1
|
Nardella F, Dobrescu I, Hassan H, Rodrigues F, Thiberge S, Mancio-Silva L, Tafit A, Jallet C, Cadet-Daniel V, Goussin S, Lorthiois A, Menon Y, Molinier N, Pechalrieu D, Long C, Sautel F, Matondo M, Duchateau M, Médard G, Witkowski B, Scherf A, Halby L, Arimondo PB. Hemisynthetic alkaloids derived from trilobine are antimalarials with sustained activity in multidrug-resistant Plasmodium falciparum. iScience 2023; 26:105940. [PMID: 36718363 PMCID: PMC9883252 DOI: 10.1016/j.isci.2023.105940] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Malaria eradication requires the development of new drugs to combat drug-resistant parasites. We identified bisbenzylisoquinoline alkaloids isolated from Cocculus hirsutus that are active against Plasmodium falciparum blood stages. Synthesis of a library of 94 hemi-synthetic derivatives allowed to identify compound 84 that kills multi-drug resistant clinical isolates in the nanomolar range (median IC50 ranging from 35 to 88 nM). Chemical optimization led to compound 125 with significantly improved preclinical properties. 125 delays the onset of parasitemia in Plasmodium berghei infected mice and inhibits P. falciparum transmission stages in vitro (culture assays), and in vivo using membrane feeding assay in the Anopheles stephensi vector. Compound 125 also impairs P. falciparum development in sporozoite-infected hepatocytes, in the low micromolar range. Finally, by chemical pull-down strategy, we characterized the parasite interactome with trilobine derivatives, identifying protein partners belonging to metabolic pathways that are not targeted by the actual antimalarial drugs or implicated in drug-resistance mechanisms.
Collapse
Affiliation(s)
- Flore Nardella
- Biology of Host-Parasite Interaction, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris-Cité, CNRS EMR 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Irina Dobrescu
- Biology of Host-Parasite Interaction, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris-Cité, CNRS EMR 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Haitham Hassan
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, Université de Paris-Cité, UMR n°3523, CNRS, 28 Rue du Dr Roux, 75015 Paris, France
| | - Fabien Rodrigues
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, Université de Paris-Cité, UMR n°3523, CNRS, 28 Rue du Dr Roux, 75015 Paris, France
| | - Sabine Thiberge
- Biology of Host-Parasite Interaction, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris-Cité, CNRS EMR 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, 75015 Paris, France,Center for Production and Infection of Anopheles (CEPIA), Center for Animal Resources and Research, Institut Pasteur, 75015 Paris, France
| | - Liliana Mancio-Silva
- Biology of Host-Parasite Interaction, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris-Cité, CNRS EMR 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Ambre Tafit
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, Université de Paris-Cité, UMR n°3523, CNRS, 28 Rue du Dr Roux, 75015 Paris, France
| | - Corinne Jallet
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, Université de Paris-Cité, UMR n°3523, CNRS, 28 Rue du Dr Roux, 75015 Paris, France
| | - Véronique Cadet-Daniel
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, Université de Paris-Cité, UMR n°3523, CNRS, 28 Rue du Dr Roux, 75015 Paris, France
| | - Stéphane Goussin
- Center for Production and Infection of Anopheles (CEPIA), Center for Animal Resources and Research, Institut Pasteur, 75015 Paris, France
| | - Audrey Lorthiois
- Center for Production and Infection of Anopheles (CEPIA), Center for Animal Resources and Research, Institut Pasteur, 75015 Paris, France
| | - Yoann Menon
- USR CNRS-Pierre Fabre No. 3388 ETaC, Centre de Recherche et Développement Pierre Fabre, 3 Avenue Hubert Curien, 31035 Toulouse Cedex 01, France
| | - Nicolas Molinier
- USR CNRS-Pierre Fabre No. 3388 ETaC, Centre de Recherche et Développement Pierre Fabre, 3 Avenue Hubert Curien, 31035 Toulouse Cedex 01, France
| | - Dany Pechalrieu
- USR CNRS-Pierre Fabre No. 3388 ETaC, Centre de Recherche et Développement Pierre Fabre, 3 Avenue Hubert Curien, 31035 Toulouse Cedex 01, France
| | - Christophe Long
- USR CNRS-Pierre Fabre No. 3388 ETaC, Centre de Recherche et Développement Pierre Fabre, 3 Avenue Hubert Curien, 31035 Toulouse Cedex 01, France
| | - François Sautel
- USR CNRS-Pierre Fabre No. 3388 ETaC, Centre de Recherche et Développement Pierre Fabre, 3 Avenue Hubert Curien, 31035 Toulouse Cedex 01, France
| | - Mariette Matondo
- Proteomics Platform, Mass Spectrometry for Biology Unit, Institut Pasteur, Université de Paris-Cité, CNRS USR 2000, 28 rue du Dr Roux, 75015 Paris, France
| | - Magalie Duchateau
- Proteomics Platform, Mass Spectrometry for Biology Unit, Institut Pasteur, Université de Paris-Cité, CNRS USR 2000, 28 rue du Dr Roux, 75015 Paris, France
| | - Guillaume Médard
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, 85354 Freising, Germany
| | - Benoit Witkowski
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh 12201, Cambodia
| | - Artur Scherf
- Biology of Host-Parasite Interaction, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris-Cité, CNRS EMR 9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, 75015 Paris, France,Corresponding author
| | - Ludovic Halby
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, Université de Paris-Cité, UMR n°3523, CNRS, 28 Rue du Dr Roux, 75015 Paris, France
| | - Paola B. Arimondo
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, Université de Paris-Cité, UMR n°3523, CNRS, 28 Rue du Dr Roux, 75015 Paris, France,USR CNRS-Pierre Fabre No. 3388 ETaC, Centre de Recherche et Développement Pierre Fabre, 3 Avenue Hubert Curien, 31035 Toulouse Cedex 01, France,Corresponding author
| |
Collapse
|
2
|
Functional characterization of 5' UTR cis-acting sequence elements that modulate translational efficiency in Plasmodium falciparum and humans. Malar J 2022; 21:15. [PMID: 34991611 PMCID: PMC8739713 DOI: 10.1186/s12936-021-04024-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/14/2021] [Indexed: 11/10/2022] Open
Abstract
Background The eukaryotic parasite Plasmodium falciparum causes millions of malarial infections annually while drug resistance to common anti-malarials is further confounding eradication efforts. Translation is an attractive therapeutic target that will benefit from a deeper mechanistic understanding. As the rate limiting step of translation, initiation is a primary driver of translational efficiency. It is a complex process regulated by both cis and trans acting factors, providing numerous potential targets. Relative to model organisms and humans, P. falciparum mRNAs feature unusual 5′ untranslated regions suggesting cis-acting sequence complexity in this parasite may act to tune levels of protein synthesis through their effects on translational efficiency. Methods Here, in vitro translation is deployed to compare the role of cis-acting regulatory sequences in P. falciparum and humans. Using parasite mRNAs with high or low translational efficiency, the presence, position, and termination status of upstream “AUG”s, in addition to the base composition of the 5′ untranslated regions, were characterized. Results The density of upstream “AUG”s differed significantly among the most and least efficiently translated genes in P. falciparum, as did the average “GC” content of the 5′ untranslated regions. Using exemplars from highly translated and poorly translated mRNAs, multiple putative upstream elements were interrogated for impact on translational efficiency. Upstream “AUG”s were found to repress translation to varying degrees, depending on their position and context, while combinations of upstream “AUG”s had non-additive effects. The base composition of the 5′ untranslated regions also impacted translation, but to a lesser degree. Surprisingly, the effects of cis-acting sequences were remarkably conserved between P. falciparum and humans. Conclusions While translational regulation is inherently complex, this work contributes toward a more comprehensive understanding of parasite and human translational regulation by examining the impact of discrete cis-acting features, acting alone or in context. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-04024-2.
Collapse
|
3
|
Das S. Taking a re-look at cap-binding signatures of the mRNA cap-binding protein eIF4E orthologues in trypanosomatids. Mol Cell Biochem 2020; 476:1037-1049. [PMID: 33169189 DOI: 10.1007/s11010-020-03970-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 10/31/2020] [Indexed: 01/04/2023]
Abstract
Protein translation leading to polypeptide synthesis involves three distinct events, namely, initiation, elongation, and termination. Translation initiation is a multi-step process that is carried out by ribosomes on the mRNA with the assistance of a large number of proteins called translation initiation factors. Trypanosomatids are kinetoplastidas (flagellated protozoans), some of which cause acute disease syndromes in humans. Vector-borne transmission of protozoan parasites like Leishmania and Trypanosoma causes diseases that affect a large section of the world population and lead to significant morbidity and mortality. The mechanisms of translation initiation in higher eukaryotes are relatively well understood. However, structural and functional conservation of initiation factors in trypanosomatids are only beginning to be understood. Studies carried out so far suggests that at least in Leishmania and Trypanosoma eIF4E function may not be restricted to canonical translation initiation and some of the homologues may have alternate/non-canonical functions. Nonetheless, all of them bind the cap analogs, albeit with different efficiencies, indicating that this property may play an important role in the functionality of eIF4Es. Here, I give a brief background of trypanosomatid eIF4Es and revisit the cap-binding signatures of eIF4E orthologues in trypanosomatids, whose genome sequences are available, in detail, in comparison to human eIF4E1 and Trypanosoma cruzi eIF4E5, with an expanded list of members of this group in light of newer findings. The group 1 and 2 eIF4Es may use either a variation of heIF4E1 or T. cruzi eIF4E5 cap-4-binding signatures, while eIF4E5 and eIF4E6 use distinct amino acid contacts.
Collapse
Affiliation(s)
- Supratik Das
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, PO Box #04, Faridabad, Haryana, 121001, India.
| |
Collapse
|
4
|
eIF4E and Interactors from Unicellular Eukaryotes. Int J Mol Sci 2020; 21:ijms21062170. [PMID: 32245232 PMCID: PMC7139794 DOI: 10.3390/ijms21062170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 12/22/2022] Open
Abstract
eIF4E, the mRNA cap-binding protein, is well known as a general initiation factor allowing for mRNA-ribosome interaction and cap-dependent translation in eukaryotic cells. In this review we focus on eIF4E and its interactors in unicellular organisms such as yeasts and protozoan eukaryotes. In a first part, we describe eIF4Es from yeast species such as Saccharomyces cerevisiae, Candida albicans, and Schizosaccharomyces pombe. In the second part, we will address eIF4E and interactors from parasite unicellular species—trypanosomatids and marine microorganisms—dinoflagellates. We propose that different strategies have evolved during evolution to accommodate cap-dependent translation to differing requirements. These evolutive “adjustments” involve various forms of eIF4E that are not encountered in all microorganismic species. In yeasts, eIF4E interactors, particularly p20 and Eap1 are found exclusively in Saccharomycotina species such as S. cerevisiae and C. albicans. For protozoan parasites of the Trypanosomatidae family beside a unique cap4-structure located at the 5′UTR of all mRNAs, different eIF4Es and eIF4Gs are active depending on the life cycle stage of the parasite. Additionally, an eIF4E-interacting protein has been identified in Leishmania major which is important for switching from promastigote to amastigote stages. For dinoflagellates, little is known about the structure and function of the multiple and diverse eIF4Es that have been identified thanks to widespread sequencing in recent years.
Collapse
|
5
|
Bennink S, Pradel G. The molecular machinery of translational control in malaria parasites. Mol Microbiol 2019; 112:1658-1673. [PMID: 31531994 DOI: 10.1111/mmi.14388] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2019] [Indexed: 12/30/2022]
Abstract
Translational control regulates the levels of protein synthesized from its transcript and is key for the rapid adjustment of gene expression in response to environmental stimuli. The regulation of translation is of special importance for malaria parasites, which pass through a complex life cycle that includes various replication phases in the different organs of the human and mosquito hosts and a sexual reproduction phase in the mosquito midgut. In particular, the quiescent transmission stages rely on translational control to rapidly adapt to the new environment, once they switch over from the human to the mosquito and vice versa. Three control mechanisms are currently proposed in Plasmodium, (1) global regulation that acts on the translation initiation complex; (2) mRNA-specific regulation, involving cis control elements, mRNA-binding proteins and translational repressors; and (3) induced mRNA decay by the Ccr4-Not and the RNA exosome complex. The main molecules controlling translation are highly conserved in malaria parasites and an increasing number of studies shed light on the interwoven pathways leading to the up or downregulation of protein synthesis in the diverse plasmodial stages. We here highlight recent findings on translational control during life cycle progression of Plasmodium and discuss the molecules involved in regulating protein synthesis.
Collapse
Affiliation(s)
- Sandra Bennink
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| |
Collapse
|
6
|
Plasmodium falciparum specific helicase 2 is a dual, bipolar helicase and is crucial for parasite growth. Sci Rep 2019; 9:1519. [PMID: 30728406 PMCID: PMC6365506 DOI: 10.1038/s41598-018-38032-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/19/2018] [Indexed: 12/24/2022] Open
Abstract
Human malaria infection is a major challenge across the globe and is responsible for millions of deaths annually. Rapidly emerging drug resistant strains against the new class of anti-malarial drugs are major threat to control the disease burden worldwide. Helicases are present in every organism and have important role in various nucleic acid metabolic processes. Previously we have reported the presence of three parasite specific helicases (PSH) in Plasmodium falciparum 3D7 strain. Here we present the detailed biochemical characterization of PfPSH2. PfPSH2 is DNA and RNA stimulated ATPase and is able to unwind partially duplex DNA and RNA substrates. It can translocate in both 3' to 5' and 5' to 3' directions. PfPSH2 is expressed in all the stages of intraerythrocytic development and it is localized in cytoplasm in P. falciparum 3D7 strain. The dsRNA mediated inhibition study suggests that PfPSH2 is important for the growth and survival of the parasite. This study presents the detailed characterization of PfPSH2 and lays the foundation for future development of PfPSH2 as drug target.
Collapse
|
7
|
Pichugin A, Zarling S, Perazzo L, Duffy PE, Ploegh HL, Krzych U. Identification of a Novel CD8 T Cell Epitope Derived from Plasmodium berghei Protective Liver-Stage Antigen. Front Immunol 2018; 9:91. [PMID: 29434602 PMCID: PMC5796907 DOI: 10.3389/fimmu.2018.00091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/12/2018] [Indexed: 11/13/2022] Open
Abstract
We recently identified novel Plasmodium berghei (Pb) liver stage (LS) genes that as DNA vaccines significantly reduce Pb LS parasite burden (LPB) in C57Bl/6 (B6) mice through a mechanism mediated, in part, by CD8 T cells. In this study, we sought to determine fine antigen (Ag) specificities of CD8 T cells that target LS malaria parasites. Guided by algorithms for predicting MHC class I-restricted epitopes, we ranked sequences of 32 Pb LS Ags and selected ~400 peptides restricted by mouse H-2Kb and H-2Db alleles for analysis in the high-throughput method of caged MHC class I-tetramer technology. We identified a 9-mer H-2Kb restricted CD8 T cell epitope, Kb-17, which specifically recognized and activated CD8 T cell responses in B6 mice immunized with Pb radiation-attenuated sporozoites (RAS) and challenged with infectious sporozoites (spz). The Kb-17 peptide is derived from the recently described novel protective Pb LS Ag, PBANKA_1031000 (MIF4G-like protein). Notably, immunization with the Kb-17 epitope delivered in the form of a minigene in the adenovirus serotype 5 vector reduced LPB in mice infected with spz. On the basis of our results, Kb-17 peptide was available for CD8 T cell activation and recall following immunization with Pb RAS and challenge with infectious spz. The identification of a novel MHC class I-restricted epitope from the protective Pb LS Ag, MIF4G-like protein, is crucial for advancing our understanding of immune responses to Plasmodium and by extension, toward vaccine development against malaria.
Collapse
Affiliation(s)
- Alexander Pichugin
- Department of Cellular Immunology, Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Stasya Zarling
- Department of Cellular Immunology, Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Leah Perazzo
- Department of Cellular Immunology, Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Patrick Emmet Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, (NIH), Rockville, MD, United States
| | - Hidde Lolke Ploegh
- Program in Cellular and Molecular Medicine, Division of Molecular Biology, Department of Medicine, Boston Children's Hospital, Boston, MD, United States
| | - Urszula Krzych
- Department of Cellular Immunology, Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
8
|
Nuclear, Cytosolic, and Surface-Localized Poly(A)-Binding Proteins of Plasmodium yoelii. mSphere 2018; 3:mSphere00435-17. [PMID: 29359180 PMCID: PMC5760745 DOI: 10.1128/msphere.00435-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/12/2017] [Indexed: 12/22/2022] Open
Abstract
Malaria remains one of the great global health problems. The parasite that causes malaria (Plasmodium genus) relies upon exquisite control of its transmission between vertebrate hosts and mosquitoes. One crucial way that it does so is by proactively producing mRNAs needed to establish the new infection but by silencing and storing them until they are needed. One key protein in this process of translational repression in model eukaryotes is poly(A)-binding protein (PABP). Here we have shown that Plasmodium yoelii utilizes both a nuclear PABP and a cytosolic PABP, both of which bind specifically to polyadenylated RNA sequences. Moreover, we find that the cytosolic PABP forms chains in vitro, consistent with its appreciated role in coating the poly(A) tails of mRNA. Finally, we have also verified that, surprisingly, the cytosolic PABP is found on the surface of Plasmodium sporozoites. Taking the data together, we propose that Plasmodium utilizes a more metazoan-like strategy for RNA metabolism using specialized PABPs. Malaria is a devastating illness that causes approximately 500,000 deaths annually. The malaria-causing parasite (Plasmodium genus) uses the process of translational repression to regulate its growth, development, and transmission. As poly(A)-binding proteins (PABP) have been identified as critical components of RNA metabolism and translational repression in model eukaryotes and in Plasmodium, we have identified and investigated two PABPs in Plasmodium yoelii, PyPABP1 and PyPABP2. In contrast to most single-celled eukaryotes, Plasmodium closely resembles metazoans and encodes both a nuclear PABP and a cytosolic PABP; here, we provide multiple lines of evidence in support of this observation. The conserved domain architectures of PyPABP1 and PyPABP2 resemble those of yeast and metazoans, while multiple independent binding assays demonstrated their ability to bind very strongly and specifically to poly(A) sequences. Interestingly, we also observed that purified PyPABP1 forms homopolymeric chains despite exhaustive RNase treatment in vitro. Finally, we show by indirect immunofluorescence assays (IFAs) that PyPABP1 and PyPABP2 are cytoplasm- and nucleus-associated PABPs during the blood stages of the life cycle. Surprisingly, however, PyPABP1 was instead observed to also be localized on the surface of transmitted salivary gland sporozoites and to be deposited in trails when parasites glide on a substrate. This is the third RNA-binding protein verified to be found on the sporozoite surface, and the data may point to an unappreciated RNA-centered interface between the host and parasite. IMPORTANCE Malaria remains one of the great global health problems. The parasite that causes malaria (Plasmodium genus) relies upon exquisite control of its transmission between vertebrate hosts and mosquitoes. One crucial way that it does so is by proactively producing mRNAs needed to establish the new infection but by silencing and storing them until they are needed. One key protein in this process of translational repression in model eukaryotes is poly(A)-binding protein (PABP). Here we have shown that Plasmodium yoelii utilizes both a nuclear PABP and a cytosolic PABP, both of which bind specifically to polyadenylated RNA sequences. Moreover, we find that the cytosolic PABP forms chains in vitro, consistent with its appreciated role in coating the poly(A) tails of mRNA. Finally, we have also verified that, surprisingly, the cytosolic PABP is found on the surface of Plasmodium sporozoites. Taking the data together, we propose that Plasmodium utilizes a more metazoan-like strategy for RNA metabolism using specialized PABPs.
Collapse
|
9
|
Tuteja R. Emerging functions of helicases in regulation of stress survival in malaria parasite Plasmodium falciparum and their comparison with human host. Parasitol Int 2016; 65:645-664. [PMID: 27586396 DOI: 10.1016/j.parint.2016.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 06/28/2016] [Accepted: 08/28/2016] [Indexed: 02/04/2023]
Abstract
The cellular response to various stresses is a universal phenomenon and involves a common set of stress responses that are largely independent of the type of stress. The response to stress is complex and cells can activate multiple signaling pathways that act in concert to influence cell fate and results in a specific cellular outcome, including reduction in macromolecular synthesis by shared pathways, cell cycle arrest, DNA repair, senescence and/or apoptosis. Whether cells mount a protective response or die depends to a great degree on the nature and duration of the stress and the particular cell type. Helicases play essential roles in DNA replication, repair, recombination, transcription and translation, and also participate in RNA metabolic processes including pre-mRNA processing, ribosome biogenesis, RNA turnover, export, translation, surveillance, storage and decay. In order to survive in the human host, the malaria parasite Plasmodium falciparum has to handle variety of stresses, which it encounters during the erythrocytic stages of its life cycle. In recent past the role of helicases in imparting various stress responses has emerged. Therefore in the present review an attempt has been made to highlight the emerging importance of helicases in stress responses in malaria parasite and their comparison with human host is also presented. It is noteworthy that PfDHX33 and PfDDX60 are larger in size and different in sequence as compared to the HsDHX33 and HsDDX60. The study suggests that helicases are multifunctional and play major role in helping the cells to combat various stresses.
Collapse
Affiliation(s)
- Renu Tuteja
- Parasite Biology Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
10
|
Rissland OS. The organization and regulation of mRNA-protein complexes. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27324829 PMCID: PMC5213448 DOI: 10.1002/wrna.1369] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/21/2022]
Abstract
In a eukaryotic cell, each messenger RNA (mRNA) is bound to a variety of proteins to form an mRNA-protein complex (mRNP). Together, these proteins impact nearly every step in the life cycle of an mRNA and are critical for the proper control of gene expression. In the cytoplasm, for instance, mRNPs affect mRNA translatability and stability and provide regulation of specific transcripts as well as global, transcriptome-wide control. mRNPs are complex, diverse, and dynamic, and so they have been a challenge to understand. But the advent of high-throughput sequencing technology has heralded a new era in the study of mRNPs. Here, I will discuss general principles of cytoplasmic mRNP organization and regulation. Using microRNA-mediated repression as a case study, I will focus on common themes in mRNPs and highlight the interplay between mRNP composition and posttranscriptional regulation. mRNPs are an important control point in regulating gene expression, and while the study of these fascinating complexes presents remaining challenges, recent advances provide a critical lens for deciphering gene regulation. WIREs RNA 2017, 8:e1369. doi: 10.1002/wrna.1369 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Olivia S Rissland
- Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Vembar SS, Droll D, Scherf A. Translational regulation in blood stages of the malaria parasite Plasmodium spp.: systems-wide studies pave the way. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:772-792. [PMID: 27230797 PMCID: PMC5111744 DOI: 10.1002/wrna.1365] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 11/10/2022]
Abstract
The malaria parasite Plasmodium spp. varies the expression profile of its genes depending on the host it resides in and its developmental stage. Virtually all messenger RNA (mRNA) is expressed in a monocistronic manner, with transcriptional activation regulated at the epigenetic level and by specialized transcription factors. Furthermore, recent systems-wide studies have identified distinct mechanisms of post-transcriptional and translational control at various points of the parasite lifecycle. Taken together, it is evident that 'just-in-time' transcription and translation strategies coexist and coordinate protein expression during Plasmodium development, some of which we review here. In particular, we discuss global and specific mechanisms that control protein translation in blood stages of the human malaria parasite Plasmodium falciparum, once a cytoplasmic mRNA has been generated, and its crosstalk with mRNA decay and storage. We also focus on the widespread translational delay observed during the 48-hour blood stage lifecycle of P. falciparum-for over 30% of transcribed genes, including virulence factors required to invade erythrocytes-and its regulation by cis-elements in the mRNA, RNA-processing enzymes and RNA-binding proteins; the first-characterized amongst these are the DNA- and RNA-binding Alba proteins. More generally, we conclude that translational regulation is an emerging research field in malaria parasites and propose that its elucidation will not only shed light on the complex developmental program of this parasite, but may also reveal mechanisms contributing to drug resistance and define new targets for malaria intervention strategies. WIREs RNA 2016, 7:772-792. doi: 10.1002/wrna.1365 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Shruthi Sridhar Vembar
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France.
| | - Dorothea Droll
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| | - Artur Scherf
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| |
Collapse
|
12
|
Plasmodium falciparum DOZI, an RNA helicase interacts with eIF4E. Gene 2013; 522:46-59. [DOI: 10.1016/j.gene.2013.03.063] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 02/28/2013] [Accepted: 03/15/2013] [Indexed: 01/21/2023]
|
13
|
Tuteja R, Mehta J. A genomic glance at the components of the mRNA export machinery in Plasmodium falciparum. Commun Integr Biol 2011; 3:318-26. [PMID: 20798816 DOI: 10.4161/cib.3.4.11886] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 03/24/2010] [Indexed: 01/29/2023] Open
Abstract
Nuclear export of mRNAs is one of the steps critically important for gene expression and different steps of mRNA processing are linked to the export of the mRNA out of the nucleus. This coupling probably provides a quality control mechanism as well as a higher efficiency for the synthesis of mRNAs. The mRNA is synthesized in the nucleus and then exported to the cytoplasm through the nuclear pore complexes (NPCs), which are embedded in the nuclear envelope. The Mex67-Mtr2 complex in yeast and its counterpart Tap-p15 in higher eukaryotes function as an mRNA exporter through the NPC. Some of the DEAD box proteins such as UAP56 and Dbp5 have been implicated in mRNA export also. In this report using the bioinformatics approach we have analyzed the components of the mRNA export machinery in Plasmodium falciparum and also highlighted the salient features of some of the components. Further detailed studies on various components of nuclear mRNA export in Plasmodium falciparum will be essential to understand this important pathway.
Collapse
Affiliation(s)
- Renu Tuteja
- Malaria Group; International Centre for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg, New Delhi India
| | | |
Collapse
|
14
|
Mehta J, Tuteja R. A novel dual Dbp5/DDX19 homologue from Plasmodium falciparum requires Q motif for activity. Mol Biochem Parasitol 2010; 176:58-63. [PMID: 21168450 DOI: 10.1016/j.molbiopara.2010.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 12/06/2010] [Accepted: 12/09/2010] [Indexed: 02/03/2023]
Abstract
Helicases are ubiquitous essential enzymes which have significant role in the nucleic acid metabolism. Using in silico approaches in the recent past we have identified a number of helicases in the Plasmodium falciparum genome. In the present study we report purification and detailed characterization of a novel helicase from P. falciparum. Our results indicate that this helicase is a homologue of Dbp5 and DDX19 from yeast and human, respectively. The biochemical characterization shows that it contains DNA and RNA unwinding, nucleic acid dependent ATPase and RNA binding activities. It is interesting to note that this enzyme can unwind DNA duplexes in both 5' to 3' and 3' to 5' directions. Using truncated derivatives we further show that Q motif is essentially required for all of its activities. These studies should make an important contribution in understanding the enzymes involved in nucleic acid metabolism in the parasite.
Collapse
Affiliation(s)
- Jatin Mehta
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | |
Collapse
|
15
|
Tuteja R, Pradhan A. PfeIF4E and PfeIF4A colocalize and their double-stranded RNA inhibits Plasmodium falciparum proliferation. Commun Integr Biol 2010; 3:611-3. [PMID: 21331256 DOI: 10.4161/cib.3.6.13396] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 08/23/2010] [Indexed: 11/19/2022] Open
Abstract
Using bioinformatics and biochemical methods in the recent past we have reported the isolation and characterization of the main components of translation initiation complex eIF4F from malaria parasite Plasmodium falciparum. We reported that eukaryotic initiation factor 4A (eIF4A), eukaryotic initiation factor 4E (eIF4E), eukaryotic initiation factor 4G (eIF4G) and poly (A) binding protein (PABP) are structurally and functionally conserved in this parasite. In the present study we report further characterization of PfeIF4A and PfeIF4E. We report that PfeIF4A and PfeIF4E are co-localized and predominantly localized in the cytoplasm. The parasite cultures treated with co-addition of PfeIF4A and PfeIF4E double stranded RNA showed ∼67% growth inhibition suggesting that inhibition of two components of the same pathway is more effective for inhibiting the proliferation of the malaria parasite Plasmodium falciparum. These observations suggest that PfeIF4A and PfeIF4E are critical for parasite growth and survival.
Collapse
Affiliation(s)
- Renu Tuteja
- Malaria Group; International Centre for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg; New Delhi, India
| | | |
Collapse
|
16
|
Clarkson BK, Gilbert WV, Doudna JA. Functional overlap between eIF4G isoforms in Saccharomyces cerevisiae. PLoS One 2010; 5:e9114. [PMID: 20161741 PMCID: PMC2817733 DOI: 10.1371/journal.pone.0009114] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 01/19/2010] [Indexed: 12/02/2022] Open
Abstract
Initiation factor eIF4G is a key regulator of eukaryotic protein synthesis, recognizing proteins bound at both ends of an mRNA to help recruit messages to the small (40S) ribosomal subunit. Notably, the genomes of a wide variety of eukaryotes encode multiple distinct variants of eIF4G. We found that deletion of eIF4G1, but not eIF4G2, impairs growth and global translation initiation rates in budding yeast under standard laboratory conditions. Not all mRNAs are equally sensitive to loss of eIF4G1; genes that encode messages with longer poly(A) tails are preferentially affected. However, eIF4G1-deletion strains contain significantly lower levels of total eIF4G, relative to eIF4G2-delete or wild type strains. Homogenic strains, which encode two copies of either eIF4G1 or eIF4G2 under native promoter control, express a single isoform at levels similar to the total amount of eIF4G in a wild type cell and have a similar capacity to support normal translation initiation rates. Polysome microarray analysis of these strains and the wild type parent showed that translationally active mRNAs are similar. These results suggest that total eIF4G levels, but not isoform-specific functions, determine mRNA-specific translational efficiency.
Collapse
Affiliation(s)
- Bryan K. Clarkson
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Wendy V. Gilbert
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Jennifer A. Doudna
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- Department of Chemistry, University of California, Berkeley, California, United States of America
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| |
Collapse
|
17
|
Tuteja R, Pradhan A. Isolation and functional characterization of eIF4F components and poly(A)-binding protein from Plasmodium falciparum. Parasitol Int 2009; 58:481-5. [PMID: 19751846 DOI: 10.1016/j.parint.2009.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 08/26/2009] [Accepted: 09/03/2009] [Indexed: 01/16/2023]
Abstract
The multisubunit translation initiation complex eIF4F contains eIF4E, eIF4A and eIF4G. eIF4A is an ATP-dependent RNA helicase. eIF4G provides the platform for binding initiation factors and it contains the binding sites for eIF4A and eIF4E and interacts with poly(A)-binding protein (PABP). Although the genome of Plasmodium falciparum is fully sequenced but the gene annotation is still incomplete. In this manuscript we present the isolation and characterization of components of the eIF4F complex i.e. eIF4E, eIF4G and PABP from P. falciparum. Our studies indicate that PfeIF4E is involved in translation and PfPABP binds poly(A) specifically. We demonstrate the interaction of PfeIF4G with PfeIF4E, PfeIF4A (PfH45) and PfPABP. These studies demonstrate that these factors are structurally and functionally conserved. These studies will contribute to understand the important process and components of translation complex in the malaria parasite.
Collapse
Affiliation(s)
- Renu Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India.
| | | |
Collapse
|