne Kramer
- Lehrstuhl für Zell- und Entwicklungsbiologie, Biozentrum, Universität Würzburg, Würzburg, Germany
| |
Collapse
|
7
|
Kibanov MV, Kotov AA, Olenina LV. Multicolor fluorescence imaging of whole-mount Drosophila testes for studying spermatogenesis. Anal Biochem 2013; 436:55-64. [PMID: 23357237 DOI: 10.1016/j.ab.2013.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 12/21/2012] [Accepted: 01/10/2013] [Indexed: 01/11/2023]
Abstract
Drosophila testes are generally considered a useful model for studying the fundamental developmental processes of heterogametic organisms. However, immunostaining of the whole Drosophila testis is often associated with insufficient resolution at the subcellular level, poor reproducibility, and incomplete staining of fixed preparations. The main problem for adequate staining is poor permeability of the organs for antibodies and antibody-coupled fluorophores. To overcome this problem we developed a protocol for whole-mount testis immunostaining yielding high-quality preparations for confocal microscopy. Many subcellular structures can be successfully resolved, such as the spectrosome, fusome, nuage granules, apoptotic bodies, and protein crystals. This method preserves the inner architecture of the testes, enabling 3D image reconstruction from a set of confocal sections. It allows one to combine the simultaneous detection of fluorescently tagged and immunostained proteins as well as TUNEL analysis for apoptosis detection.
Collapse
Affiliation(s)
- Mikhail V Kibanov
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Science, Moscow 123182, Russia
| | | | | |
Collapse
|
8
|
Vega A, Baptissart M, Caira F, Brugnon F, Lobaccaro JMA, Volle DH. Epigenetic: a molecular link between testicular cancer and environmental exposures. Front Endocrinol (Lausanne) 2012; 3:150. [PMID: 23230429 PMCID: PMC3515880 DOI: 10.3389/fendo.2012.00150] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/13/2012] [Indexed: 11/13/2022] Open
Abstract
In the last decades, studies in rodents have highlighted links between in utero and/or neonatal exposures to molecules that alter endocrine functions and the development of genital tract abnormalities, such as cryptorchidism, hypospadias, and impaired spermatogenesis. Most of these molecules, called endocrine disrupters exert estrogenic and/or antiandrogenic activities. These data led to the hypothesis of the testicular dysgenesis syndrome which postulates that these disorders are one clinical entity and are linked by epidemiological and pathophysiological relations. Furthermore, infertility has been stated as a risk factor for testicular cancer (TC). The incidence of TC has been increasing over the past decade. Most of testicular germ cell cancers develop through a pre-invasive carcinoma in situ from fetal germ cells (primordial germ cell or gonocyte). During their development, fetal germ cells undergo epigenetic modifications. Interestingly, several lines of evidence have shown that gene regulation through epigenetic mechanisms (DNA and histone modifications) plays an important role in normal development as well as in various diseases, including TC. Here we will review chromatin modifications which can affect testicular physiology leading to the development of TC; and highlight potential molecular pathways involved in these alterations in the context of environmental exposures.
Collapse
Affiliation(s)
- Aurelie Vega
- Génétique Reproduction et Développement, INSERM U 1103Aubière, France
- Génétique Reproduction et Développement, Clermont Université, Université Blaise PascalClermont-Ferrand, France
- Génétique Reproduction et Développement, CNRS, UMR 6293Aubière, France
- Centre de Recherche en Nutrition Humaine d’AuvergneClermont-Ferrand, France
| | - Marine Baptissart
- Génétique Reproduction et Développement, INSERM U 1103Aubière, France
- Génétique Reproduction et Développement, Clermont Université, Université Blaise PascalClermont-Ferrand, France
- Génétique Reproduction et Développement, CNRS, UMR 6293Aubière, France
- Centre de Recherche en Nutrition Humaine d’AuvergneClermont-Ferrand, France
| | - Françoise Caira
- Génétique Reproduction et Développement, INSERM U 1103Aubière, France
- Génétique Reproduction et Développement, Clermont Université, Université Blaise PascalClermont-Ferrand, France
- Génétique Reproduction et Développement, CNRS, UMR 6293Aubière, France
- Centre de Recherche en Nutrition Humaine d’AuvergneClermont-Ferrand, France
| | - Florence Brugnon
- Génétique Reproduction et Développement, INSERM U 1103Aubière, France
- Génétique Reproduction et Développement, Clermont Université, Université Blaise PascalClermont-Ferrand, France
- Génétique Reproduction et Développement, CNRS, UMR 6293Aubière, France
- Centre de Recherche en Nutrition Humaine d’AuvergneClermont-Ferrand, France
| | - Jean-Marc A. Lobaccaro
- Génétique Reproduction et Développement, INSERM U 1103Aubière, France
- Génétique Reproduction et Développement, Clermont Université, Université Blaise PascalClermont-Ferrand, France
- Génétique Reproduction et Développement, CNRS, UMR 6293Aubière, France
- Centre de Recherche en Nutrition Humaine d’AuvergneClermont-Ferrand, France
| | - David H. Volle
- Génétique Reproduction et Développement, INSERM U 1103Aubière, France
- Génétique Reproduction et Développement, Clermont Université, Université Blaise PascalClermont-Ferrand, France
- Génétique Reproduction et Développement, CNRS, UMR 6293Aubière, France
- Centre de Recherche en Nutrition Humaine d’AuvergneClermont-Ferrand, France
- *Correspondence: David H. Volle, Génétique Reproduction et Développement, INSERM U 1103, CNRS, UMR 6293, Clermont Université, 24 avenue des Landais, BP 80026, 63171 Aubière Cedex, France. e-mail:
| |
Collapse
|