1
|
Dong TR, Li YJ, Jin SY, Yang FL, Xiong RX, Dai YQ, Song XZ, Guan CP. Progress on mitochondria and hair follicle development in androgenetic alopecia: relationships and therapeutic perspectives. Stem Cell Res Ther 2025; 16:44. [PMID: 39901201 PMCID: PMC11792644 DOI: 10.1186/s13287-025-04182-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
Hair loss has long been a significant concern for many individuals. Recent studies have indicated that mitochondria play a more crucial role in hair loss than previously recognized. This review summarizes the connection between mitochondrial dysfunction and hair follicle development, outlines the links between diseases related to mitochondrial disorders and hair issues, and highlights the influence of mitochondrial dysfunction on androgenetic alopecia. We discuss the cellular and signaling mechanisms associated with hair loss and examine how mitochondrial dysfunction, such as insufficient energy supply, signaling irregularities, protein/gene abnormalities, and programmed cell death, can hinder the normal proliferation, differentiation, and growth of hair follicle cells. Furthermore, we discuss current treatment approaches and potential innovative therapies, including mitochondrion-targeting drugs and advanced techniques that directly target hair follicle cells, providing fresh insights into the crucial role of mitochondria in maintaining hair follicle health and managing hair disorders. Furthermore, this review explores future therapeutic strategies and proposes that mitochondrial research could lead to groundbreaking treatments for hair loss, thus providing optimism and new avenues for the treatment of individuals experiencing hair loss. This review not only underscores the central importance of mitochondria in hair health but also emphasizes the importance of advancing research and treatment in this field.
Collapse
Affiliation(s)
- Ting-Ru Dong
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Yu-Jie Li
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Shi-Yu Jin
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Feng-Lan Yang
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Ren-Xue Xiong
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
- Department of Dermatology, Hangzhou Third People's Hospital, No 38 Xihu Rd, Hangzhou, 310009, China
| | - Ye-Qin Dai
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
- Department of Dermatology, Hangzhou Third People's Hospital, No 38 Xihu Rd, Hangzhou, 310009, China
| | - Xiu-Zu Song
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
- Department of Dermatology, Hangzhou Third People's Hospital, No 38 Xihu Rd, Hangzhou, 310009, China
| | - Cui-Ping Guan
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China.
- Department of Dermatology, Hangzhou Third People's Hospital, No 38 Xihu Rd, Hangzhou, 310009, China.
| |
Collapse
|
2
|
Dousset L, Mahfouf W, Younes H, Fatrouni H, Faucheux C, Muzotte E, Khalife F, Rossignol R, Moisan F, Cario M, Claverol S, Favot-Laforge L, Nieminen AI, Vainio S, Ali N, Rezvani HR. Energy metabolism rewiring following acute UVB irradiation is largely dependent on nuclear DNA damage. Free Radic Biol Med 2025; 227:459-471. [PMID: 39667588 DOI: 10.1016/j.freeradbiomed.2024.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Solar ultraviolet B (UVB) radiation-induced DNA damage is a well-known initiator of skin carcinomas. The UVB-induced DNA damage response (DDR) involves series of signaling cascades that are activated to maintain cell integrity. Among the different biological processes, little is known about the role of energy metabolism in the DDR. We sought to determine whether UVB-induced nuclear and/or mitochondrial cyclobutane pyrimidine dimers (CPDs) alter cellular energy metabolism. To gain insight into this question, we took advantage of keratinocytes expressing nuclear or mitochondrial CPD photolyase. Applying a quantitative proteomic approach and targeted metabolomics, we observed biphasic alterations in multiple metabolic pathways and in the abundance of various metabolites, largely influenced by the presence of genomic CPDs. The heightened oxygen consumption rate post-irradiation, along with mitochondrial structural rearrangements, was found to be dependent on both mitochondrial and nuclear CPDs. Understanding the influence of nuclear and mitochondrial DNA damage on keratinocyte responses to UVB irradiation deepens current knowledge regarding skin cancer prevention, initiation, and therapy.
Collapse
Affiliation(s)
- Léa Dousset
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France; Dermatology Department, Hôpital Saint-André, Bordeaux, France
| | - Walid Mahfouf
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France
| | - Hadi Younes
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France
| | - Hala Fatrouni
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France
| | - Corinne Faucheux
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France
| | - Elodie Muzotte
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France
| | - Ferial Khalife
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France
| | - Rodrigue Rossignol
- Univ. Bordeaux, Inserm, MRGM, U1211, Bordeaux, France; CELLOMET, Centre de Génomique Fonctionnelle de Bordeaux, Univ. Bordeaux, Bordeaux, France
| | - François Moisan
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France
| | - Muriel Cario
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France; Aquiderm, University of Bordeaux, Bordeaux, France
| | | | | | - Anni I Nieminen
- FIMM Metabolomics Unit, Institute for Molecular Medicine Finland, University of Helsinki, 00014, Finland
| | - Seppo Vainio
- Faculty of Biochemistry and Molecular Medicine, Disease Networks Research Unit, University of Oulu, Oulu, Finland
| | - Nsrein Ali
- Faculty of Biochemistry and Molecular Medicine, Disease Networks Research Unit, University of Oulu, Oulu, Finland
| | - Hamid-Reza Rezvani
- Univ. Bordeaux, Inserm, BRIC, UMR 1312, F-33076, Bordeaux, France; Aquiderm, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
3
|
Alsafy MAM, El-Gendy SAA, Ez Elarab SM, El-Mansi AA, Eldesoqui MB, Rashwan AM. Novel Insights Into the Ultrastructural and Immunofluorescence Characteristics of Limb Skin in the Red-Eared Slider Turtle (Trachemys scripta elegans). Microsc Res Tech 2024. [PMID: 39508632 DOI: 10.1002/jemt.24729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/08/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024]
Abstract
The red-eared slider turtle, a species facing environmental challenges and habitat loss, exhibits a complex skin architecture that is crucial for its adaptation and survival. Our study aims to provide a comprehensive characterization of the turtle's skin structure and to elucidate the distribution and localization of its various cellular components, with a focus on understanding the skin's role in adaptation and ecological interactions. To achieve these goals, we employed light microscopy, transmission electron microscopy (TEM), and comprehensive immunofluorescence using 10 specific antibodies. The forelimb skin displays large- and moderate-sized scales with variations in color, including dark, yellow, and gray hues, likely contributing to camouflage and protection. The skin consists of corneous material, the epidermis, the dermis, and the hypodermis. The stratum basalis, stratum spinosum, and peri-corneous layer constitute the three distinct layers of the epidermis. There are four distinct types of chromatophores, including melanocytes located in the epidermis, while melanophores, xanthophores, and iridophores are found within the dermal layer. The skin also exhibits well-developed peripheral nerves, blood vessels, and subcutaneous muscles. Immunofluorescence staining further elucidates the distribution and localization of various skin cells. E-cadherin and CK14 are strongly expressed in the epidermal layers, excluding the corneous material. E-cadherin surrounds keratinocyte cells in the epidermis, facilitating cell-cell adhesion, while CK14 is present inside the keratinocyte cells, contributing to their internal structural integrity. Sox10 and CD117 identify the four chromatophore types, with Melan-A specifically detecting only melanocytes and melanophores and not labeling xanthophores and iridophores. Tom20 is used to detect mitochondrial distribution and intensity in the skin, revealing a high density of mitochondria in all epidermal layers, especially in melanocytes and melanophores, compared to xanthophores and iridophores. Numerous telocytes, spindle-shaped with extensions called telopods, are detected in the dermis using CD34, PDGFRα, and vimentin. The skin of the red-eared slider also shows abundant myofibroblasts and well-developed vascularization, with numerous blood vessels detected using α-SMA. This novel study offers an in-depth examination of the limb skin of the red-eared slider through the use of 10 distinct antibodies, uncovering the intricate interactions among its cellular components and providing valuable insights into its anatomical structure and physiological adaptations. Our findings contribute to a better understanding of the turtle's skin, which may aid in its conservation and management.
Collapse
Affiliation(s)
- Mohamed A M Alsafy
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Samir A A El-Gendy
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Samar M Ez Elarab
- Faculty of Veterinary Medicine, Department of Histology and Cytology, Alexandria University, Alexandria, Egypt
| | - Ahmed A El-Mansi
- Faculty of Science, Biology Department, King Khalid University, Abha, Saudi Arabia
| | - Mamdouh B Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, Riyadh, Saudi Arabia
| | - Ahmed M Rashwan
- Faculty of Veterinary Medicine, Department of Anatomy and Embryology, Damanhour University, Damanhour, Egypt
- Laboratory of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Ahmad Jamil H, Abdul Karim N. Unraveling Mitochondrial Reactive Oxygen Species Involvement in Psoriasis: The Promise of Antioxidant Therapies. Antioxidants (Basel) 2024; 13:1222. [PMID: 39456475 PMCID: PMC11505169 DOI: 10.3390/antiox13101222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/28/2024] Open
Abstract
Psoriasis is a chronic inflammatory skin disorder characterized by immune dysregulation and aberrant keratinocyte proliferation. Despite tremendous advances in understanding its etiology, effective therapies that target its fundamental mechanisms remain necessary. Recent research highlights the role of reactive oxygen species dysregulation and mitochondrial dysfunction in psoriasis pathogenesis. Mitochondrial reactive oxygen species mediate cellular signaling pathways involved in psoriasis, such as proliferation, apoptosis, and inflammation, leading to oxidative stress, exacerbating inflammation and tissue damage if dysregulated. This review explores oxidative stress biomarkers and parameters in psoriasis, including myeloperoxidase, paraoxonase, sirtuins, superoxide dismutase, catalase, malondialdehyde, oxidative stress index, total oxidant status, and total antioxidant status. These markers provide insights into disease mechanisms and potential diagnostic and therapeutic targets. Modulating mitochondrial reactive oxygen species levels and enhancing antioxidant defenses can alleviate inflammation and oxidative damage, improving patient outcomes. Natural antioxidants like quercetin, curcumin, gingerol, resveratrol, and other antioxidants show promise as complementary treatments targeting oxidative stress and mitochondrial dysfunction. This review aims to guide the development of personalized therapeutic methods and diagnostic techniques, emphasizing the importance of comprehensive clinical studies to validate the efficacy and safety of these interventions, paving the way for more effective and holistic psoriasis care.
Collapse
Affiliation(s)
| | - Norwahidah Abdul Karim
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
5
|
Lee S, Ohn J, Kang BM, Hwang ST, Kwon O. Activation of mitochondrial aldehyde dehydrogenase 2 promotes hair growth in human hair follicles. J Adv Res 2024; 64:237-247. [PMID: 37972887 PMCID: PMC11464481 DOI: 10.1016/j.jare.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 11/06/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023] Open
Abstract
INTRODUCTION Hair loss is a common phenomenon associated with various environmental and genetic factors. Mitochondrial dysfunction-induced oxidative stress has been recognized as a crucial determinant of hair follicle (HF) biology. Aldehyde dehydrogenase 2 (ALDH2) mitigates oxidative stress by detoxifying acetaldehyde. This study investigated the potential role of ALDH2 modulation in HF function and hair growth promotion. OBJECTIVES To evaluate the effects of ALDH2 activation on oxidative stress in HFs and hair growth promotion. METHODS The modulatory role of ALDH2 on HFs was investigated using an ALDH2 activator. ALDH2 expression in human HFs was evaluated through in vitro immunofluorescence staining. Ex vivo HF organ culture was employed to assess hair shaft elongation, while the fluorescence probe 2',7'- dichlorodihydrofluorescein diacetate was utilized to detect reactive oxygen species (ROS). An in vivo mouse model was used to determine whether ALDH2 activation induces anagen. RESULTS During the anagen phase, ALDH2 showed significantly higher intensity than that in the telogen phase, and its expression was primarily localized along the outer layer of HFs. ALDH2 activation promoted anagen phase induction by reducing ROS levels and enhancing reactive aldehyde clearance, which indicated that ALDH2 functions as a ROS scavenger within HFs. Moreover, ALDH2 activation upregulated Akt/GSK 3β/β-catenin signaling in HFs. CONCLUSIONS Our findings highlight the hair growth promotion effects of ALDH2 activation in HFs and its potential as a promising therapeutic approach for promoting anagen induction.
Collapse
Affiliation(s)
- Seunghee Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, South Korea; Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, South Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, South Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Jungyoon Ohn
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, South Korea; Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, South Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, South Korea
| | - Bo Mi Kang
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, South Korea; Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, South Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, South Korea
| | | | - Ohsang Kwon
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, South Korea; Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, South Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul 03080, South Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea.
| |
Collapse
|
6
|
Qu HQ, Kao C, Hakonarson H. Implications of the non-neuronal cholinergic system for therapeutic interventions of inflammatory skin diseases. Exp Dermatol 2024; 33:e15181. [PMID: 39422283 DOI: 10.1111/exd.15181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 10/19/2024]
Abstract
The pivotal roles of acetylcholine (ACh) in physiological processes encompass both the nervous and non-neuronal cholinergic systems (NNCS). This review delineates the synthesis, release, receptor interactions, and degradation of ACh within the nervous system, and explores the NNCS in depth within skin cells including keratinocytes, endothelial cells, fibroblasts, macrophages, and other immune cells. We highlight the NNCS's essential functions in maintaining epidermal barrier integrity, promoting wound healing, regulating microcirculation, and modulating inflammatory responses. The potential of the NNCS as a therapeutic target for localized ACh regulation in the skin is discussed, though the translation of these findings into clinical practice remains uncertain due to the complexity of cholinergic signalling and the lack of comprehensive human studies. The review progresses to therapeutic modulation strategies of the NNCS, including AChE inhibitors, nicotinic and muscarinic receptor agonists and antagonists, choline uptake enhancers, and botulinum toxin, highlighting their relevance in dermatology. We highlight the impact of the NNCS on prevalent skin diseases such as psoriasis, atopic dermatitis, rosacea, acne, bullous diseases, hyperhidrosis and hypohidrosis, illustrating its significance in disease pathogenesis and therapy. This comprehensive overview aims to enhance understanding of the NNCS's role in skin health and disease, offering a foundation for future research and therapeutic innovation.
Collapse
Affiliation(s)
- Hui-Qi Qu
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Charlly Kao
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
7
|
Chettouh-Hammas N, Grillon C. Physiological skin oxygen levels: An important criterion for skin cell functionality and therapeutic approaches. Free Radic Biol Med 2024; 222:259-274. [PMID: 38908804 DOI: 10.1016/j.freeradbiomed.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
The skin is made up of different layers with various gradients, which maintain a complex microenvironment, particularly in terms of oxygen levels. However, all types of skin cells are cultured in conventional incubators that do not reproduce physiological oxygen levels. Instead, they are cultured at atmospheric oxygen levels, a condition that is far removed from physiology and may lead to the generation of free radicals known to induce skin ageing. This review aims to summarize the current literature on the effect of physiological oxygen levels on skin cells, highlight the shortcomings of current in vitro models, and demonstrate the importance of respecting skin oxygen levels. We begin by clarifying the terminology used about oxygen levels and describe the specific distribution of oxygen in the skin. We review and discuss how skin cells adapt their oxygen consumption and metabolism to oxygen levels environment, as well as the changes that are induced, particularly, their redox state, life cycle and functions. We examine the effects of oxygen on both simple culture models and more complex reconstructed skin models. Finally, we present the implications of oxygen modulation for a more therapeutic approach.
Collapse
Affiliation(s)
- Nadira Chettouh-Hammas
- Center for Molecular Biophysics UPR4301 CNRS, Rue Charles Sadron, 45071, Orléans, Cedex 2, France.
| | - Catherine Grillon
- Center for Molecular Biophysics UPR4301 CNRS, Rue Charles Sadron, 45071, Orléans, Cedex 2, France.
| |
Collapse
|
8
|
Rashwan AM, El-Gendy SAA, Ez Elarab SM, Alsafy MAM. A comprehensive exploration of diverse skin cell types in the limb of the desert tortoise (Testudo graeca) through light, transmission, scanning electron microscopy, and immunofluorescence techniques. Tissue Cell 2024; 87:102335. [PMID: 38412578 DOI: 10.1016/j.tice.2024.102335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
The Greek tortoise, inhabiting harsh desert environments, provides a compelling case for investigating skin adaptations to extreme conditions. We have utilized light microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and immunofluorescence analysis to describe the structure of the arid-adapted limb skin in the Greek tortoise. Our aim was to identify the cell types that reflect the skin adaptation of this tortoise to arid conditions. Utilizing seven antibodies, we localized and elucidated the functions of various skin cells, shedding light on how the tortoise adapts to adverse environmental conditions. Our findings unveiled numerous scales on the limbs, varying in size and color, acting as protective armor against abrasions, bites, and other potential threats in their rocky habitats. The epidermis comprises four layers: stratum basalis, stratum spinosum, peri-corneous layer, and stratum corneum. Cytokeratin 14 (CK14) was explicitly detected in the basal layer of the epidermis, suggesting a role in maintaining epidermal integrity and cellular function. Langerhans cells were observed between epidermal cells filled with ribosomes and Birbeck granules. Numerous dendritic-shaped Langerhans cells revealed through E-Cadherin signify strong immunity in tortoises' skin. Melanophores were identified using the Melan-A antibody, labeling the cytoplasm, and the SOX10 antibody, labeling the nucleus, providing comprehensive insights into melanophores morphology and distribution. Two types of melanophores were found: dendritic below the stratum basalis of the epidermis and clustered oval melanophores in the deep dermal layer. Varied melanophores distribution resulted in a spotted skin pattern, potentially offering adaptive camouflage and protection against environmental challenges. Numerous myofibroblasts were discerned through alpha-smooth actin (α-SMA) expression, indicating that the Greek tortoise's skin possesses a robust tissue repair and remodeling capacity. B-cell lymphocytes detected via CD20 immunostaining exhibited sporadic distribution in the dermis, concentrating in lymphoid aggregates and around vessels, implying potential roles in local immune responses and inflammation modulation. Employing Tom20 to identify skin cells with abundant mitochondria revealed a notable presence in melanophores and the basal layer of the epidermis, suggesting high metabolic activity in these cell types and potentially influencing cellular functions. These findings contribute to our comprehension of tortoise skin anatomy and physiology, offering insights into the remarkable adaptations of this species finely tuned to their specific environmental habitats.
Collapse
Affiliation(s)
- Ahmed M Rashwan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511 Egypt; Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Samir A A El-Gendy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21944, Egypt
| | - Samar M Ez Elarab
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21944, Egypt
| | - Mohamed A M Alsafy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21944, Egypt.
| |
Collapse
|
9
|
Kim HE, Lee JY, Yoo DH, Park HH, Choi EJ, Nam KH, Park J, Choi JK. Imidazole propionate ameliorates atopic dermatitis-like skin lesions by inhibiting mitochondrial ROS and mTORC2. Front Immunol 2024; 15:1324026. [PMID: 38533495 PMCID: PMC10964488 DOI: 10.3389/fimmu.2024.1324026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
Background Imidazole propionate (IMP) is a histidine metabolite produced by some gut microorganisms in the human colon. Increased levels of IMP are associated with intestinal inflammation and the development and progression of cardiovascular disease and diabetes. However, the anti-inflammatory activity of IMP has not been investigated. This study aimed to elucidate the role of IMP in treating atopic dermatitis (AD). Methods To understand how IMP mediates immunosuppression in AD, IMP was intraperitoneally injected into a Dermatophagoides farinae extract (DFE)/1-chloro-2,4 dinitrochlorobenzene (DNCB)-induced AD-like skin lesions mouse model. We also characterized the anti-inflammatory mechanism of IMP by inducing an AD response in keratinocytes through TNF-α/IFN-γ or IL-4 stimulation. Results Contrary to the prevailing view that IMP is an unhealthy microbial metabolite, we found that IMP-treated AD-like skin lesions mice showed significant improvement in their clinical symptoms, including ear thickness, epidermal and dermal thickness, and IgE levels. Furthermore, IMP antagonized the expansion of myeloid (neutrophils, macrophages, eosinophils, and mast cells) and Th cells (Th1, Th2, and Th17) in mouse skin and prevented mitochondrial reactive oxygen species production by inhibiting mitochondrial energy production. Interestingly, we found that IMP inhibited AD by reducing glucose uptake in cells to suppress proinflammatory cytokines and chemokines in an AD-like in vitro model, sequentially downregulating the PI3K and mTORC2 signaling pathways centered on Akt, and upregulating DDIT4 and AMPK. Discussion Our results suggest that IMP exerts anti-inflammatory effects through the metabolic reprogramming of skin inflammation, making it a promising therapeutic candidate for AD and related skin diseases.
Collapse
Affiliation(s)
- Ha Eun Kim
- Department of Immunology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Jong Yeong Lee
- Department of Immunology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Dong-Hoon Yoo
- Department of Sports Rehabilitation and Exercise Management, University of Gyeongnam Geochang, Geochang-gun, Republic of Korea
| | - Hyo-Hyun Park
- Department of Clinical Pathology, Daegu Health College, Daegu, Republic of Korea
| | - Eun-Ju Choi
- Department of Physical Education, College of Education, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Kyung-Hwa Nam
- Department of Dermatology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Jin Park
- Department of Dermatology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Jin Kyeong Choi
- Department of Immunology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| |
Collapse
|
10
|
Gnaiger E. Complex II ambiguities-FADH 2 in the electron transfer system. J Biol Chem 2024; 300:105470. [PMID: 38118236 PMCID: PMC10772739 DOI: 10.1016/j.jbc.2023.105470] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 12/22/2023] Open
Abstract
The prevailing notion that reduced cofactors NADH and FADH2 transfer electrons from the tricarboxylic acid cycle to the mitochondrial electron transfer system creates ambiguities regarding respiratory Complex II (CII). CII is the only membrane-bound enzyme in the tricarboxylic acid cycle and is part of the electron transfer system of the mitochondrial inner membrane feeding electrons into the coenzyme Q-junction. The succinate dehydrogenase subunit SDHA of CII oxidizes succinate and reduces the covalently bound prosthetic group FAD to FADH2 in the canonical forward tricarboxylic acid cycle. However, several graphical representations of the electron transfer system depict FADH2 in the mitochondrial matrix as a substrate to be oxidized by CII. This leads to the false conclusion that FADH2 from the β-oxidation cycle in fatty acid oxidation feeds electrons into CII. In reality, dehydrogenases of fatty acid oxidation channel electrons to the Q-junction but not through CII. The ambiguities surrounding Complex II in the literature and educational resources call for quality control, to secure scientific standards in current communications of bioenergetics, and ultimately support adequate clinical applications. This review aims to raise awareness of the inherent ambiguity crisis, complementing efforts to address the well-acknowledged issues of credibility and reproducibility.
Collapse
|
11
|
Martic I, Papaccio F, Bellei B, Cavinato M. Mitochondrial dynamics and metabolism across skin cells: implications for skin homeostasis and aging. Front Physiol 2023; 14:1284410. [PMID: 38046945 PMCID: PMC10693346 DOI: 10.3389/fphys.2023.1284410] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Aging of human skin is a complex process leading to a decline in homeostasis and regenerative potential of this tissue. Mitochondria are important cell organelles that have a crucial role in several cellular mechanisms such as energy production and free radical maintenance. However, mitochondrial metabolism as well as processes of mitochondrial dynamics, biogenesis, and degradation varies considerably among the different types of cells that populate the skin. Disturbed mitochondrial function is known to promote aging and inflammation of the skin, leading to impairment of physiological skin function and the onset of skin pathologies. In this review, we discuss the essential role of mitochondria in different skin cell types and how impairment of mitochondrial morphology, physiology, and metabolism in each of these cellular compartments of the skin contributes to the process of skin aging.
Collapse
Affiliation(s)
- Ines Martic
- Institute for Biochemical Aging Research, University of Innsbruck, Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
| | - Federica Papaccio
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Maria Cavinato
- Institute for Biochemical Aging Research, University of Innsbruck, Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
| |
Collapse
|
12
|
Wu X, Du YZ. Nanodrug Delivery Strategies to Signaling Pathways in Alopecia. Mol Pharm 2023; 20:5396-5415. [PMID: 37817669 DOI: 10.1021/acs.molpharmaceut.3c00620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Over 50% of the global population suffers from hair loss. The mixed results in the treatment of hair loss reveal the limitations of conventional commercial topical drugs. One the one hand, the definite pathogenesis of hair loss is still an enigma. On the other hand, targeted drug carriers ensure the drug therapeutic effect and low side effects. This review highlights the organization and overview of nine crucial signaling pathways associated with hair loss, as well as the development of nanobased topical delivery systems loading the clinical drugs, which will fuel emerging hair loss treatment strategies.
Collapse
Affiliation(s)
- Xiaochuan Wu
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321299, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yong-Zhong Du
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321299, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
13
|
Kaushik H, Kumar V, Parsad D. Mitochondria-Melanocyte cellular interactions: An emerging mechanism of vitiligo pathogenesis. J Eur Acad Dermatol Venereol 2023; 37:2196-2207. [PMID: 36897230 DOI: 10.1111/jdv.19019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/07/2023] [Indexed: 03/11/2023]
Abstract
Mitochondria has emerged as a potential modulator of melanocyte function other than just meeting its cellular ATP demands. Mitochondrial DNA defects are now an established cause of maternal inheritance diseases. Recent cellular studies have highlighted the mitochondrial interaction with other cellular organelles that lead to disease conditions such as in Duchenne muscular dystrophy, where defective mitochondria was found in melanocytes of these patients. Vitiligo, a depigmentory ailment of the skin, is another such disorder whose pathogenesis is now found to be associated with mitochondria. The complete absence of melanocytes at the lesioned site in vitiligo is a fact; however, the precise mechanism of this destruction is still undefined. In this review we have tried to discuss and link the emerging facts of mitochondrial function or its inter- and intra-organellar communications in vitiligo pathogenesis. Mitochondrial close association with melanosomes, molecular involvement in melanocyte-keratinocyte communication and melanocyte survival are new paradigm of melanogenesis that could ultimately account for vitiligo. This definitely adds the new dimensions to our understanding of vitiligo, its management and designing of future mitochondrial targeted therapy for vitiligo.
Collapse
Affiliation(s)
- Hitaishi Kaushik
- Department of Dermatology, Venereology & Leprology, PGIMER, Chandigarh, 160012, India
| | - Vinod Kumar
- Department of Dermatology, Venereology & Leprology, PGIMER, Chandigarh, 160012, India
| | - Davinder Parsad
- Department of Dermatology, Venereology & Leprology, PGIMER, Chandigarh, 160012, India
| |
Collapse
|
14
|
Chirumbolo S, Bertossi D, Magistretti P. Insights on the role of L-lactate as a signaling molecule in skin aging. Biogerontology 2023; 24:709-726. [PMID: 36708434 PMCID: PMC9883612 DOI: 10.1007/s10522-023-10018-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/17/2023] [Indexed: 01/29/2023]
Abstract
L-lactate is a catabolite from the anaerobic metabolism of glucose, which plays a paramount role as a signaling molecule in various steps of the cell survival. Its activity, as a master tuner of many mechanisms underlying the aging process, for example in the skin, is still presumptive, however its crucial position in the complex cross-talk between mitochondria and the process of cell survival, should suggest that L-lactate may be not a simple waste product but a fine regulator of the aging/survival machinery, probably via mito-hormesis. Actually, emerging evidence is highlighting that ROS are crucial in the signaling of skin health, including mechanisms underlying wound repair, renewal and aging. The ROS, including superoxide anion, hydrogen peroxide, and nitric oxide, play both beneficial and detrimental roles depending upon their levels and cellular microenvironment. Physiological ROS levels are essential for cutaneous health and the wound repair process. Aberrant redox signaling activity drives chronic skin disease in elderly. On the contrary, impaired redox modulation, due to enhanced ROS generation and/or reduced levels of antioxidant defense, suppresses wound healing via promoting lymphatic/vascular endothelial cell apoptosis and death. This review tries to elucidate this issue.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, Unit of Human Anatomy, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy.
| | - Dario Bertossi
- Department of Surgery, Dentistry, Paediatrics and Gynaecology-Unit of Maxillo-Facial Surgery, University of Verona, Verona, Italy
| | - Pierre Magistretti
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| |
Collapse
|
15
|
Peñaherrera S, Ruiz C, Castañeda V, Livingston K, Barba D, Burzio VA, Caicedo A, Singh KK. Exploring the role of mitochondria transfer/transplant and their long-non-coding RNAs in regenerative therapies for skin aging. Mitochondrion 2023; 70:41-53. [PMID: 36921832 PMCID: PMC10400337 DOI: 10.1016/j.mito.2023.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Advancing age and environmental stressors lead to mitochondrial dysfunction in the skin, inducing premature aging, impaired regeneration, and greater risk of cancer. Cells rely on the communication between the mitochondria and the nucleus by tight regulation of long non-coding RNAs (lncRNAs) to avoid premature aging and maintain healthy skin. LncRNAs act as key regulators of cell proliferation, differentiation, survival, and maintenance of skin structure. However, research on how the lncRNAs are dysregulated during aging and due to stressors is needed to develop therapies to regenerate skin's function and structure. In this article, we discuss how age and environmental stressors may alter lncRNA homeodynamics, compromising cell survival and skin health, and how these factors may become inducers of skin aging. We describe skin cell types and how they depend on mitochondrial function and lncRNAs. We also provide a list of mitochondria localized and nuclear lncRNAs that can serve to better understand skin aging. Using bioinformatic prediction tools, we predict possible functions of lncRNAs based on their subcellular localization. We also search for experimentally determined protein interactions and the biological processes involved. Finally, we provide therapeutic strategies based on gene editing and mitochondria transfer/transplant (AMT/T) to restore lncRNA regulation and skin health. This article offers a unique perspective in understanding and defining the therapeutic potential of mitochondria localized lncRNAs (mt-lncRNAs) and AMT/T to treat skin aging and related diseases.
Collapse
Affiliation(s)
- Sebastian Peñaherrera
- Biotecnología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
| | - Cristina Ruiz
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Verónica Castañeda
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- PhD Program in Biomedicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Kathryn Livingston
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Purdue University, Weldon School of Biomedical Engineering, Indiana, United States
| | - Diego Barba
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Verónica A Burzio
- Department of Biological Sciences, Faculty of Life Sciences, Universidad Andrés Bello, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Andrés Caicedo
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
- Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Keshav K. Singh
- Departments of Genetics, Dermatology and Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
16
|
Shehata WA, Hammam MA, Abdo A, Tayel N, Abdelsattar S. Mitochondrial DNA copy number as a diagnostic marker and indicator of degree of severity in alopecia areata. J Immunoassay Immunochem 2023; 44:256-268. [PMID: 36681933 DOI: 10.1080/15321819.2023.2168557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Alopecia areata (AA) is a disorder with several etiologies. The evidence suggests that the absolute copy number of mitochondrial deoxyribonucleic acid (mtDNA), as well as proportion of mutated mtDNA copies, determines disease onset. This study aims to quantify the relative index of the mtDNA copy number in patients with AA and healthy controls and correlate the results with the existing clinical information. This case-control study included 50 patients with AA and 50 age- and sex-coordinated healthy persons as controls. The severity of AA was weighed using the Severity of Alopecia Tool and Kavak's classification. The relative index of the mtDNA copy number was measured by real-time qPCR. Significant statistical difference was observed between cases and controls regarding mean mtDNA copy number, p < .001. There was significant positive correlation with SALT score (p = 0.001). A cutoff value of >1.619 N/µL could significantly diagnose AA cases (p < .001), and a cutoff value of > 1.36 N/µL could discriminate mild AA cases from those with moderate AA (p = 0.007). The relative index of mtDNA copy number is significantly elevated in AA cases and could be helpful in diagnosing and evaluating AA severity.
Collapse
Affiliation(s)
- Wafaa Ahmed Shehata
- Dermatology, Andrology & STDs Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Mostafa Ahmed Hammam
- Dermatology, Andrology & STDs Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Aya Abdo
- General Practitioner in Health Sector, Shebin El-Kom, Menoufia, Egypt
| | - Nermin Tayel
- Department of Molecular Diagnostics & Therapeutics, Genetic Engineering and Biotechnology Research Institute, Sadat City University, Sadat, Egypt
| | - Shimaa Abdelsattar
- Clinical Biochemistry and Molecular Diagnostics, National Liver Institute, Menoufia University, Menoufia, Egypt
| |
Collapse
|
17
|
Dogan SA, Giacchin G, Zito E, Viscomi C. Redox Signaling and Stress in Inherited Myopathies. Antioxid Redox Signal 2022; 37:301-323. [PMID: 35081731 DOI: 10.1089/ars.2021.0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Reactive oxygen species (ROS) are highly reactive compounds that behave like a double-edged sword; they damage cellular structures and act as second messengers in signal transduction. Mitochondria and endoplasmic reticulum (ER) are interconnected organelles with a central role in ROS production, detoxification, and oxidative stress response. Skeletal muscle is the most abundant tissue in mammals and one of the most metabolically active ones and thus relies mainly on oxidative phosphorylation (OxPhos) to synthesize adenosine triphosphate. The impairment of OxPhos leads to myopathy and increased ROS production, thus affecting both redox poise and signaling. In addition, ROS enter the ER and trigger ER stress and its maladaptive response, which also lead to a myopathic phenotype with mitochondrial involvement. Here, we review the role of ROS signaling in myopathies due to either mitochondrial or ER dysfunction. Recent Advances: Relevant advances have been evolving over the last 10 years on the intricate ROS-dependent pathways that act as modifiers of the disease course in several myopathies. To this end, pathways related to mitochondrial biogenesis, satellite cell differentiation, and ER stress have been studied extensively in myopathies. Critical Issues: The analysis of the chemistry and the exact quantitation, as well as the localization of ROS, are still challenging due to the intrinsic labile nature of ROS and the technical limitations of their sensors. Future Directions: The mechanistic studies of the pathogenesis of mitochondrial and ER-related myopathies offer a unique possibility to discover novel ROS-dependent pathways. Antioxid. Redox Signal. 37, 301-323.
Collapse
Affiliation(s)
- Sukru Anil Dogan
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogazici University, Istanbul, Turkey
| | - Giacomo Giacchin
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ester Zito
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.,Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
18
|
The impact of perceived stress on the hair follicle: Towards solving a psychoneuroendocrine and neuroimmunological puzzle. Front Neuroendocrinol 2022; 66:101008. [PMID: 35660551 DOI: 10.1016/j.yfrne.2022.101008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/03/2022] [Accepted: 05/24/2022] [Indexed: 12/24/2022]
Abstract
While popular belief harbors little doubt that perceived stress can cause hair loss and premature graying, the scientific evidence for this is arguably much thinner. Here, we investigate whether these phenomena are real, and show that the cyclic growth and pigmentation of the hair follicle (HF) provides a tractable model system for dissecting how perceived stress modulates aspects of human physiology. Local production of stress-associated neurohormones and neurotrophins coalesces with neurotransmitters and neuropeptides released from HF-associated sensory and autonomic nerve endings, forming a complex local stress-response system that regulates perifollicular neurogenic inflammation, interacts with the HF microbiome and controls mitochondrial function. This local system integrates into the central stress response systems, allowing the study of systemic stress responses affecting organ function by quantifying stress mediator content of hair. Focusing on selected mediators in this "brain-HF axis" under stress conditions, we distill general principles of HF dysfunction induced by perceived stress.
Collapse
|
19
|
Alwehaidah MS, AlFadhli S, Al-Kafaji G. Leukocyte mitochondrial DNA copy number is a potential non-invasive biomarker for psoriasis. PLoS One 2022; 17:e0270714. [PMID: 35767552 PMCID: PMC9242485 DOI: 10.1371/journal.pone.0270714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/16/2022] [Indexed: 11/18/2022] Open
Abstract
Abnormalities in the mitochondria have been linked to psoriasis, a chronic immune-mediated inflammatory skin disease. The mitochondrial DNA (mtDNA) is present in thousands of copies per cell and altered mtDNA copy number (mtDNA-CN), a common indicator of mitochondrial function, has been proposed as a biomarker for several diseases including autoimmune diseases. In this case–control study, we investigated whether the mtDNA-CN is related to psoriasis, correlates with the disease duration and severity, and can serve as a disease biomarker. Relative mtDNA-CN as compared with nuclear DNA was measured by a quantitative real-time polymerase chain reaction in peripheral blood buffy coat samples from 56 patients with psoriasis and 44 healthy controls. The receiver operating characteristic (ROC) curve analysis was performed to evaluate the value of mtDNA-CN as a biomarker. We found that the mtDNA-CN was significantly decreased in patients with psoriasis compared to healthy controls (93.6±5.3 vs. 205±71; P = 0.04). Sub-group analyses with stratification of patients based on disease duration under or over 10 years and disease severity indicated that the mtDNA-CN was significantly lower in patients with longer disease duration (74±4.3 in disease duration >10 years vs. 79±8.3 in disease duration <10 years, P = 0.009), and higher disease severity (72±4.3 in moderate-to-severe index vs. 88.3 ± 6 in mild index, P = 0.017). Moreover, the mtDNA-CN was negatively correlated with the disease duration and disease severity (r = -0.36, P = 0.006; r = -0.41, P = 0.003 respectively). The ROC analysis of mtDNA-CN showed an area under the curve (AUC) of 0.84 (95% confidence interval: 0.69–0.98; P = 0.002) for differentiating patients from healthy controls. Our study suggests that low mtDNA-CN may be an early abnormality in psoriasis and associates with the disease progression. Our study also suggests that mtDNA-CN may be a novel blood-based biomarker for the early detection of psoriasis.
Collapse
Affiliation(s)
- Materah Salem Alwehaidah
- Faculty of Allied Health, Department of Medical Laboratory, Kuwait University, State of Kuwait
- * E-mail: ,
| | - Suad AlFadhli
- Faculty of Allied Health, Department of Medical Laboratory, Kuwait University, State of Kuwait
| | - Ghada Al-Kafaji
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| |
Collapse
|
20
|
Moreau M, Capallere C, Chavatte L, Plaza C, Meyrignac C, Pays K, Bavouzet B, Botto JM, Nizard C, Bulteau AL. Reconstruction of functional human epidermis equivalent containing 5%IPS-derived keratinocytes treated with mitochondrial stimulating plant extracts. Sci Rep 2022; 12:9073. [PMID: 35641783 PMCID: PMC9156774 DOI: 10.1038/s41598-022-13191-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/10/2022] [Indexed: 11/09/2022] Open
Abstract
Reconstructed human epidermis equivalents (RHE) have been developed as a clinical skin substitute and as the replacement for animal testing in both research and industry. KiPS, or keratinocytes derived from induced pluripotent stem cells (iPSCs) are frequently used to generate RHE. In this study, we focus on the mitochondrial performance of the KiPS derived from iPSCs obtained from two donors. We found that the KiPS derived from the older donor have more defective mitochondria. Treatment of these KiPS with a plant extract enriched in compounds known to protect mitochondria improved mitochondrial respiration and rendered them fully competent to derive high-quality RHE. Overall, our results suggest that improving mitochondrial function in KiPS is one of the key aspects to obtain a functional RHE and that our plant extracts can improve in this process.
Collapse
Affiliation(s)
- Marielle Moreau
- LVMH Recherche. Life Science Department, 185 Avenue de Verdun, 45800, Saint Jean de Braye, France
| | - Christophe Capallere
- Advanced Skin Research & Bioengineering Department, Ashland, Global Skin Research Center, Sophia Antipolis, France
| | - Laurent Chavatte
- Centre International de Recherche en Infectiologie, CIRI, 69007, Lyon, France.,Institut National de La Santé Et de La Recherche Médicale (INSERM) Unité U1111, 69007, Lyon, France.,Ecole Normale Supérieure de Lyon, 69007, Lyon, France.,Université Claude Bernard Lyon 1 (UCBL1), 69622, Lyon, France.,Unité Mixte de Recherche 5308 (UMR5308), Centre National de La Recherche Scientifique (CNRS), 69007, Lyon, France
| | - Christelle Plaza
- Advanced Skin Research & Bioengineering Department, Ashland, Global Skin Research Center, Sophia Antipolis, France
| | - Céline Meyrignac
- Advanced Skin Research & Bioengineering Department, Ashland, Global Skin Research Center, Sophia Antipolis, France
| | - Karl Pays
- LVMH Recherche. Life Science Department, 185 Avenue de Verdun, 45800, Saint Jean de Braye, France
| | - Bruno Bavouzet
- LVMH Recherche. Life Science Department, 185 Avenue de Verdun, 45800, Saint Jean de Braye, France
| | - Jean-Marie Botto
- Advanced Skin Research & Bioengineering Department, Ashland, Global Skin Research Center, Sophia Antipolis, France
| | - Carine Nizard
- LVMH Recherche. Life Science Department, 185 Avenue de Verdun, 45800, Saint Jean de Braye, France
| | - Anne-Laure Bulteau
- LVMH Recherche. Life Science Department, 185 Avenue de Verdun, 45800, Saint Jean de Braye, France.
| |
Collapse
|
21
|
Wikramanayake TC, Chéret J, Sevilla A, Birch-Machin M, Paus R. Targeting mitochondria in dermatological therapy: Beyond oxidative damage and skin aging. Expert Opin Ther Targets 2022; 26:233-259. [PMID: 35249436 DOI: 10.1080/14728222.2022.2049756] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The analysis of the role of the mitochondria in oxidative damage and skin aging is a significant aspect of dermatological research. Mitochondria generate most reactive oxygen species (ROS); however, excessive ROS are cytotoxic and DNA-damaging and promote (photo-)aging. ROS also possesses key physiological and regulatory functions and mitochondrial dysfunction is prominent in several skin diseases including skin cancers. Although many standard dermatotherapeutics modulate mitochondrial function, dermatological therapy rarely targets the mitochondria. Accordingly, there is a rationale for "mitochondrial dermatology"-based approaches to be applied to therapeutic research. AREAS COVERED This paper examines the functions of mitochondria in cutaneous physiology beyond energy (ATP) and ROS production. Keratinocyte differentiation and epidermal barrier maintenance, appendage morphogenesis and homeostasis, photoaging and skin cancer are considered. Based on related PubMed search results, the paper evaluates thyroid hormones, glucocorticoids, Vitamin D3 derivatives, retinoids, cannabinoid receptor agonists, PPARγ agonists, thyrotropin, and thyrotropin-releasing hormone as instructive lead compounds. Moreover, the mitochondrial protein MPZL3 as a promising new drug target for future "mitochondrial dermatology" is highlighted. EXPERT OPINION Future dermatological therapeutic research should have a mitochondrial medicine emphasis. Focusing on selected lead agents, protein targets, in silico drug design, and model diseases will fertilize a mito-centric approach.
Collapse
Affiliation(s)
- Tongyu C Wikramanayake
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A.,Molecular Cell and Developmental Biology Program, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Jérémy Chéret
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Alec Sevilla
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Mark Birch-Machin
- Dermatological Sciences, Translational and Clinical Research Institute, and The UK National Innovation Centre for Ageing, Newcastle University, Newcastle upon Tyne, UK
| | - Ralf Paus
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A.,Monasterium Laboratory, Münster, Germany.,Centre for Dermatology Research, University of Manchester, and NIHR Manchester Biomedical Research Centre, Manchester, UK
| |
Collapse
|
22
|
Blunder S, Pavel P, Minzaghi D, Dubrac S. PPARdelta in Affected Atopic Dermatitis and Psoriasis: A Possible Role in Metabolic Reprograming. Int J Mol Sci 2021; 22:7354. [PMID: 34298981 PMCID: PMC8303290 DOI: 10.3390/ijms22147354] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors expressed in the skin. Three PPAR isotypes, α (NRC1C1), β or δ (NRC1C2) and γ (NRC1C3), have been identified. After activation through ligand binding, PPARs heterodimerize with the 9-cis-retinoic acid receptor (RXR), another nuclear hormone receptor, to bind to specific PPAR-responsive elements in regulatory regions of target genes mainly involved in organogenesis, cell proliferation, cell differentiation, inflammation and metabolism of lipids or carbohydrates. Endogenous PPAR ligands are fatty acids and fatty acid metabolites. In past years, much emphasis has been given to PPARα and γ in skin diseases. PPARβ/δ is the least studied PPAR family member in the skin despite its key role in several important pathways regulating inflammation, keratinocyte proliferation and differentiation, metabolism and the oxidative stress response. This review focuses on the role of PPARβ/δ in keratinocytes and its involvement in psoriasis and atopic dermatitis. Moreover, the relevance of targeting PPARβ/δ to alleviate skin inflammation is discussed.
Collapse
Affiliation(s)
| | | | | | - Sandrine Dubrac
- Epidermal Biology Laboratory, Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (S.B.); (P.P.); (D.M.)
| |
Collapse
|
23
|
Ho CY, Dreesen O. Faces of cellular senescence in skin aging. Mech Ageing Dev 2021; 198:111525. [PMID: 34166688 DOI: 10.1016/j.mad.2021.111525] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/30/2021] [Accepted: 06/20/2021] [Indexed: 02/06/2023]
Abstract
The skin is comprised of different cell types with different proliferative capacities. Skin aging occurs with chronological age and upon exposure to extrinsic factors such as photodamage. During aging, senescent cells accumulate in different compartments of the human skin, leading to impaired skin physiology. Diverse skin cell types may respond differently to senescence-inducing stimuli and it is not clear how this results in aging-associated skin phenotypes and pathologies. This review aims to examine and provide an overview of current evidence of cellular senescence in the skin. We will focus on cellular characteristics and behaviour of different skin cell types undergoing senescence in the epidermis and dermis, with a particular focus on the complex interplay between mitochondrial dysfunction, autophagy and DNA damage pathways. We will also examine how the dermis and epidermis cope with the accumulation of DNA damage during aging.
Collapse
Affiliation(s)
- Chin Yee Ho
- Skin Research Institute of Singapore, 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Oliver Dreesen
- Skin Research Institute of Singapore, 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore.
| |
Collapse
|
24
|
Simpson CL, Tokito MK, Uppala R, Sarkar MK, Gudjonsson JE, Holzbaur ELF. NIX initiates mitochondrial fragmentation via DRP1 to drive epidermal differentiation. Cell Rep 2021; 34:108689. [PMID: 33535046 PMCID: PMC7888979 DOI: 10.1016/j.celrep.2021.108689] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/23/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022] Open
Abstract
The epidermis regenerates continually to maintain a protective barrier at the body’s surface composed of differentiating keratinocytes. Maturation of this stratified tissue requires that keratinocytes undergo wholesale organelle degradation upon reaching the outermost tissue layers to form compacted, anucleate cells. Through live imaging of organotypic cultures of human epidermis, we find that regulated breakdown of mitochondria is critical for epidermal development. Keratinocytes in the upper layers initiate mitochondrial fragmentation, depolarization, and acidification upon upregulating the mitochondrion-tethered autophagy receptor NIX. Depleting NIX compromises epidermal maturation and impairs mitochondrial elimination, whereas ectopic NIX expression accelerates keratinocyte differentiation and induces premature mitochondrial fragmentation via the guanosine triphosphatase (GTPase) DRP1. We further demonstrate that inhibiting DRP1 blocks NIX-mediated mitochondrial breakdown and disrupts epidermal development. Our findings establish mitochondrial degradation as a key step in terminal keratinocyte differentiation and define a pathway operating via the mitophagy receptor NIX in concert with DRP1 to drive epidermal morphogenesis. Using live microscopy of human organotypic epidermis, Simpson et al. demonstrate how keratinocytes degrade their mitochondria in the upper tissue layers during their final stage of differentiation. By upregulating expression of the mitophagy receptor NIX, keratinocytes initiate DRP1- dependent mitochondrial fragmentation, a process critical for epidermal tissue maturation.
Collapse
Affiliation(s)
- Cory L Simpson
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mariko K Tokito
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ranjitha Uppala
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA; Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mrinal K Sarkar
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
25
|
Wang J, Sui J, Mao C, Li X, Chen X, Liang C, Wang X, Wang SH, Jia C. Identification of Key Pathways and Genes Related to the Development of Hair Follicle Cycle in Cashmere Goats. Genes (Basel) 2021; 12:genes12020180. [PMID: 33513983 PMCID: PMC7911279 DOI: 10.3390/genes12020180] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
The development of hair follicle in cashmere goats shows significant periodic change, as with mice and humans. However, for cashmere goat with double-coat, the periodic change may be due to other regulatory molecules and signal pathways. To understand the mechanism of periodic development of hair follicle, we performed a weighted gene coexpression network analysis (WGCNA) to mine key genes and establish an interaction network by utilizing the NCBI public dataset. Ten coexpression modules, including 7689 protein-coding genes, were constructed by WGCNA, six of which are considered to be significantly related to the development of the hair follicle cycle. A functional enrichment analysis for each model showed that they are closely related to ECM- receptor interaction, focal adhesion, PI3K-Akt signaling pathway, estrogen signaling pathway, and so on. Combined with the analysis of differential expressed genes, 12 hub genes from coexpression modules were selected as candidate markers, i.e., COL1A1, C1QTNF6, COL1A2, AQP3, KRTAP3-1, KRTAP11-1, FA2H, NDUFS5, DERL2, MRPL14, ANTKMT and XAB2, which might be applied to improve cashmere production.
Collapse
|
26
|
Steen K, Chen D, Wang F, Majumdar R, Chen S, Kumar S, Lombard DB, Weigert R, Zieman AG, Parent CA, Coulombe PA. A role for keratins in supporting mitochondrial organization and function in skin keratinocytes. Mol Biol Cell 2020; 31:1103-1111. [PMID: 32213122 PMCID: PMC7353162 DOI: 10.1091/mbc.e19-10-0565] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mitochondria fulfill essential roles in ATP production, metabolic regulation, calcium signaling, generation of reactive oxygen species (ROS), and additional determinants of cellular health. Recent studies have highlighted a role for mitochondria during cell differentiation, including in skin epidermis. The observation of oxidative stress in keratinocytes from Krt16 null mouse skin, a model for pachyonychia congenita (PC)–associated palmoplantar keratoderma, prompted us to examine the role of Keratin (K) 16 protein and its partner K6 in regulating the structure and function of mitochondria. Electron microscopy revealed major anomalies in mitochondrial ultrastructure in late stage, E18.5, Krt6a/Krt6b null embryonic mouse skin. Follow-up studies utilizing biochemical, metabolic, and live imaging readouts showed that, relative to controls, skin keratinocytes null for Krt6a/Krt6b or Krt16 exhibit elevated ROS, reduced mitochondrial respiration, intracellular distribution differences, and altered movement of mitochondria within the cell. These findings highlight a novel role for K6 and K16 in regulating mitochondrial morphology, dynamics, and function and shed new light on the causes of oxidative stress observed in PC and related keratin-based skin disorders.
Collapse
Affiliation(s)
- Kaylee Steen
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Desu Chen
- Laboratory for Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Fengrong Wang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Ritankar Majumdar
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Song Chen
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Surinder Kumar
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - David B Lombard
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109
| | - Roberto Weigert
- Laboratory for Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Abigail G Zieman
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Carole A Parent
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109.,Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109
| | - Pierre A Coulombe
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109.,Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
27
|
Minzaghi D, Pavel P, Dubrac S. Xenobiotic Receptors and Their Mates in Atopic Dermatitis. Int J Mol Sci 2019; 20:E4234. [PMID: 31470652 PMCID: PMC6747412 DOI: 10.3390/ijms20174234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis (AD) is the most common inflammatory skin disease worldwide. It is a chronic, relapsing and pruritic skin disorder which results from epidermal barrier abnormalities and immune dysregulation, both modulated by environmental factors. AD is strongly associated with asthma and allergic rhinitis in the so-called 'atopic march.' Xenobiotic receptors and their mates are ligand-activated transcription factors expressed in the skin where they control cellular detoxification pathways. Moreover, they regulate the expression of genes in pathways involved in AD in epithelial cells and immune cells. Activation or overexpression of xenobiotic receptors in the skin can be deleterious or beneficial, depending on context, ligand and activation duration. Moreover, their impact on skin might be amplified by crosstalk among xenobiotic receptors and their mates. Because they are activated by a broad range of endogenous molecules, drugs and pollutants owing to their promiscuous ligand affinity, they have recently crystalized the attention of researchers, including in dermatology and especially in the AD field. This review examines the putative roles of these receptors in AD by critically evaluating the conditions under which the proteins and their ligands have been studied. This information should provide new insights into AD pathogenesis and ways to develop new therapeutic interventions.
Collapse
Affiliation(s)
- Deborah Minzaghi
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Petra Pavel
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
28
|
Storder J, Renard P, Arnould T. Update on the role of Sirtuin 3 in cell differentiation: A major metabolic target that can be pharmacologically controlled. Biochem Pharmacol 2019; 169:113621. [PMID: 31472127 DOI: 10.1016/j.bcp.2019.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023]
Abstract
Cell differentiation is a fundamental biological event in which a precursor stem cell is turning into a specialized somatic cell. It is thus crucial for the development, tissue turnover and regeneration in mammals. Among the numerous changes taking place in a cell during a differentiation programme, the biology of mitochondria, the central organelle mainly responsible for energy homeostasis and stress adaptation, is deeply modified. These modifications are now well recognized as taking an active part to the completion of the differentiation programme. Indeed, mitochondrial biogenesis and metabolic shift are observed during cell differentiation, adapting many syntheses, calcium homeostasis, ATP and reactive oxygen species production, to the needs. These mitochondrial functions are substantially regulated by the post-translational modifications of the mitochondrial proteins among which lysine acetylation is essential. This mitoacetylome is then globally controlled by the balance between spontaneous/enzymatically-catalysed protein acetylation and the NAD+-dependent deacetylation mediated by Sirtuin 3. This enzyme is now considered as a major regulator of the function of the organelle. Regarding the requirement of these mitochondrial adaptations, the subsequent growing interest for this enzyme recently extended to the investigation of the mechanisms driving cell differentiation. This review summarizes the currently available information about the significance of SIRT3 in cell differentiation in physio-pathological contexts. We also suggest a control of the differentiation-activated autophagy by SIRT3, a hypothesis supported by recent findings establishing a causal link between SIRT3 and autophagy. Eventually, an update on the present pharmacological modulators of SIRT3 in a context of cell differentiation is discussed.
Collapse
Affiliation(s)
- Julie Storder
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Thierry Arnould
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 61 rue de Bruxelles, 5000 Namur, Belgium.
| |
Collapse
|
29
|
Stout R, Birch-Machin M. Mitochondria's Role in Skin Ageing. BIOLOGY 2019; 8:E29. [PMID: 31083540 PMCID: PMC6627661 DOI: 10.3390/biology8020029] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 12/12/2022]
Abstract
Skin ageing is the result of a loss of cellular function, which can be further accelerated by external factors. Mitochondria have important roles in skin function, and mitochondrial damage has been found to accumulate with age in skin cells, but also in response to solar light and pollution. There is increasing evidence that mitochondrial dysfunction and oxidative stress are key features in all ageing tissues, including skin. This is directly linked to skin ageing phenotypes: wrinkle formation, hair greying and loss, uneven pigmentation and decreased wound healing. The loss of barrier function during skin ageing increases susceptibility to infection and affects wound healing. Therefore, an understanding of the mechanisms involved is important clinically and also for the development of antiageing skin care products.
Collapse
Affiliation(s)
- Roisin Stout
- Dermatological Sciences, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Mark Birch-Machin
- Dermatological Sciences, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
30
|
Bernaczek K, Mielańczyk A, Mielańczyk Ł, Neugebauer D, Grzywna ZJ. Self‐assembling water‐soluble polymethacrylate–MTX conjugates: The significance of macromolecules architecture on drug conjugation efficiency, the final shape of particles, and drug release. J Biomed Mater Res B Appl Biomater 2019; 107:2476-2487. [DOI: 10.1002/jbm.b.34338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/02/2019] [Accepted: 01/26/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Katarzyna Bernaczek
- Department of Physical Chemistry and Technology of Polymers, Faculty of ChemistrySilesian University of Technology M. Strzody 9 Street, 44‐100 Gliwice Poland
| | - Anna Mielańczyk
- Department of Physical Chemistry and Technology of Polymers, Faculty of ChemistrySilesian University of Technology M. Strzody 9 Street, 44‐100 Gliwice Poland
| | - Łukasz Mielańczyk
- Department of Histology and Cell PathologySchool of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia 41‐808 Zabrze Poland
| | - Dorota Neugebauer
- Department of Physical Chemistry and Technology of Polymers, Faculty of ChemistrySilesian University of Technology M. Strzody 9 Street, 44‐100 Gliwice Poland
| | - Zbigniew Jan Grzywna
- Department of Physical Chemistry and Technology of Polymers, Faculty of ChemistrySilesian University of Technology M. Strzody 9 Street, 44‐100 Gliwice Poland
| |
Collapse
|
31
|
Nugud A, Sandeep D, El-Serafi AT. Two faces of the coin: Minireview for dissecting the role of reactive oxygen species in stem cell potency and lineage commitment. J Adv Res 2018; 14:73-79. [PMID: 30023134 PMCID: PMC6047483 DOI: 10.1016/j.jare.2018.05.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/29/2022] Open
Abstract
Reactive oxygen species (ROS) are produced as by-products of several intracellular metabolic pathways and are reduced to more stable molecules by several protective pathways. The presence of high levels of ROS can be associated with disturbance of cell function and could lead to apoptosis. The presence of ROS within the physiological range has many effects on several signalling pathways. In stem cells, this role can range between keeping the potency of the naive stem cells to differentiation towards a certain lineage. In addition, the level of certain ROS would change according to the differentiation stage. For example, the presence of ROS can be associated with increasing the proliferation of mesenchymal stem cells, decreasing the potency of embryonic stem cells and adding to the genomic stability of induced pluripotent stem cells. ROS can enhance the differentiation of stem cells into cardiomyocytes, adipocytes, endothelial cells, keratinocytes and neurons. In the meantime, ROS inhibits osteogenesis and enhances the differentiation of cartilage to the hypertrophic stage, which is associated with chondrocyte death. Thus, ROS may form a link between naïve stem cells in the body and the environment. In addition, monitoring of ROS levels in vitro may help in tissue regeneration studies.
Collapse
Affiliation(s)
- Ahmed Nugud
- Sharjah Institute for Medical and Health Research, University of Sharjah, United Arab Emirates
| | - Divyasree Sandeep
- Sharjah Institute for Medical and Health Research, University of Sharjah, United Arab Emirates
| | - Ahmed T. El-Serafi
- Sharjah Institute for Medical and Health Research, University of Sharjah, United Arab Emirates
- Faculty of Medicine, Suez Canal University, Egypt
- Department of Clinical and Experimental Medicine, Linköping University, Sweden
| |
Collapse
|
32
|
Badolati N, Sommella E, Riccio G, Salviati E, Heintz D, Bottone S, Di Cicco E, Dentice M, Tenore G, Campiglia P, Stornaiuolo M, Novellino E. Annurca Apple Polyphenols Ignite Keratin Production in Hair Follicles by Inhibiting the Pentose Phosphate Pathway and Amino Acid Oxidation. Nutrients 2018; 10:nu10101406. [PMID: 30279339 PMCID: PMC6213762 DOI: 10.3390/nu10101406] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/17/2022] Open
Abstract
Patterned hair loss (PHL) affects around 50% of the adult population worldwide. The negative impact that this condition exerts on people’s life quality has boosted the appearance of over-the-counter products endowed with hair-promoting activity. Nutraceuticals enriched in polyphenols have been recently shown to promote hair growth and counteract PHL. Malus pumila Miller cv. Annurca is an apple native to Southern Italy presenting one of the highest contents of Procyanidin B2. We have recently shown that oral consumption of Annurca polyphenolic extracts (AAE) stimulates hair growth, hair number, hair weight and keratin content in healthy human subjects. Despite its activity, the analysis of the molecular mechanism behind its hair promoting effect is still partially unclear. In this work we performed an unprecedented metabolite analysis of hair follicles (HFs) in mice topically treated with AAE. The metabolomic profile, based on a high-resolution mass spectrometry approach, revealed that AAE re-programs murine HF metabolism. AAE acts by inhibiting several NADPH dependent reactions. Glutaminolysis, pentose phosphate pathway, glutathione, citrulline and nucleotide synthesis are all halted in vivo by the treatment of HFs with AAE. On the contrary, mitochondrial respiration, β-oxidation and keratin production are stimulated by the treatment with AAE. The metabolic shift induced by AAE spares amino acids from being oxidized, ultimately keeping them available for keratin biosynthesis.
Collapse
Affiliation(s)
- Nadia Badolati
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Eduardo Sommella
- Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy.
| | - Gennaro Riccio
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Emanuela Salviati
- Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy.
- PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy.
| | - Dimitri Heintz
- Plant Imaging and Mass Spectrometry, Institut de Biologie Moleculaire des Plantes, CNRS, Universite de Strasbourg, 67000 Strasbourg, France.
| | - Sara Bottone
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Emery Di Cicco
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80149 Naples, Italy.
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80149 Naples, Italy.
| | - Giancarlo Tenore
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Pietro Campiglia
- Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy.
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| |
Collapse
|
33
|
Aimee F, John S, Abby K, David J, Matilde M, Melina G, Daniel B, White Andrew C, Jessica Z, Nick G, Thomas G, Pankaj S, Denis E, Hilary C, Jared R, Heather C, Lowry William E. Lactate dehydrogenase activity drives hair follicle stem cell activation. Nat Cell Biol 2017; 19:1017-1026. [PMID: 28812580 PMCID: PMC5657543 DOI: 10.1038/ncb3575] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 06/19/2017] [Indexed: 12/21/2022]
Abstract
Although normally dormant, hair follicle stem cells (HFSCs) quickly become activated to divide during a new hair cycle. The quiescence of HFSCs is known to be regulated by a number of intrinsic and extrinsic mechanisms. Here we provide several lines of evidence to demonstrate that HFSCs utilize glycolytic metabolism and produce significantly more lactate than other cells in the epidermis. Furthermore, lactate generation appears to be critical for the activation of HFSCs as deletion of lactate dehydrogenase (Ldha) prevented their activation. Conversely, genetically promoting lactate production in HFSCs through mitochondrial pyruvate carrier 1 (Mpc1) deletion accelerated their activation and the hair cycle. Finally, we identify small molecules that increase lactate production by stimulating Myc levels or inhibiting Mpc1 carrier activity and can topically induce the hair cycle. These data suggest that HFSCs maintain a metabolic state that allows them to remain dormant and yet quickly respond to appropriate proliferative stimuli.
Collapse
Affiliation(s)
- Flores Aimee
- Department of Molecular Cell and Developmental Biology, UCLA
- Eli and Edythe Broad Center for Regenerative Medicine, UCLA
- Molecular Biology Institute, UCLA
| | - Schell John
- Department of Biochemistry, University of Utah
| | - Krall Abby
- Department of Molecular and Medical Pharmacology, UCLA
| | - Jelinek David
- Department of Molecular Cell and Developmental Biology, UCLA
| | - Miranda Matilde
- Department of Molecular Cell and Developmental Biology, UCLA
| | | | - Braas Daniel
- Department of Molecular and Medical Pharmacology, UCLA
- UCLA Metabolomics Center, UCLA
| | | | - Zhou Jessica
- Mork Family Department of Chemical Engineering, University of Southern California
| | - Graham Nick
- Department of Molecular and Medical Pharmacology, UCLA
- Mork Family Department of Chemical Engineering, University of Southern California
| | | | - Seth Pankaj
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Cancer Center, Harvard Medical School
| | - Evseenko Denis
- Broad Center for Regenerative Medicine, University of Southern California
| | - Coller Hilary
- Department of Molecular Cell and Developmental Biology, UCLA
- Jonsson Comprehensive Cancer Center, UCLA
- Eli and Edythe Broad Center for Regenerative Medicine, UCLA
- Molecular Biology Institute, UCLA
- Department of Biological Chemistry, UCLA
| | - Rutter Jared
- Department of Biochemistry, University of Utah
- Howard Hughes Medical Institute
| | - Christofk Heather
- Jonsson Comprehensive Cancer Center, UCLA
- Eli and Edythe Broad Center for Regenerative Medicine, UCLA
- Department of Biological Chemistry, UCLA
- Department of Molecular and Medical Pharmacology, UCLA
- UCLA Metabolomics Center, UCLA
| | - E Lowry William
- Department of Molecular Cell and Developmental Biology, UCLA
- Jonsson Comprehensive Cancer Center, UCLA
- Eli and Edythe Broad Center for Regenerative Medicine, UCLA
- Molecular Biology Institute, UCLA
| |
Collapse
|
34
|
Abstract
Mitochondria form dynamic networks which adapt to the environmental requirements of the cell. We investigated the aging process of these networks in human skin cells in vivo by multiphoton microscopy. A study on the age-dependency of the mitochondrial network in young and old volunteers revealed that keratinocytes in old skin establish a significantly more fragmented network with smaller and more compact mitochondrial clusters than keratinocytes in young skin. Furthermore, we investigated the mitochondrial network during differentiation processes of keratinocytes within the epidermis of volunteers. We observe a fragmentation similar to the age-dependent study in almost all parameters. These parallels raise questions about the dynamics of biophysical network structures during aging processes.
Collapse
|
35
|
Tang DYL, Ellis RA, Lovat PE. Prognostic Impact of Autophagy Biomarkers for Cutaneous Melanoma. Front Oncol 2016; 6:236. [PMID: 27882308 PMCID: PMC5101199 DOI: 10.3389/fonc.2016.00236] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/24/2016] [Indexed: 11/13/2022] Open
Abstract
Prognosis and survival for malignant melanoma is highly dependent on early diagnosis and treatment. While the American Joint Committee on Cancer (AJCC) criterion provides a means of staging melanomas and guiding treatment approaches, it is unable to identify the risk of disease progression of early stage tumors or provide reliable stratification for novel adjuvant therapies. The demand for credible prognostic/companion biomarkers able to identify high-risk melanoma subgroups as well as guide more effective personalized/precision-based therapy is therefore of paramount importance. Autophagy, the principle lysosomal-mediated process for the degradation/recycling of cellular debris, is a hot topic in cancer medicine, and observations of its deregulation in melanoma have brought its potential as a prognostic biomarker to the forefront of current research. Key regulatory proteins, including Atg8/microtubule-associated light chain 3 (LC3) and BECN1 (Beclin 1), have been proposed as potential prognostic biomarkers. However, given the dynamic nature of autophagy, their expression in vitro does not translate to their use as a prognostic biomarker for melanoma in vivo. We have recently identified the expression levels of Sequestosome1/SQSTM1 (p62) and activating molecule in Beclin 1-regulated autophagy protein 1 (AMBRA1) as novel independent prognostic biomarkers for early stage melanomas. While increasing followed by subsequent decreasing levels of p62 expression reflects the paradoxical role of autophagy in melanoma, expression levels additionally define a novel prognostic biomarker for AJCC stage II tumors. Conversely, loss of AMBRA1 in the epidermis overlying primary melanomas defines a novel prognostic biomarker for AJCC stage I tumors. Collectively, the definition of AMBRA1 and p62 as prognostic biomarkers for early stage melanomas provides novel and accurate means through which to identify tumors at risk of disease progression, facilitating earlier patient therapeutic intervention and stratification tools for novel personalized therapeutic approaches to improve clinical outcome.
Collapse
Affiliation(s)
- Diana Y L Tang
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK; Dermatology, The James Cook University Hospital, Middlesbrough, UK
| | - Robert A Ellis
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK; Dermatology, The James Cook University Hospital, Middlesbrough, UK
| | - Penny E Lovat
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University , Newcastle-upon-Tyne , UK
| |
Collapse
|
36
|
Tang Y, Luo B, Deng Z, Wang B, Liu F, Li J, Shi W, Xie H, Hu X, Li J. Mitochondrial aerobic respiration is activated during hair follicle stem cell differentiation, and its dysfunction retards hair regeneration. PeerJ 2016; 4:e1821. [PMID: 27168957 PMCID: PMC4860312 DOI: 10.7717/peerj.1821] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/26/2016] [Indexed: 12/26/2022] Open
Abstract
Background. Emerging research revealed the essential role of mitochondria in regulating stem/progenitor cell differentiation of neural progenitor cells, mesenchymal stem cells and other stem cells through reactive oxygen species (ROS), Notch or other signaling pathway. Inhibition of mitochondrial protein synthesis results in hair loss upon injury. However, alteration of mitochondrial morphology and metabolic function during hair follicle stem cells (HFSCs) differentiation and how they affect hair regeneration has not been elaborated upon. Methods. We compared the difference in mitochondrial morphology and activity between telogen bulge cells and anagen matrix cells. Expression levels of mitochondrial ROS and superoxide dismutase 2 (SOD2) were measured to evaluate redox balance. In addition, the level of pyruvate dehydrogenase kinase (PDK) and pyruvate dehydrogenase (PDH) were estimated to present the change in energetic metabolism during differentiation. To explore the effect of the mitochondrial metabolism on regulating hair regeneration, hair growth was observed after application of a mitochondrial respiratory inhibitor upon hair plucking. Results. During HFSCs differentiation, mitochondria became elongated with more abundant organized cristae and showed higher activity in differentiated cells. SOD2 was enhanced for redox balance with relatively stable ROS levels in differentiated cells. PDK increased in HFSCs while differentiated cells showed enhanced PDH, indicating that respiration switched from glycolysis to oxidative phosphorylation during differentiation. Inhibiting mitochondrial respiration in differentiated hair follicle cells upon hair plucking repressed hair regeneration in vivo. Conclusions. Upon HFSCs differentiation, mitochondria are elongated with more abundant cristae and show higher activity, accompanying with activated aerobic respiration in differentiated cells for higher energy supply. Also, dysfunction of mitochondrial respiration delays hair regeneration upon injury.
Collapse
Affiliation(s)
- Yan Tang
- Department of Dermatology, Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Binping Luo
- Department of Dermatology, The Third Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Ben Wang
- Department of Dermatology, Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Fangfen Liu
- Department of Dermatology, Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Jinmao Li
- Department of Dermatology, Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Wei Shi
- Department of Dermatology, Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Xingwang Hu
- Department of Infectious Diseases and Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University , Changsha, Hunan , China
| |
Collapse
|
37
|
Turkmenoglu FP, Kasirga UB, Celik HH. Ultra-structural hair alterations in Friedreich's ataxia: A scanning electron microscopic investigation. Microsc Res Tech 2015; 78:731-6. [PMID: 26138268 DOI: 10.1002/jemt.22531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/05/2015] [Accepted: 05/22/2015] [Indexed: 11/07/2022]
Abstract
Friedreich's ataxia (FRDA) is an autosomal recessive inherited disorder involving progressive damage to the central and peripheral nervous systems and cardiomyopathy. FRDA is caused by the silencing of the FXN gene and reduced levels of the encoded protein, frataxin. Frataxin is a mitochondrial protein that functions primarily in iron-sulfur cluster synthesis. Skin disorders including hair abnormalities have previously been reported in patients with mitochondrial disorders. However, to our knowledge, ultra-structural hair alterations in FRDA were not demonstrated. The purpose of this study was to determine ultra-structural alterations in the hairs of FRDA patients as well as carriers. Hair specimen from four patients, who are in different stages of the disease, and two carriers were examined by scanning electron microscope. Thin and weak hair follicles with absence of homogeneities on the cuticular surface, local damages of the cuticular layer, cuticular fractures were detected in both carriers and patients, but these alterations were much more prominent in the hair follicles of patients. In addition, erosions on the surface of the cuticle and local deep cavities just under the cuticular level were observed only in patients. Indistinct cuticular pattern, pores on the cuticular surface, and presence of concavities on the hair follicle were also detected in patients in later stages of the disease. According to our results, progression of the disease increased the alterations on hair structure. We suggest that ultra-structural alterations observed in hair samples might be due to oxidative stress caused by deficient frataxin expression in mitochondria.
Collapse
Affiliation(s)
- F Pinar Turkmenoglu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - U Baran Kasirga
- Department of Anatomy, Faculty of Medicine, Maltepe University, Ankara, Turkey
| | - H Hamdi Celik
- Department of Anatomy, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
38
|
Toufighi K, Yang JS, Luis NM, Aznar Benitah S, Lehner B, Serrano L, Kiel C. Dissecting the calcium-induced differentiation of human primary keratinocytes stem cells by integrative and structural network analyses. PLoS Comput Biol 2015; 11:e1004256. [PMID: 25946651 PMCID: PMC4422705 DOI: 10.1371/journal.pcbi.1004256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/25/2015] [Indexed: 12/19/2022] Open
Abstract
The molecular details underlying the time-dependent assembly of protein complexes in cellular networks, such as those that occur during differentiation, are largely unexplored. Focusing on the calcium-induced differentiation of primary human keratinocytes as a model system for a major cellular reorganization process, we look at the expression of genes whose products are involved in manually-annotated protein complexes. Clustering analyses revealed only moderate co-expression of functionally related proteins during differentiation. However, when we looked at protein complexes, we found that the majority (55%) are composed of non-dynamic and dynamic gene products ('di-chromatic'), 19% are non-dynamic, and 26% only dynamic. Considering three-dimensional protein structures to predict steric interactions, we found that proteins encoded by dynamic genes frequently interact with a common non-dynamic protein in a mutually exclusive fashion. This suggests that during differentiation, complex assemblies may also change through variation in the abundance of proteins that compete for binding to common proteins as found in some cases for paralogous proteins. Considering the example of the TNF-α/NFκB signaling complex, we suggest that the same core complex can guide signals into diverse context-specific outputs by addition of time specific expressed subunits, while keeping other cellular functions constant. Thus, our analysis provides evidence that complex assembly with stable core components and competition could contribute to cell differentiation.
Collapse
Affiliation(s)
- Kiana Toufighi
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Jae-Seong Yang
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Nuno Miguel Luis
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Salvador Aznar Benitah
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Institute for Research in Biomedicine, Parc Científic de Barcelona, Barcelona, Spain
- * E-mail: (SAB); (BL); (LS); (CK)
| | - Ben Lehner
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
- * E-mail: (SAB); (BL); (LS); (CK)
| | - Luis Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
- * E-mail: (SAB); (BL); (LS); (CK)
| | - Christina Kiel
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail: (SAB); (BL); (LS); (CK)
| |
Collapse
|
39
|
Rosengarten RD, Santhanam B, Fuller D, Katoh-Kurasawa M, Loomis WF, Zupan B, Shaulsky G. Leaps and lulls in the developmental transcriptome of Dictyostelium discoideum. BMC Genomics 2015; 16:294. [PMID: 25887420 PMCID: PMC4403905 DOI: 10.1186/s12864-015-1491-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/26/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Development of the soil amoeba Dictyostelium discoideum is triggered by starvation. When placed on a solid substrate, the starving solitary amoebae cease growth, communicate via extracellular cAMP, aggregate by tens of thousands and develop into multicellular organisms. Early phases of the developmental program are often studied in cells starved in suspension while cAMP is provided exogenously. Previous studies revealed massive shifts in the transcriptome under both developmental conditions and a close relationship between gene expression and morphogenesis, but were limited by the sampling frequency and the resolution of the methods. RESULTS Here, we combine the superior depth and specificity of RNA-seq-based analysis of mRNA abundance with high frequency sampling during filter development and cAMP pulsing in suspension. We found that the developmental transcriptome exhibits mostly gradual changes interspersed by a few instances of large shifts. For each time point we treated the entire transcriptome as single phenotype, and were able to characterize development as groups of similar time points separated by gaps. The grouped time points represented gradual changes in mRNA abundance, or molecular phenotype, and the gaps represented times during which many genes are differentially expressed rapidly, and thus the phenotype changes dramatically. Comparing developmental experiments revealed that gene expression in filter developed cells lagged behind those treated with exogenous cAMP in suspension. The high sampling frequency revealed many genes whose regulation is reproducibly more complex than indicated by previous studies. Gene Ontology enrichment analysis suggested that the transition to multicellularity coincided with rapid accumulation of transcripts associated with DNA processes and mitosis. Later development included the up-regulation of organic signaling molecules and co-factor biosynthesis. Our analysis also demonstrated a high level of synchrony among the developing structures throughout development. CONCLUSIONS Our data describe D. discoideum development as a series of coordinated cellular and multicellular activities. Coordination occurred within fields of aggregating cells and among multicellular bodies, such as mounds or migratory slugs that experience both cell-cell contact and various soluble signaling regimes. These time courses, sampled at the highest temporal resolution to date in this system, provide a comprehensive resource for studies of developmental gene expression.
Collapse
Affiliation(s)
- Rafael David Rosengarten
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Balaji Santhanam
- Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Danny Fuller
- Section of Cell and Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Mariko Katoh-Kurasawa
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - William F Loomis
- Section of Cell and Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Blaz Zupan
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Faculty of Computer and Information Science, University of Ljubljana, Trzaska cesta 25, Ljubljana, SI-1001, Slovenia.
| | - Gad Shaulsky
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
40
|
Feichtinger RG, Sperl W, Bauer JW, Kofler B. Mitochondrial dysfunction: a neglected component of skin diseases. Exp Dermatol 2014; 23:607-14. [PMID: 24980550 DOI: 10.1111/exd.12484] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2014] [Indexed: 12/20/2022]
Abstract
Aberrant mitochondrial structure and function influence tissue homeostasis and thereby contribute to multiple human disorders and ageing. Ten per cent of patients with primary mitochondrial disorders present skin manifestations that can be categorized into hair abnormalities, rashes, pigmentation abnormalities and acrocyanosis. Less attention has been paid to the fact that several disorders of the skin are linked to alterations of mitochondrial energy metabolism. This review article summarizes the contribution of mitochondrial pathology to both common and rare skin diseases. We explore the intriguing observation that a wide array of skin disorders presents with primary or secondary mitochondrial pathology and that a variety of molecular defects can cause dysfunctional mitochondria. Among them are mutations in mitochondrial- and nuclear DNA-encoded subunits and assembly factors of oxidative phosphorylation (OXPHOS) complexes; mutations in intermediate filament proteins involved in linking, moving and shaping of mitochondria; and disorders of mitochondrial DNA metabolism, fatty acid metabolism and heme synthesis. Thus, we assume that mitochondrial involvement is the rule rather than the exception in skin diseases. We conclude the article by discussing how improving mitochondrial function can be beneficial for aged skin and can be used as an adjunct therapy for certain skin disorders. Consideration of mitochondrial energy metabolism in the skin creates a new perspective for both dermatologists and experts in metabolic disease.
Collapse
Affiliation(s)
- René G Feichtinger
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | | | | | | |
Collapse
|