1
|
Schiavone DV, Gallardo J, Kapkayeva DM, Baucom JC, Murelli RP. Lactam-fused tropolones: a new tunable, environmentally sensitive fluorophore class. Org Biomol Chem 2023; 21:7900-7907. [PMID: 37750360 DOI: 10.1039/d3ob01263h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Fluorescent small-molecules capable of altering their profiles in response to environmental changes are exceptionally valuable tool compounds throughout the scientific community. The following manuscriipt describes a new class of fluorescent small molecules based on lactam-fused tropolones that are responsive to a dynamic range of environmental changes. These molecules can be easily obtained through a rapid annulation procedure between appropriately functionalized tropolones and primary amines, which is often complete within minutes at room temperature. Molecules generated through this approach have been identified with fluoresence emission across the visible light spectra, and can be tuned based on either the tropolone or amine component. They are also highly responsive to changes in solvent, pH, and certain divalent metal ions. Tropolone-fused lactams thus represent a new class of tunable fluorescent small molecules that could find value throughout the scientific community.
Collapse
Affiliation(s)
- Daniel V Schiavone
- Department of Chemistry and Biochemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA.
- PhD Program in Chemistry, The Graduate Center, The City University of New York, New York, NY, USA
| | - Joel Gallardo
- Department of Chemistry and Biochemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA.
- PhD Program in Chemistry, The Graduate Center, The City University of New York, New York, NY, USA
| | - Diana M Kapkayeva
- Department of Chemistry and Biochemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA.
| | - John-Charles Baucom
- Department of Chemistry and Biochemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA.
- PhD Program in Chemistry, The Graduate Center, The City University of New York, New York, NY, USA
| | - Ryan P Murelli
- Department of Chemistry and Biochemistry, Brooklyn College, The City University of New York, Brooklyn, New York, USA.
- PhD Program in Chemistry, The Graduate Center, The City University of New York, New York, NY, USA
- PhD Program in Biochemistry, The Graduate Center, The City University of New York, New York, NY, USA
| |
Collapse
|
2
|
O’Hanlon R, Leyva-Grado VH, Sourisseau M, Evans MJ, Shaw ML. An Influenza Virus Entry Inhibitor Targets Class II PI3 Kinase and Synergizes with Oseltamivir. ACS Infect Dis 2019; 5:1779-1793. [PMID: 31448902 DOI: 10.1021/acsinfecdis.9b00230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two classes of antivirals targeting the viral neuraminidase (NA) and endonuclease are currently the only clinically useful drugs for the treatment of influenza. However, resistance to both antivirals has been observed in clinical isolates, and there was widespread resistance to oseltamivir (an NA inhibitor) among H1N1 viruses prior to 2009. This potential for resistance and lack of diversity for antiviral targets highlights the need for new influenza antivirals with a higher barrier to resistance. In this study, we identified an antiviral compound, M85, that targets host kinases, epidermal growth factor receptor (EGFR), and phosphoinositide 3 class II β (PIK3C2β) and is not susceptible to resistance by viral mutations. M85 blocks endocytosis of influenza viruses and inhibits a broad-spectrum of viruses with minimal cytotoxicity. In vitro, we found that combinations of M85 and oseltamivir have strong synergism. In the mouse model for influenza, treatment with the combination therapy was more protective against a lethal viral challenge than oseltamivir alone, indicating that development of M85 could lead to combination therapies for influenza. Finally, through this discovery of M85 and its antiviral mechanism, we present the first description of PIK3C2β as a necessary host factor for influenza virus entry.
Collapse
|
3
|
Liu T, Wang Z, Guo P, Ding N. Electrostatic mechanism of V600E mutation-induced B-Raf constitutive activation in colorectal cancer: molecular implications for the selectivity difference between type-I and type-II inhibitors. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 48:73-82. [DOI: 10.1007/s00249-018-1334-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/10/2018] [Accepted: 09/06/2018] [Indexed: 02/04/2023]
|
4
|
AMPK and Endothelial Nitric Oxide Synthase Signaling Regulates K-Ras Plasma Membrane Interactions via Cyclic GMP-Dependent Protein Kinase 2. Mol Cell Biol 2016; 36:3086-3099. [PMID: 27697864 DOI: 10.1128/mcb.00365-16] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022] Open
Abstract
K-Ras must localize to the plasma membrane and be arrayed in nanoclusters for biological activity. We show here that K-Ras is a substrate for cyclic GMP-dependent protein kinases (PKGs). In intact cells, activated PKG2 selectively colocalizes with K-Ras on the plasma membrane and phosphorylates K-Ras at Ser181 in the C-terminal polybasic domain. K-Ras phosphorylation by PKG2 is triggered by activation of AMP-activated protein kinase (AMPK) and requires endothelial nitric oxide synthase and soluble guanylyl cyclase. Phosphorylated K-Ras reorganizes into distinct nanoclusters that retune the signal output. Phosphorylation acutely enhances K-Ras plasma membrane affinity, but phosphorylated K-Ras is progressively lost from the plasma membrane via endocytic recycling. Concordantly, chronic pharmacological activation of AMPK → PKG2 signaling with mitochondrial inhibitors, nitric oxide, or sildenafil inhibits proliferation of K-Ras-positive non-small cell lung cancer cells. The study shows that K-Ras is a target of a metabolic stress-signaling pathway that can be leveraged to inhibit oncogenic K-Ras function.
Collapse
|
5
|
Banerjee A, Jang H, Nussinov R, Gaponenko V. The disordered hypervariable region and the folded catalytic domain of oncogenic K-Ras4B partner in phospholipid binding. Curr Opin Struct Biol 2016; 36:10-7. [PMID: 26709496 PMCID: PMC4785042 DOI: 10.1016/j.sbi.2015.11.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/20/2015] [Indexed: 01/08/2023]
Abstract
The C-terminal hypervariable region (HVR) of the splice variant KRAS4B is disordered. Classically, the role of the post-translationally-modified HVR is to navigate Ras in the cell and to anchor it in localized plasma membrane regions. Here, we propose additional regulatory roles, including auto-inhibition by shielding the effector binding site in the GDP-bound state and release upon GTP binding and in the presence of certain oncogenic mutations. The released HVR can interact with calmodulin. We show that oncogenic mutations (G12V/G12D) modulate the HVR-phospholipid binding specificity, resulting in preferential interactions with phosphatidic acid. The shifts in the conformational preferences and binding specificity in the disordered state exemplify the critical role of the unstructured tail of K-Ras4B in cancer.
Collapse
Affiliation(s)
- Avik Banerjee
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Hyunbum Jang
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
6
|
Cho KJ, van der Hoeven D, Zhou Y, Maekawa M, Ma X, Chen W, Fairn GD, Hancock JF. Inhibition of Acid Sphingomyelinase Depletes Cellular Phosphatidylserine and Mislocalizes K-Ras from the Plasma Membrane. Mol Cell Biol 2016; 36:363-74. [PMID: 26572827 PMCID: PMC4719297 DOI: 10.1128/mcb.00719-15] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 08/07/2015] [Accepted: 10/28/2015] [Indexed: 11/20/2022] Open
Abstract
K-Ras must localize to the plasma membrane for biological activity; thus, preventing plasma membrane interaction blocks K-Ras signal output. Here we show that inhibition of acid sphingomyelinase (ASM) mislocalizes both the K-Ras isoforms K-Ras4A and K-Ras4B from the plasma membrane to the endomembrane and inhibits their nanoclustering. We found that fendiline, a potent ASM inhibitor, reduces the phosphatidylserine (PtdSer) and cholesterol content of the inner plasma membrane. These lipid changes are causative because supplementation of fendiline-treated cells with exogenous PtdSer rapidly restores K-Ras4A and K-Ras4B plasma membrane binding, nanoclustering, and signal output. Conversely, supplementation with exogenous cholesterol restores K-Ras4A but not K-Ras4B nanoclustering. These experiments reveal different operational pools of PtdSer on the plasma membrane. Inhibition of ASM elevates cellular sphingomyelin and reduces cellular ceramide levels. Concordantly, delivery of recombinant ASM or exogenous ceramide to fendiline-treated cells rapidly relocalizes K-Ras4B and PtdSer to the plasma membrane. K-Ras4B mislocalization is also recapitulated in ASM-deficient Neimann-Pick type A and B fibroblasts. This study identifies sphingomyelin metabolism as an indirect regulator of K-Ras4A and K-Ras4B signaling through the control of PtdSer plasma membrane content. It also demonstrates the critical and selective importance of PtdSer to K-Ras4A and K-Ras4B plasma membrane binding and nanoscale spatial organization.
Collapse
Affiliation(s)
- Kwang-Jin Cho
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Medical School, Houston, Texas, USA
| | - Dharini van der Hoeven
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, USA
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Medical School, Houston, Texas, USA
| | - Masashi Maekawa
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada Departments of Surgery and Biochemistry, University of Toronto, Toronto, Ontario, Canada Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Xiaoping Ma
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Medical School, Houston, Texas, USA
| | - Wei Chen
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Medical School, Houston, Texas, USA
| | - Gregory D Fairn
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada Departments of Surgery and Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Medical School, Houston, Texas, USA
| |
Collapse
|
7
|
Investigation of the Lipid Binding Properties of the Marburg Virus Matrix Protein VP40. J Virol 2015; 90:3074-85. [PMID: 26719280 DOI: 10.1128/jvi.02607-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/27/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Marburg virus (MARV), which belongs to the virus family Filoviridae, causes hemorrhagic fever in humans and nonhuman primates that is often fatal. MARV is a lipid-enveloped virus that during the replication process extracts its lipid coat from the plasma membrane of the host cell it infects. MARV carries seven genes, one of which encodes its matrix protein VP40 (mVP40), which regulates the assembly and budding of the virions. Currently, little information is available on mVP40 lipid binding properties. Here, we have investigated the in vitro and cellular mechanisms by which mVP40 associates with lipid membranes. mVP40 associates with anionic membranes in a nonspecific manner that is dependent upon the anionic charge density of the membrane. These results are consistent with recent structural determination of mVP40, which elucidated an mVP40 dimer with a flat and extensive cationic lipid binding interface. IMPORTANCE Marburg virus (MARV) is a lipid-enveloped filamentous virus from the family Filoviridae. MARV was discovered in 1967, and yet little is known about how its seven genes are used to assemble and form a new viral particle in the host cell it infects. The MARV matrix protein VP40 (mVP40) underlies the inner leaflet of the virus and regulates budding from the host cell plasma membrane. In vitro and cellular assays in this study investigated the mechanism by which mVP40 associates with lipids. The results demonstrate that mVP40 interactions with lipid vesicles or the inner leaflet of the plasma membrane are electrostatic but nonspecific in nature and are dependent on the anionic charge density of the membrane surface. Small molecules that can disrupt lipid trafficking or reduce the anionic charge of the plasma membrane interface may be useful in inhibiting assembly and budding of MARV.
Collapse
|