1
|
Tzani-Tzanopoulou P, Skliros D, Megremis S, Xepapadaki P, Andreakos E, Chanishvili N, Flemetakis E, Kaltsas G, Taka S, Lebessi E, Doudoulakakis A, Papadopoulos NG. Interactions of Bacteriophages and Bacteria at the Airway Mucosa: New Insights Into the Pathophysiology of Asthma. FRONTIERS IN ALLERGY 2021; 1:617240. [PMID: 35386933 PMCID: PMC8974763 DOI: 10.3389/falgy.2020.617240] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
The airway epithelium is the primary site where inhaled and resident microbiota interacts between themselves and the host, potentially playing an important role on allergic asthma development and pathophysiology. With the advent of culture independent molecular techniques and high throughput technologies, the complex composition and diversity of bacterial communities of the airways has been well-documented and the notion of the lungs' sterility definitively rejected. Recent studies indicate that the microbial composition of the asthmatic airways across the spectrum of disease severity, differ significantly compared with healthy individuals. In parallel, a growing body of evidence suggests that bacterial viruses (bacteriophages or simply phages), regulating bacterial populations, are present in almost every niche of the human body and can also interact directly with the eukaryotic cells. The triptych of airway epithelial cells, bacterial symbionts and resident phages should be considered as a functional and interdependent unit with direct implications on the respiratory and overall homeostasis. While the role of epithelial cells in asthma pathophysiology is well-established, the tripartite interactions between epithelial cells, bacteria and phages should be scrutinized, both to better understand asthma as a system disorder and to explore potential interventions.
Collapse
Affiliation(s)
- Panagiota Tzani-Tzanopoulou
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Skliros
- Laboratory of Molecular Biology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - Spyridon Megremis
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| | - Paraskevi Xepapadaki
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Andreakos
- Center for Clinical, Experimental Surgery and Translational Research of the Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Nina Chanishvili
- Laboratory for Genetics of Microorganisms and Bacteriophages, Eliava Institute of Bacteriophage, Microbiology & Virology, Tbilisi, GA, United States
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - Grigoris Kaltsas
- Department of Electrical and Electronic Engineering, University of West Attica, Athens, Greece
| | - Styliani Taka
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Lebessi
- Department of Microbiology, P. & A. Kyriakou Children's Hospital, Athens, Greece
| | | | - Nikolaos G Papadopoulos
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece.,Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
2
|
Putra RD, Lyrawati D. Interactions between Bacteriophages and Eukaryotic Cells. SCIENTIFICA 2020; 2020:3589316. [PMID: 32582449 PMCID: PMC7301238 DOI: 10.1155/2020/3589316] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/02/2020] [Accepted: 05/18/2020] [Indexed: 05/30/2023]
Abstract
As the name implies, bacteriophage is a bacterium-specific virus. It infects and kills the bacterial host. Bacteriophages have gained attention as alternative antimicrobial entities in the science community in the western world since the alarming rise of antibiotic resistance among microbes. Although generally considered as prokaryote-specific viruses, recent studies indicate that bacteriophages can interact with eukaryotic organisms, including humans. In the current review, these interactions are divided into two categories, i.e., indirect and direct interactions, with the involvement of bacteriophages, bacteria, and eukaryotes. We discuss bacteriophage-related diseases, transcytosis of bacteriophages, bacteriophage interactions with cancer cells, collaboration of bacteriophages and eukaryotes against bacterial infections, and horizontal gene transfer between bacteriophages and eukaryotes. Such interactions are crucial for understanding and developing bacteriophages as the therapeutic agents and pharmaceutical delivery systems. With the advancement and combination of in silico, in vitro, and in vivo approaches and clinical trials, bacteriophages definitely serve as useful repertoire for biologic target-based drug development to manage many complex diseases in the future.
Collapse
Affiliation(s)
| | - Diana Lyrawati
- Department of Pharmacy, Faculty of Medicine, Brawijaya University, Malang 65145, Indonesia
| |
Collapse
|
3
|
Górski A, Jończyk-Matysiak E, Międzybrodzki R, Weber-Dąbrowska B, Łusiak-Szelachowska M, Bagińska N, Borysowski J, Łobocka MB, Węgrzyn A, Węgrzyn G. Phage Therapy: Beyond Antibacterial Action. Front Med (Lausanne) 2018; 5:146. [PMID: 29876350 PMCID: PMC5974148 DOI: 10.3389/fmed.2018.00146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Until recently, phages were considered as mere “bacteria eaters” with potential for use in combating antimicrobial resistance. The real value of phage therapy assessed according to the standards of evidence-based medicine awaits confirmation by clinical trials. However, the progress in research on phage biology has shed more light on the significance of phages. Accumulating data indicate that phages may also interact with eukaryotic cells. How such interactions could be translated into advances in medicine (especially novel means of therapy) is discussed herein.
Collapse
Affiliation(s)
- Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Ryszard Międzybrodzki
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Marzanna Łusiak-Szelachowska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Natalia Bagińska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Jan Borysowski
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Małgorzata B Łobocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Alicja Węgrzyn
- Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
4
|
Ju Z, Sun W. Drug delivery vectors based on filamentous bacteriophages and phage-mimetic nanoparticles. Drug Deliv 2017; 24:1898-1908. [PMID: 29191048 PMCID: PMC8241185 DOI: 10.1080/10717544.2017.1410259] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/16/2017] [Accepted: 11/23/2017] [Indexed: 12/11/2022] Open
Abstract
With the development of nanomedicine, a mass of nanocarriers have been exploited and utilized for targeted drug delivery, including liposomes, polymers, nanoparticles, viruses, and stem cells. Due to huge surface bearing capacity and flexible genetic engineering property, filamentous bacteriophage and phage-mimetic nanoparticles are attracting more and more attentions. As a rod-like bio-nanofiber without tropism to mammalian cells, filamentous phage can be easily loaded with drugs and directly delivered to the lesion location. In particular, chemical drugs can be conjugated on phage surface by chemical modification, and gene drugs can also be inserted into the genome of phage by recombinant DNA technology. Meanwhile, specific peptides/proteins displayed on the phage surface are able to conjugate with nanoparticles which will endow them specific-targeting and huge drug-loading capacity. Additionally, phage peptides/proteins can directly self-assemble into phage-mimetic nanoparticles which may be applied for self-navigating drug delivery nanovehicles. In this review, we summarize the production of phage particles, the identification of targeting peptides, and the recent applications of filamentous bacteriophages as well as their protein/peptide for targeting drug delivery in vitro and in vivo. The improvement of our understanding of filamentous bacteriophage and phage-mimetic nanoparticles will supply new tools for biotechnological approaches.
Collapse
Affiliation(s)
- Zhigang Ju
- Medicine College, Guiyang University of Chinese Medicine, Huaxi university town, Guiyang City, Guizhou Province, China
| | - Wei Sun
- Key Laboratory of Plant Physiology and Development Regulation, College of Life Science, Guizhou Normal University, Huaxi university town, Guiyang City, Guizhou Province, China
| |
Collapse
|
5
|
Sunderland KS, Yang M, Mao C. Phage-Enabled Nanomedicine: From Probes to Therapeutics in Precision Medicine. Angew Chem Int Ed Engl 2017; 56:1964-1992. [PMID: 27491926 PMCID: PMC5311110 DOI: 10.1002/anie.201606181] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Indexed: 01/08/2023]
Abstract
Both lytic and temperate bacteriophages (phages) can be applied in nanomedicine, in particular, as nanoprobes for precise disease diagnosis and nanotherapeutics for targeted disease treatment. Since phages are bacteria-specific viruses, they do not naturally infect eukaryotic cells and are not toxic to them. They can be genetically engineered to target nanoparticles, cells, tissues, and organs, and can also be modified with functional abiotic nanomaterials for disease diagnosis and treatment. This Review will summarize the current use of phage structures in many aspects of precision nanomedicine, including ultrasensitive biomarker detection, enhanced bioimaging for disease diagnosis, targeted drug and gene delivery, directed stem cell differentiation, accelerated tissue formation, effective vaccination, and nanotherapeutics for targeted disease treatment. We will also propose future directions in the area of phage-based nanomedicines, and discuss the state of phage-based clinical trials.
Collapse
Affiliation(s)
- Kegan S Sunderland
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma, 73019, USA
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang, 310058, China
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma, 73019, USA
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
6
|
Sunderland KS, Yang M, Mao C. Nanomedizin auf Phagenbasis: von Sonden zu Therapeutika für eine Präzisionsmedizin. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201606181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kegan S. Sunderland
- Department of Chemistry and Biochemistry Stephenson Life Sciences Research Center University of Oklahoma 101 Stephenson Parkway Norman Oklahoma 73019 USA
| | - Mingying Yang
- Institute of Applied Bioresource Research College of Animal Science Zhejiang University Yuhangtang Road 866 Hangzhou Zhejiang 310058 China
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry Stephenson Life Sciences Research Center University of Oklahoma 101 Stephenson Parkway Norman Oklahoma 73019 USA
- School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 China
| |
Collapse
|
7
|
Berjón-Otero M, Villar L, Salas M, Redrejo-Rodríguez M. Disclosing early steps of protein-primed genome replication of the Gram-positive tectivirus Bam35. Nucleic Acids Res 2016; 44:9733-9744. [PMID: 27466389 PMCID: PMC5175343 DOI: 10.1093/nar/gkw673] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/14/2016] [Accepted: 07/14/2016] [Indexed: 01/29/2023] Open
Abstract
Protein-primed replication constitutes a generalized mechanism to initiate DNA or RNA synthesis in a number of linear genomes of viruses, linear plasmids and mobile elements. By this mechanism, a so-called terminal protein (TP) primes replication and becomes covalently linked to the genome ends. Bam35 belongs to a group of temperate tectiviruses infecting Gram-positive bacteria, predicted to replicate their genomes by a protein-primed mechanism. Here, we characterize Bam35 replication as an alternative model of protein-priming DNA replication. First, we analyze the role of the protein encoded by the ORF4 as the TP and characterize the replication mechanism of the viral genome (TP-DNA). Indeed, full-length Bam35 TP-DNA can be replicated using only the viral TP and DNA polymerase. We also show that DNA replication priming entails the TP deoxythymidylation at conserved tyrosine 194 and that this reaction is directed by the third base of the template strand. We have also identified the TP tyrosine 172 as an essential residue for the interaction with the viral DNA polymerase. Furthermore, the genetic information of the first nucleotides of the genome can be recovered by a novel single-nucleotide jumping-back mechanism. Given the similarities between genome inverted terminal repeats and the genes encoding the replication proteins, we propose that related tectivirus genomes can be replicated by a similar mechanism.
Collapse
Affiliation(s)
- Mónica Berjón-Otero
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Nicolás Cabrera, 1, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Laurentino Villar
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Nicolás Cabrera, 1, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Margarita Salas
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Nicolás Cabrera, 1, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Modesto Redrejo-Rodríguez
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Nicolás Cabrera, 1, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
8
|
Arutyunov D, Szymanski CM. A novel DNA-binding protein from Campylobacter jejuni bacteriophage NCTC12673. FEMS Microbiol Lett 2015; 362:fnv160. [PMID: 26363017 DOI: 10.1093/femsle/fnv160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2015] [Indexed: 12/21/2022] Open
Abstract
We previously suggested that the double-stranded genomic DNA of Campylobacter jejuni bacteriophage NCTC12673 was complexed with proteins. Mass spectrometry of peptides obtained from tryptic digests of purified phage DNA indicated that phage protein Gp001 co-purified with the DNA. Gp001 is an acidic protein that lacks any obvious homology or conserved domains found in known DNA-binding proteins. The DNA-binding ability of recombinant Gp001 was examined using an electrophoretic mobility shift assay. Slow DNA-Gp001 complex formation was observed at pH 5.5, but not at neutral or basic pH. This nucleoprotein complex had difficulty entering agarose gels used in the assay while proteinase K pretreatment released the DNA from the complex. No mobility shift was observed when the DNA was immediately subjected to electrophoresis after mixing with Gp001, even if both components were separately pre-incubated at pH 5.5. The complexed DNA was unable to transform chemically competent Escherichia coli cells and was less susceptible to degradation by nucleases. The formation of Gp001-DNA complexes at low pH may provide a mechanism for maintaining DNA integrity while the phage pursues its host through the gastrointestinal tract. Also, this feature can potentially be used to improve DNA delivery protocols applied in gene therapy.
Collapse
Affiliation(s)
- Denis Arutyunov
- Department of Biological Sciences and Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Christine M Szymanski
- Department of Biological Sciences and Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Redrejo-Rodríguez M, Salas M. Multiple roles of genome-attached bacteriophage terminal proteins. Virology 2014; 468-470:322-329. [PMID: 25232661 DOI: 10.1016/j.virol.2014.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 07/31/2014] [Accepted: 08/04/2014] [Indexed: 11/29/2022]
Abstract
Protein-primed replication constitutes a generalized mechanism to initiate DNA or RNA synthesis in linear genomes, including viruses, gram-positive bacteria, linear plasmids and mobile elements. By this mechanism a specific amino acid primes replication and becomes covalently linked to the genome ends. Despite the fact that TPs lack sequence homology, they share a similar structural arrangement, with the priming residue in the C-terminal half of the protein and an accumulation of positively charged residues at the N-terminal end. In addition, various bacteriophage TPs have been shown to have DNA-binding capacity that targets TPs and their attached genomes to the host nucleoid. Furthermore, a number of bacteriophage TPs from different viral families and with diverse hosts also contain putative nuclear localization signals and localize in the eukaryotic nucleus, which could lead to the transport of the attached DNA. This suggests a possible role of bacteriophage TPs in prokaryote-to-eukaryote horizontal gene transfer.
Collapse
Affiliation(s)
- Modesto Redrejo-Rodríguez
- Instituto de Biología Molecular "Eladio Viñuela" (CSIC), Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad de Madrid), Universidad Autónoma, Nicolás Cabrera, 1, Cantoblanco, 28049 Madrid, Spain
| | - Margarita Salas
- Instituto de Biología Molecular "Eladio Viñuela" (CSIC), Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad de Madrid), Universidad Autónoma, Nicolás Cabrera, 1, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
10
|
Bakhshinejad B, Sadeghizadeh M. Bacteriophages as vehicles for gene delivery into mammalian cells: prospects and problems. Expert Opin Drug Deliv 2014; 11:1561-74. [PMID: 24955860 DOI: 10.1517/17425247.2014.927437] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION The identification of more efficient gene delivery vehicles (GDVs) is essential to fulfill the expectations of clinical gene therapy. Bacteriophages, due to their excellent safety profile, extreme stability under a variety of harsh environmental conditions and the capability for being genetically manipulated, have drawn a flurry of interest to be applied as a newly arisen category of gene delivery platforms. AREAS COVERED The incessant evolutionary interaction of bacteriophages with human cells has turned them into a part of our body's natural ecosystem. However, these carriers represent several barriers to gene transduction of mammalian cells. The lack of evolvement of specialized machinery for targeted cellular internalization, endosomal, lysosomal and proteasomal escape, cytoplasmic entry, nuclear localization and intranuclear transcription poses major challenges to the expression of the phage-carried gene. In this review, we describe pros and cons of bacteriophages as GDVs, provide an insight into numerous barriers that bacteriophages face for entry into and subsequent trafficking inside mammalian cells and elaborate on the strategies used to bypass these barriers. EXPERT OPINION Tremendous genetic flexibility of bacteriophages to undergo numerous surface modifications through phage display technology has proven to be a turning point in the uncompromising efforts to surmount the limitations of phage-mediated gene expression. The revelatory outcomes of the studies undertaken within the recent years have been promising for phage-mediated gene delivery to move from concept to reality.
Collapse
Affiliation(s)
- Babak Bakhshinejad
- Tarbiat Modares University, Department of Genetics, Faculty of Biological Sciences , Tehran , Iran
| | | |
Collapse
|
11
|
Redrejo-Rodríguez M, Muñoz-Espín D, Holguera I, Mencía M, Salas M. Nuclear and nucleoid localization are independently conserved functions in bacteriophage terminal proteins. Mol Microbiol 2013; 90:858-68. [PMID: 24102828 DOI: 10.1111/mmi.12404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2013] [Indexed: 10/26/2022]
Abstract
Bacteriophage terminal proteins (TPs) prime DNA replication and become covalently linked to the DNA 5'-ends. In addition, they are DNA-binding proteins that direct early organization of phage DNA replication at the bacterial nucleoid and, unexpectedly, contain nuclear localization signals (NLSs), which localize them to the nucleus when expressed in mammalian cells. In spite of the lack of sequence homology among the phage TPs, these three properties share some common features, suggesting a possible evolutionary common origin of TPs. We show here that NLSs of three different phage TPs, Φ29, PRD1 and Cp-1, are mapped within the protein region required for nucleoid targeting in bacteria, in agreement with a previously proposed common origin of DNA-binding domains and NLSs. Furthermore, previously reported point mutants of Φ29 TP with no nuclear localization still can target the bacterial nucleoid, and Cp-1 TP contains two independent NLSs, only one of them required for nucleoid localization. Altogether, our results show that nucleoid and nucleus localization sequence requirements partially overlap, but they can be uncoupled, suggesting that conservation of both features could have a common origin but, at the same time, they have been independently conserved during evolution.
Collapse
Affiliation(s)
- Modesto Redrejo-Rodríguez
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049, Madrid, Spain
| | | | | | | | | |
Collapse
|