1
|
Oliveira-Paula GH, Martins AC, Ferrer B, Tinkov AA, Skalny AV, Aschner M. The impact of manganese on vascular endothelium. Toxicol Res 2024; 40:501-517. [PMID: 39345740 PMCID: PMC11436708 DOI: 10.1007/s43188-024-00260-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/10/2024] [Accepted: 07/26/2024] [Indexed: 10/01/2024] Open
Abstract
Manganese (Mn) is an essential trace element involved in various physiological processes, but excessive exposure may lead to toxicity. The vascular endothelium, a monolayer of endothelial cells within blood vessels, is a primary target of Mn toxicity. This review provides a comprehensive overview of the impact of Mn on vascular endothelium, focusing on both peripheral and brain endothelial cells. In vitro studies have demonstrated that high concentrations of Mn can induce endothelial cell cytotoxicity, increase permeability, and disrupt cell-cell junctions through mechanisms involving oxidative stress, mitochondrial damage, and activation of signaling pathways, such as Smad2/3-Snail. Conversely, low concentrations of Mn may protect endothelial cells from the deleterious effects of high glucose and advanced glycation end-products. In the central nervous system, Mn can cross the blood-brain barrier (BBB) and accumulate in the brain parenchyma, leading to neurotoxicity. Several transport mechanisms, including ZIP8, ZIP14, and SPCA1, have been identified for Mn uptake by brain endothelial cells. Mn exposure can impair BBB integrity by disrupting tight junctions and increasing permeability. In vivo studies have corroborated these findings, highlighting the importance of endothelial barriers in mediating Mn toxicity in the brain and kidneys. Maintaining optimal Mn homeostasis is crucial for preserving endothelial function, and further research is needed to develop targeted therapeutic strategies to prevent or mitigate the adverse effects of Mn overexposure. Graphical Abstract
Collapse
Affiliation(s)
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003 Russia
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435 Russia
| | - Anatoly V. Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003 Russia
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435 Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| |
Collapse
|
2
|
Wu M, Wu C, Song T, Pan K, Wang Y, Liu Z. Structure and transport mechanism of the human calcium pump SPCA1. Cell Res 2023; 33:533-545. [PMID: 37258749 PMCID: PMC10313705 DOI: 10.1038/s41422-023-00827-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023] Open
Abstract
Secretory-pathway Ca2+-ATPases (SPCAs) play critical roles in maintaining Ca2+ homeostasis, but the exact mechanism of SPCAs-mediated Ca2+ transport remains unclear. Here, we determined six cryo-electron microscopy (cryo-EM) structures of human SPCA1 (hSPCA1) in a series of intermediate states, revealing a near-complete conformational cycle. With the aid of molecular dynamics simulations, these structures offer a clear structural basis for Ca2+ entry and release in hSPCA1. We found that hSPCA1 undergoes unique conformational changes during ATP binding and phosphorylation compared to other well-studied P-type II ATPases. In addition, we observed a conformational distortion of the Ca2+-binding site induced by the separation of transmembrane helices 4L and 6, unveiling a distinct Ca2+ release mechanism. Particularly, we determined a structure of the long-sought CaE2P state of P-type IIA ATPases, providing valuable insights into the Ca2+ transport cycle. Together, these findings enhance our understanding of Ca2+ transport by hSPCA1 and broaden our knowledge of P-type ATPases.
Collapse
Affiliation(s)
- Mengqi Wu
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Cang Wu
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Tiefeng Song
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kewu Pan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang, China.
| | - Zhongmin Liu
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
3
|
Steimle BL, Bailey DK, Smith FM, Rosenblum SL, Kosman DJ. Calcium and the Ca-ATPase SPCA1 modulate plasma membrane abundance of ZIP8 and ZIP14 to regulate Mn(II) uptake in brain microvascular endothelial cells. J Biol Chem 2022; 298:102211. [PMID: 35787370 PMCID: PMC9352541 DOI: 10.1016/j.jbc.2022.102211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/09/2022] [Accepted: 06/19/2022] [Indexed: 11/12/2022] Open
Abstract
Manganese (II) accumulation in human brain microvascular endothelial cells is mediated by the metal-ion transporters ZRT IRT-like protein 8 (ZIP8) and ZRT IRT-like protein 14 (ZIP14). The plasma membrane occupancy of ZIP14, in particular, is increased in cells treated with Mn2+, lipopolysaccharide, or IL-6, but the mechanism of this regulation has not been elucidated. The calcium-transporting type 2C member 1 ATPase, SPCA1, is a Golgi-localized Ca2+-uptake transporter thought to support Golgi uptake of Mn2+ also. Here, we show using surface protein biotinylation, indirect immunofluorescence, and GFP-tagged proteins that cytoplasmic Ca2+ regulates ZIP8- and ZIP14-mediated manganese accumulation in human brain microvascular endothelial cells by increasing the plasma membrane localization of these transporters. We demonstrate that RNAi knockdown of SPCA1 expression results in an increase in cytoplasmic Ca2+ levels. In turn, we found increased cytoplasmic Ca2+ enhances membrane-localized ZIP8 and ZIP14 and a subsequent increase in 54Mn2+ uptake. Furthermore, overexpression of WT SPCA1 or a gain-of-function mutant resulted in a decrease in cytoplasmic Ca2+ and 54Mn2+ accumulation. While addition of Ca2+ positively regulated ZIP-mediated 54Mn2+ uptake, we show chelation of Ca2+ diminished manganese transport. In conclusion, the modulation of ZIP8 and ZIP14 membrane cycling by cytoplasmic calcium is a novel finding and provides new insight into the regulation of the uptake of Mn2+ and other divalent metal ions–mediated ZIP metal transporters.
Collapse
Affiliation(s)
- Brittany L Steimle
- Department of Biochemistry, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, 955 Main St. Buffalo, NY 14203, USA
| | - Danielle K Bailey
- Department of Biochemistry, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, 955 Main St. Buffalo, NY 14203, USA
| | - Frances M Smith
- Department of Biochemistry, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, 955 Main St. Buffalo, NY 14203, USA
| | - Shaina L Rosenblum
- Department of Biochemistry, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, 955 Main St. Buffalo, NY 14203, USA
| | - Daniel J Kosman
- Department of Biochemistry, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, 955 Main St. Buffalo, NY 14203, USA.
| |
Collapse
|
4
|
Calcium Signaling in ß-cell Physiology and Pathology: A Revisit. Int J Mol Sci 2019; 20:ijms20246110. [PMID: 31817135 PMCID: PMC6940736 DOI: 10.3390/ijms20246110] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic beta (β) cell dysfunction results in compromised insulin release and, thus, failed regulation of blood glucose levels. This forms the backbone of the development of diabetes mellitus (DM), a disease that affects a significant portion of the global adult population. Physiological calcium (Ca2+) signaling has been found to be vital for the proper insulin-releasing function of β-cells. Calcium dysregulation events can have a dramatic effect on the proper functioning of the pancreatic β-cells. The current review discusses the role of calcium signaling in health and disease in pancreatic β-cells and provides an in-depth look into the potential role of alterations in β-cell Ca2+ homeostasis and signaling in the development of diabetes and highlights recent work that introduced the current theories on the connection between calcium and the onset of diabetes.
Collapse
|
5
|
Katzman JA, Chavan R, Holliday AC, Coman G, Grider D, Kolodney MS. Mosaic variant in ATP2C1 presenting as relapsing linear acantholytic dermatosis. Br J Dermatol 2019; 183:155-157. [PMID: 31605620 DOI: 10.1111/bjd.18607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2019] [Indexed: 01/18/2023]
Abstract
Relapsing linear acantholytic dermatosis (RLAD) is a rare disease that manifests as recurring episodes of crusted and vesicular lesions distributed in a Blaschkoid pattern with histology resembling Hailey-Hailey disease. RLAD, in the presence of generalized disease, has been shown to be a type 2 mosaic form of Hailey-Hailey disease. RLAD, without systemic disease, has been hypothesized to be type 1 mosaic Hailey-Hailey disease, but this assertion has lacked genetic conformation. To determine the genetic abnormalities causing RLAD, we performed exome sequencing of affected tissue and blood in one patient. Exome sequencing of a punch biopsy revealed a c.238A>T, p.(Lys80*) variant in ATP2C1 found in 26% of the reads from lesional skin but absent in germline DNA. This somatic variant causes a truncated protein that would likely result in loss of function. Our findings indicate that, in this patient, RLAD is a clinical presentation of type 1 segmental Hailey-Hailey disease. What's already known about this topic? Relapsing linear acantholytic dermatosis (RLAD) is postulated to be a mosaic form of Hailey-Hailey disease. This hypothesis has remained unproven for type 1 disease and the putative gene and driving genetic variants have remained unknown. What does this study add? Exome sequencing, performed on lesional skin and matched blood, found RLAD lesions to be mosaic for variants causing a premature stop codon in ATP2C1. Our findings support the hypothesis that RLAD is a type 1 segmental form of Hailey-Hailey disease caused by postzygotic variants in ATP2C1.
Collapse
Affiliation(s)
- J A Katzman
- Department of Dermatology, West Virginia University, Morgantown, WV, U.S.A
| | - R Chavan
- Dermatology & Mohs Surgery, Sacred Heart Cancer Center, Pensacola, FL, U.S.A
| | - A C Holliday
- Section of Dermatology, VA Tech School of Medicine, Roanoke, VA, U.S.A
| | - G Coman
- Section of Dermatology, VA Tech School of Medicine, Roanoke, VA, U.S.A
| | - D Grider
- Department of Pathology, VA Tech School of Medicine, Roanoke, VA, U.S.A
| | - M S Kolodney
- Department of Dermatology, West Virginia University, Morgantown, WV, U.S.A
| |
Collapse
|
6
|
Sabatini PV, Speckmann T, Lynn FC. Friend and foe: β-cell Ca 2+ signaling and the development of diabetes. Mol Metab 2019; 21:1-12. [PMID: 30630689 PMCID: PMC6407368 DOI: 10.1016/j.molmet.2018.12.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/03/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The divalent cation Calcium (Ca2+) regulates a wide range of processes in disparate cell types. Within insulin-producing β-cells, increases in cytosolic Ca2+ directly stimulate insulin vesicle exocytosis, but also initiate multiple signaling pathways. Mediated through activation of downstream kinases and transcription factors, Ca2+-regulated signaling pathways leverage substantial influence on a number of critical cellular processes within the β-cell. Additionally, there is evidence that prolonged activation of these same pathways is detrimental to β-cell health and may contribute to Type 2 Diabetes pathogenesis. SCOPE OF REVIEW This review aims to briefly highlight canonical Ca2+ signaling pathways in β-cells and how β-cells regulate the movement of Ca2+ across numerous organelles and microdomains. As a main focus, this review synthesizes experimental data from in vitro and in vivo models on both the beneficial and detrimental effects of Ca2+ signaling pathways for β-cell function and health. MAJOR CONCLUSIONS Acute increases in intracellular Ca2+ stimulate a number of signaling cascades, resulting in (de-)phosphorylation events and activation of downstream transcription factors. The short-term stimulation of these Ca2+ signaling pathways promotes numerous cellular processes critical to β-cell function, including increased viability, replication, and insulin production and secretion. Conversely, chronic stimulation of Ca2+ signaling pathways increases β-cell ER stress and results in the loss of β-cell differentiation status. Together, decades of study demonstrate that Ca2+ movement is tightly regulated within the β-cell, which is at least partially due to its dual roles as a potent signaling molecule.
Collapse
Affiliation(s)
- Paul V Sabatini
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Thilo Speckmann
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Francis C Lynn
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
7
|
The Trans Golgi Region is a Labile Intracellular Ca 2+ Store Sensitive to Emetine. Sci Rep 2018; 8:17143. [PMID: 30464185 PMCID: PMC6249204 DOI: 10.1038/s41598-018-35280-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/10/2018] [Indexed: 01/22/2023] Open
Abstract
The Golgi apparatus (GA) is a bona fide Ca2+ store; however, there is a lack of GA-specific Ca2+ mobilizing agents. Here, we report that emetine specifically releases Ca2+ from GA in HeLa and HL-1 atrial myocytes. Additionally, it has become evident that the trans-Golgi is a labile Ca2+ store that requires a continuous source of Ca2+ from either the external milieu or from the ER, to enable it to produce a detectable transient increase in cytosolic Ca2+. Our data indicates that the emetine-sensitive Ca2+ mobilizing mechanism is different from the two classical Ca2+ release mechanisms, i.e. IP3 and ryanodine receptors. This newly discovered ability of emetine to release Ca2+ from the GA may explain why chronic consumption of ipecac syrup has muscle side effects.
Collapse
|
8
|
Li LH, Tian XR, Hu ZP. The key target of neuroprotection after the onset of ischemic stroke: secretory pathway Ca(2+)-ATPase 1. Neural Regen Res 2015; 10:1271-8. [PMID: 26487855 PMCID: PMC4590240 DOI: 10.4103/1673-5374.162760] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The regulatory mechanisms of cytoplasmic Ca(2+) after myocardial infarction-induced Ca(2+) overload involve secretory pathway Ca(2+)-ATPase 1 and the Golgi apparatus and are well understood. However, the effect of Golgi apparatus on Ca(2+) overload after cerebral ischemia and reperfusion remains unclear. Four-vessel occlusion rats were used as animal models of cerebral ischemia. The expression of secretory pathway Ca(2+)-ATPase 1 in the cortex and hippocampus was detected by immunoblotting, and Ca(2+) concentrations in the cytoplasm and Golgi vesicles were determined. Results showed an overload of cytoplasmic Ca(2+) during ischemia and reperfusion that reached a peak after reperfusion. Levels of Golgi Ca(2+) showed an opposite effect. The expression of Golgi-specific secretory pathway Ca(2+)-ATPase 1 in the cortex and hippocampus decreased before ischemia and reperfusion, and increased after reperfusion for 6 hours. This variation was similar to the alteration of calcium in separated Golgi vesicles. These results indicate that the Golgi apparatus participates in the formation and alleviation of calcium overload, and that secretory pathway Ca(2+)-ATPase 1 tightly responds to ischemia and reperfusion in nerve cells. Thus, we concluded that secretory pathway Ca(2+)-ATPase 1 plays an essential role in cytosolic calcium regulation and its expression can be used as a marker of Golgi stress, responding to cerebral ischemia and reperfusion. The secretory pathway Ca(2+)-ATPase 1 can be an important neuroprotective target of ischemic stroke.
Collapse
Affiliation(s)
- Li-Hua Li
- School of Medicine, Jishou University, Jishou, Hunan Province, China ; Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiang-Rong Tian
- School of Medicine, Jishou University, Jishou, Hunan Province, China ; College of Biology and Environmental Science, Jishou University, Jishou, Hunan Province, China
| | - Zhi-Ping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
9
|
Luini A, Mavelli G, Jung J, Cancino J. Control systems and coordination protocols of the secretory pathway. F1000PRIME REPORTS 2014; 6:88. [PMID: 25374666 PMCID: PMC4191269 DOI: 10.12703/p6-88] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Like other cellular modules, the secretory pathway and the Golgi complex are likely to be supervised by control systems that support homeostasis and optimal functionality under all conditions, including external and internal perturbations. Moreover, the secretory apparatus must be functionally connected with other cellular modules, such as energy metabolism and protein degradation, via specific rules of interaction, or “coordination protocols”. These regulatory devices are of fundamental importance for optimal function; however, they are generally “hidden” at steady state. The molecular components and the architecture of the control systems and coordination protocols of the secretory pathway are beginning to emerge through studies based on the use of controlled transport-specific perturbations aimed specifically at the detection and analysis of these internal regulatory devices.
Collapse
Affiliation(s)
- Alberto Luini
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Biochimica delle Proteine (IBP)Via Pietro Castellino 111, 80131 NapoliItaly
- Telethon Institute of Genetics and Medicine (TIGEM)Via Pietro Castellino 111, 80131 NapoliItaly
| | - Gabriella Mavelli
- Istituto di Analisi dei Sistemi ed Informatica Antonio Ruberti, Consiglio Nazionale delle RicercheViale Manzoni 30, 00185 RomaItaly
| | - Juan Jung
- Istituto di Ricovero e Cura a Carattere Scientifico-SDN80143 NapoliItaly
| | - Jorge Cancino
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Biochimica delle Proteine (IBP)Via Pietro Castellino 111, 80131 NapoliItaly
- Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés BelloQuillota 980, 2520000 Viña del MarChile
| |
Collapse
|
10
|
Micaroni M. Calcium around the Golgi apparatus: implications for intracellular membrane trafficking. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:439-60. [PMID: 22453953 DOI: 10.1007/978-94-007-2888-2_18] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As with other complex cellular functions, intracellular membrane transport involves the coordinated engagement of a series of organelles and machineries; in the last couple of decades more importance has been given to the role of calcium (Ca(2+)) in the regulation of membrane trafficking, which is directly involved in coordinating the endoplasmic reticulum-to-Golgi-to-plasma membrane delivery of cargo. Consequently, the Golgi apparatus (GA) is now considered not just the place proteins mature in as they move to their final destination(s), but it is increasingly viewed as an intracellular Ca(2+) store. In the last few years the mechanisms regulating the homeostasis of Ca(2+) in the GA and its role in membrane trafficking have begun to be elucidated. Here, these recent discoveries that shed light on the role Ca(2+) plays as of trigger of different steps during membrane trafficking has been reviewed. This includes recruitment of proteins and SNARE cofactors to the Golgi membranes, which are both fundamental for the membrane remodeling and the regulation of fusion/fission events occurring during the passage of cargo across the GA. I conclude by focusing attention on Ca(2+) homeostasis dysfunctions in the GA and their related pathological implications.
Collapse
Affiliation(s)
- Massimo Micaroni
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, 4072 Brisbane, St. Lucia, QLD, Australia.
| |
Collapse
|