1
|
Kravitz SN, Ferris E, Love MI, Thomas A, Quinlan AR, Gregg C. Random allelic expression in the adult human body. Cell Rep 2023; 42:111945. [PMID: 36640362 PMCID: PMC10484211 DOI: 10.1016/j.celrep.2022.111945] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/17/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
Genes are typically assumed to express both parental alleles similarly, yet cell lines show random allelic expression (RAE) for many autosomal genes that could shape genetic effects. Thus, understanding RAE in human tissues could improve our understanding of phenotypic variation. Here, we develop a methodology to perform genome-wide profiling of RAE and biallelic expression in GTEx datasets for 832 people and 54 tissues. We report 2,762 autosomal genes with some RAE properties similar to randomly inactivated X-linked genes. We found that RAE is associated with rapidly evolving regions in the human genome, adaptive signaling processes, and genes linked to age-related diseases such as neurodegeneration and cancer. We define putative mechanistic subtypes of RAE distinguished by gene overlaps on sense and antisense DNA strands, aggregation in clusters near telomeres, and increased regulatory complexity and inputs compared with biallelic genes. We provide foundations to study RAE in human phenotypes, evolution, and disease.
Collapse
Affiliation(s)
- Stephanie N Kravitz
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA; Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Elliott Ferris
- Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Michael I Love
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alun Thomas
- Department of Internal Medicine, Epidemiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Aaron R Quinlan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Christopher Gregg
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA; Neurobiology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
2
|
|
3
|
Thamban T, Agarwaal V, Khosla S. Role of genomic imprinting in mammalian development. J Biosci 2020; 45:20. [PMID: 31965998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Non-mendelian inheritance refers to the group of phenomena and observations related to the inheritance of genetic information that cannot be merely explained by Mendel's laws of inheritance. Phenomenon including Genomic imprinting, X-chromosome Inactivation, Paramutations are some of the best studied examples of non-mendelian inheritance. Genomic imprinting is a process that reversibly marks one of the two homologous loci, chromosome or chromosomal sets during development, resulting in functional non-equivalence of gene expression. Genomic imprinting is known to occur in a few insect species, plants, and placental mammals. Over the years, studies on imprinted genes have contributed immensely to highlighting the role of epigenetic modifications and the epigenetic circuitry during gene expression and development. In this review, we discuss the phenomenon of genomic imprinting in mammals and the role it plays especially during fetoplacental growth and early development.
Collapse
Affiliation(s)
- Thushara Thamban
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | | | | |
Collapse
|
4
|
Thamban T, Sowpati DT, Pai V, Nithianandam V, Abe T, Shioi G, Mishra RK, Khosla S. The putative Neuronatin imprint control region is an enhancer that also regulates the Blcap gene. Epigenomics 2019; 11:251-266. [DOI: 10.2217/epi-2018-0060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aim: To investigate the regulatory potential of the Nnat second intron within the Nnat/Blcap micro-imprinted domain. Materials & methods: Mice with deletion of Nnat second intron at the endogenous Nnat/Blcap micro-imprinted domain were used to examine the effect of Nnat second intron on the transcriptional regulation of the Nnat and Blcap genes. Results & conclusion: Deletion of Nnat second intron affected Nnat expression in cis leading to the loss of Nnat expression from the active paternal allele. Nnat second intron was found to have the characteristics of an imprint control region including allele-specific DNA methylation and histone modifications and it also regulated the epigenetic profile of Nnat promoter by acting as an enhancer. Nnat second intron was also found to be regulating the expression of the Blcap transcripts.
Collapse
Affiliation(s)
- Thushara Thamban
- Laboratory of Mammalian Genetics, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India
- Graduate studies, Manipal University, Manipal, India
| | - Divya Tej Sowpati
- Laboratory of Mammalian Genetics, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, India
| | - Vaishnavo Pai
- Laboratory of Mammalian Genetics, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India
| | - Vanitha Nithianandam
- Laboratory of Mammalian Genetics, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Takaya Abe
- Laboratory for Animal Resources & Genetic Engineering, RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minami, Chuou-ku, Kobe 650-0047, Japan
| | - Go Shioi
- Laboratory for Animal Resources & Genetic Engineering, RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minami, Chuou-ku, Kobe 650-0047, Japan
| | - Rakesh K Mishra
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, India
| | - Sanjeev Khosla
- Laboratory of Mammalian Genetics, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India
| |
Collapse
|
5
|
Goovaerts T, Steyaert S, Vandenbussche CA, Galle J, Thas O, Van Criekinge W, De Meyer T. A comprehensive overview of genomic imprinting in breast and its deregulation in cancer. Nat Commun 2018; 9:4120. [PMID: 30297886 PMCID: PMC6175939 DOI: 10.1038/s41467-018-06566-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 09/13/2018] [Indexed: 12/21/2022] Open
Abstract
Genomic imprinting plays an important role in growth and development. Loss of imprinting (LOI) has been found in cancer, yet systematic studies are impeded by data-analytical challenges. We developed a methodology to detect monoallelically expressed loci without requiring genotyping data, and applied it on The Cancer Genome Atlas (TCGA, discovery) and Genotype-Tissue expression project (GTEx, validation) breast tissue RNA-seq data. Here, we report the identification of 30 putatively imprinted genes in breast. In breast cancer (TCGA), HM13 is featured by LOI and expression upregulation, which is linked to DNA demethylation. Other imprinted genes typically demonstrate lower expression in cancer, often associated with copy number variation and aberrant DNA methylation. Downregulation in cancer frequently leads to higher relative expression of the (imperfectly) silenced allele, yet this is not considered canonical LOI given the lack of (absolute) re-expression. In summary, our novel methodology highlights the massive deregulation of imprinting in breast cancer.
Collapse
Affiliation(s)
- Tine Goovaerts
- Department Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Sandra Steyaert
- Department Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Chari A Vandenbussche
- Department Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Jeroen Galle
- Department Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Olivier Thas
- Department Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Bioinformatics Institute Ghent - from Nucleotides to Networks (BIG N2N), Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Wim Van Criekinge
- Department Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Bioinformatics Institute Ghent - from Nucleotides to Networks (BIG N2N), Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Tim De Meyer
- Department Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
- Bioinformatics Institute Ghent - from Nucleotides to Networks (BIG N2N), Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| |
Collapse
|
6
|
Abstract
Epigenetic mechanisms that cause maternally and paternally inherited alleles to be expressed differently in offspring have the potential to radically change our understanding of the mechanisms that shape disease susceptibility, phenotypic variation, cell fate, and gene expression. However, the nature and prevalence of these effects
in vivo have been unclear and are debated. Here, I consider major new studies of epigenetic allelic effects in cell lines and primary cells and
in vivo. The emerging picture is that these effects take on diverse forms, and this review attempts to clarify the nature of the different forms that have been uncovered for genomic imprinting and random monoallelic expression (RME). I also discuss apparent discrepancies between
in vitro and
in vivo studies. Importantly, multiple studies suggest that allelic effects are prevalent and can be developmental stage- and cell type-specific. I propose some possible functions and consider roles for allelic effects within the broader context of gene regulatory networks, cellular diversity, and plasticity. Overall, the field is ripe for discovery and is in need of mechanistic and functional studies.
Collapse
|
7
|
Protein-Coding Genes' Retrocopies and Their Functions. Viruses 2017; 9:v9040080. [PMID: 28406439 PMCID: PMC5408686 DOI: 10.3390/v9040080] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 12/11/2022] Open
Abstract
Transposable elements, often considered to be not important for survival, significantly contribute to the evolution of transcriptomes, promoters, and proteomes. Reverse transcriptase, encoded by some transposable elements, can be used in trans to produce a DNA copy of any RNA molecule in the cell. The retrotransposition of protein-coding genes requires the presence of reverse transcriptase, which could be delivered by either non-long terminal repeat (non-LTR) or LTR transposons. The majority of these copies are in a state of “relaxed” selection and remain “dormant” because they are lacking regulatory regions; however, many become functional. In the course of evolution, they may undergo subfunctionalization, neofunctionalization, or replace their progenitors. Functional retrocopies (retrogenes) can encode proteins, novel or similar to those encoded by their progenitors, can be used as alternative exons or create chimeric transcripts, and can also be involved in transcriptional interference and participate in the epigenetic regulation of parental gene expression. They can also act in trans as natural antisense transcripts, microRNA (miRNA) sponges, or a source of various small RNAs. Moreover, many retrocopies of protein-coding genes are linked to human diseases, especially various types of cancer.
Collapse
|
8
|
A Mouse Model for Imprinting of the Human Retinoblastoma Gene. PLoS One 2015; 10:e0134672. [PMID: 26275142 PMCID: PMC4537222 DOI: 10.1371/journal.pone.0134672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/13/2015] [Indexed: 12/21/2022] Open
Abstract
The human RB1 gene is imprinted due to integration of the PPP1R26P1 pseudogene into intron 2. PPP1R26P1 harbors the gametic differentially methylated region of the RB1 gene, CpG85, which is methylated in the female germ line. The paternally unmethylated CpG85 acts as promoter for the alternative transcript 2B of RB1, which interferes with expression of full-length RB1 in cis. In mice, PPP1R26P1 is not present in the Rb1 gene and Rb1 is not imprinted. Assuming that the mechanisms responsible for genomic imprinting are conserved, we investigated if imprinting of mouse Rb1 can be induced by transferring human PPP1R26P1 into mouse Rb1. We generated humanized Rb1_PPP1R26P1 knock-in mice that pass human PPP1R26P1 through the mouse germ line. We found that the function of unmethylated CpG85 as promoter for an alternative Rb1 transcript and as cis-repressor of the main Rb1 transcript is maintained in mouse tissues. However, CpG85 is not recognized as a gametic differentially methylated region in the mouse germ line. DNA methylation at CpG85 is acquired only in tissues of neuroectodermal origin, independent of parental transmission of PPP1R26P1. Absence of CpG85 methylation in oocytes and sperm implies a failure of imprint methylation establishment in the germ line. Our results indicate that site-specific integration of a proven human gametic differentially methylated region is not sufficient for acquisition of DNA methylation in the mouse germ line, even if promoter function of the element is maintained. This suggests a considerable dependency of DNA methylation induction on the surrounding sequence. However, our model is suited to determine the cellular function of the alternative Rb1 transcript.
Collapse
|
9
|
Perez JD, Rubinstein ND, Fernandez DE, Santoro SW, Needleman LA, Ho-Shing O, Choi JJ, Zirlinger M, Chen SK, Liu JS, Dulac C. Quantitative and functional interrogation of parent-of-origin allelic expression biases in the brain. eLife 2015; 4:e07860. [PMID: 26140685 PMCID: PMC4512258 DOI: 10.7554/elife.07860] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/02/2015] [Indexed: 12/14/2022] Open
Abstract
The maternal and paternal genomes play different roles in mammalian brains as a result of genomic imprinting, an epigenetic regulation leading to differential expression of the parental alleles of some genes. Here we investigate genomic imprinting in the cerebellum using a newly developed Bayesian statistical model that provides unprecedented transcript-level resolution. We uncover 160 imprinted transcripts, including 41 novel and independently validated imprinted genes. Strikingly, many genes exhibit parentally biased--rather than monoallelic--expression, with different magnitudes according to age, organ, and brain region. Developmental changes in parental bias and overall gene expression are strongly correlated, suggesting combined roles in regulating gene dosage. Finally, brain-specific deletion of the paternal, but not maternal, allele of the paternally-biased Bcl-x, (Bcl2l1) results in loss of specific neuron types, supporting the functional significance of parental biases. These findings reveal the remarkable complexity of genomic imprinting, with important implications for understanding the normal and diseased brain.
Collapse
Affiliation(s)
- Julio D Perez
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | - Nimrod D Rubinstein
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | | | - Stephen W Santoro
- Neuroscience Program, Department of Zoology and Physiology, University of Wyoming, Laramie, United States
| | - Leigh A Needleman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | - Olivia Ho-Shing
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | - John J Choi
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | | | | | - Jun S Liu
- Department of Statistics, Harvard University, Cambridge, United States
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| |
Collapse
|
10
|
Cheong CY, Chng K, Ng S, Chew SB, Chan L, Ferguson-Smith AC. Germline and somatic imprinting in the nonhuman primate highlights species differences in oocyte methylation. Genome Res 2015; 25:611-23. [PMID: 25862382 PMCID: PMC4417110 DOI: 10.1101/gr.183301.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 03/04/2015] [Indexed: 12/22/2022]
Abstract
Genomic imprinting is an epigenetic mechanism resulting in parental allele-specific gene expression. Defects in normal imprinting are found in cancer, assisted reproductive technologies, and several human syndromes. In mouse models, germline-derived DNA methylation is shown to regulate imprinting. Though imprinting is largely conserved between mammals, species- and tissue-specific domains of imprinted expression exist. Using the cynomolgus macaque (Macaca fascicularis) to assess primate-specific imprinting, we present a comprehensive view of tissue-specific imprinted expression and DNA methylation at established imprinted gene clusters. For example, like mouse and unlike human, macaque IGF2R is consistently imprinted, and the PLAGL1, INPP5F transcript variant 2, and PEG3 imprinting control regions are not methylated in the macaque germline but acquire this post-fertilization. Methylome data from human early embryos appear to support this finding. These suggest fundamental differences in imprinting control mechanisms between primate species and rodents at some imprinted domains, with implications for our understanding of the epigenetic programming process in humans and its influence on disease.
Collapse
Affiliation(s)
- Clara Y Cheong
- Growth, Development and Metabolism Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A-STAR), Singapore 117609
| | - Keefe Chng
- Growth, Development and Metabolism Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A-STAR), Singapore 117609
| | - Shilen Ng
- Growth, Development and Metabolism Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A-STAR), Singapore 117609
| | - Siew Boom Chew
- Growth, Development and Metabolism Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A-STAR), Singapore 117609
| | - Louiza Chan
- Growth, Development and Metabolism Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A-STAR), Singapore 117609
| | - Anne C Ferguson-Smith
- Growth, Development and Metabolism Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A-STAR), Singapore 117609; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| |
Collapse
|
11
|
Prickett AR, Barkas N, McCole RB, Hughes S, Amante SM, Schulz R, Oakey RJ. Genome-wide and parental allele-specific analysis of CTCF and cohesin DNA binding in mouse brain reveals a tissue-specific binding pattern and an association with imprinted differentially methylated regions. Genome Res 2013; 23:1624-35. [PMID: 23804403 PMCID: PMC3787260 DOI: 10.1101/gr.150136.112] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 06/20/2013] [Indexed: 11/25/2022]
Abstract
DNA binding factors are essential for regulating gene expression. CTCF and cohesin are DNA binding factors with central roles in chromatin organization and gene expression. We determined the sites of CTCF and cohesin binding to DNA in mouse brain, genome wide and in an allele-specific manner with high read-depth ChIP-seq. By comparing our results with existing data for mouse liver and embryonic stem (ES) cells, we investigated the tissue specificity of CTCF binding sites. ES cells have fewer unique CTCF binding sites occupied than liver and brain, consistent with a ground-state pattern of CTCF binding that is elaborated during differentiation. CTCF binding sites without the canonical consensus motif were highly tissue specific. In brain, a third of CTCF and cohesin binding sites coincide, consistent with the potential for many interactions between cohesin and CTCF but also many instances of independent action. In the context of genomic imprinting, CTCF and/or cohesin bind to a majority but not all differentially methylated regions, with preferential binding to the unmethylated parental allele. Whether the parental allele-specific methylation was established in the parental germlines or post-fertilization in the embryo is not a determinant in CTCF or cohesin binding. These findings link CTCF and cohesin with the control regions of a subset of imprinted genes, supporting the notion that imprinting control is mechanistically diverse.
Collapse
Affiliation(s)
- Adam R. Prickett
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, SE1 9RT, United Kingdom
| | - Nikolaos Barkas
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, SE1 9RT, United Kingdom
| | - Ruth B. McCole
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, SE1 9RT, United Kingdom
| | - Siobhan Hughes
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, SE1 9RT, United Kingdom
| | - Samuele M. Amante
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, SE1 9RT, United Kingdom
| | - Reiner Schulz
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, SE1 9RT, United Kingdom
| | - Rebecca J. Oakey
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, SE1 9RT, United Kingdom
| |
Collapse
|
12
|
Steenpass L, Kanber D, Hiber M, Buiting K, Horsthemke B, Lohmann D. Human PPP1R26P1 functions as cis-repressive element in mouse Rb1. PLoS One 2013; 8:e74159. [PMID: 24019952 PMCID: PMC3760807 DOI: 10.1371/journal.pone.0074159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 07/26/2013] [Indexed: 01/26/2023] Open
Abstract
The human retinoblastoma gene (RB1) is imprinted; the mouse Rb1 gene is not. Imprinted expression of RB1 is due to differential methylation of a CpG island (CpG85), which is located in the pseudogene PPP1R26P1 in intron 2 of RB1. CpG85 serves as promoter for an alternative RB1 transcript, which is expressed from the unmethylated paternal allele only and is thought to suppress expression of the full-length RB1 transcript in cis. PPP1R26P1 contains another CpG island (CpG42), which is biallelically methylated. To determine the influence of PPP1R26P1 on RB1 expression, we generated an in vitro murine embryonic stem cell model by introducing human PPP1R26P1 into mouse Rb1. Next generation bisulfite sequencing of CpG85 and CpG42 revealed differences in their susceptibility to DNA methylation, gaining methylation at a median level of 4% and 18%, respectively. We showed binding of RNA polymerase II at and transcription from the unmethylated CpG85 in PPP1R26P1 and observed reduced expression of full-length Rb1 from the targeted allele. Our results identify human PPP1R26P1 as a cis-repressive element and support a connection between retrotransposition of PPP1R26P1 into human RB1 and the reduced expression of RB1 on the paternal allele.
Collapse
Affiliation(s)
- Laura Steenpass
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
- * E-mail:
| | - Deniz Kanber
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Michaela Hiber
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Karin Buiting
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Bernhard Horsthemke
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Dietmar Lohmann
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| |
Collapse
|
13
|
Niemczyk M, Ito Y, Huddleston J, Git A, Abu-Amero S, Caldas C, Moore G, Stojic L, Murrell A. Imprinted chromatin around DIRAS3 regulates alternative splicing of GNG12-AS1, a long noncoding RNA. Am J Hum Genet 2013; 93:224-35. [PMID: 23871723 PMCID: PMC3738830 DOI: 10.1016/j.ajhg.2013.06.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/19/2013] [Accepted: 06/07/2013] [Indexed: 12/21/2022] Open
Abstract
Imprinted gene clusters are regulated by long noncoding RNAs (lncRNAs), CCCTC binding factor (CTCF)-mediated boundaries, and DNA methylation. DIRAS3 (also known as ARH1 or NOEY1) is an imprinted gene encoding a protein belonging to the RAS superfamily of GTPases and is located within an intron of a lncRNA called GNG12-AS1. In this study, we investigated whether GNG12-AS1 is imprinted and coregulated with DIRAS3. We report that GNG12-AS1 is coexpressed with DIRAS3 in several tissues and coordinately downregulated with DIRAS3 in breast cancers. GNG12-AS1 has several splice variants, all of which initiate from a single transcription start site. In placenta tissue and normal cell lines, GNG12-AS1 is biallelically expressed but some isoforms are allele-specifically spliced. Cohesin plays a role in allele-specific splicing of GNG12-AS1. In breast cancer cell lines with loss of DIRAS3 imprinting, DIRAS3 and GNG12-AS1 are silenced in cis and the remaining GNG12-AS1 transcripts are predominantly monoallelic. The GNG12-AS1 locus, which includes DIRAS3, provides an example of imprinted cotranscriptional splicing and a potential model system for studying the long-range effects of CTCF-cohesin binding on splicing and transcriptional interference.
Collapse
Affiliation(s)
| | - Yoko Ito
- Cancer Research UK, Robinson Way, Cambridge CB2 0RE, UK
| | | | - Anna Git
- Cancer Research UK, Robinson Way, Cambridge CB2 0RE, UK
| | - Sayeda Abu-Amero
- Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Carlos Caldas
- Cancer Research UK, Robinson Way, Cambridge CB2 0RE, UK
| | - Gudrun E. Moore
- Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | | | - Adele Murrell
- Cancer Research UK, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
14
|
Nakabayashi K, Trujillo AM, Tayama C, Camprubi C, Yoshida W, Lapunzina P, Sanchez A, Soejima H, Aburatani H, Nagae G, Ogata T, Hata K, Monk D. Methylation screening of reciprocal genome-wide UPDs identifies novel human-specific imprinted genes. Hum Mol Genet 2011; 20:3188-97. [PMID: 21593219 DOI: 10.1093/hmg/ddr224] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nuclear transfer experiments undertaken in the mid-80's revealed that both maternal and paternal genomes are necessary for normal development. This is due to genomic imprinting, an epigenetic mechanism that results in parent-of-origin monoallelic expression of genes regulated by germline-derived allelic methylation. To date, ∼100 imprinted transcripts have been identified in mouse, with approximately two-thirds showing conservation in humans. It is currently unknown how many imprinted genes are present in humans, and to what extent these transcripts exhibit human-specific imprinted expression. This is mainly due to the fact that the majority of screens for imprinted genes have been undertaken in mouse, with subsequent analysis of the human orthologues. Utilizing extremely rare reciprocal genome-wide uniparental disomy samples presenting with Beckwith-Wiedemann and Silver-Russell syndrome-like phenotypes, we analyzed ∼0.1% of CpG dinculeotides present in the human genome for imprinted differentially methylated regions (DMRs) using the Illumina Infinium methylation27 BeadChip microarray. This approach identified 15 imprinted DMRs associated with characterized imprinted domains, and confirmed the maternal methylation of the RB1 DMR. In addition, we discovered two novel DMRs, first, one maternally methylated region overlapping the FAM50B promoter CpG island, which results in paternal expression of this retrotransposon. Secondly, we found a paternally methylated, bidirectional repressor located between maternally expressed ZNF597 and NAT15 genes. These three genes are biallelically expressed in mice due to lack of differential methylation, suggesting that these genes have become imprinted after the divergence of mouse and humans.
Collapse
Affiliation(s)
- Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
McCole RB, Loughran NB, Chahal M, Fernandes LP, Roberts RG, Fraternali F, O'Connell MJ, Oakey RJ. A case-by-case evolutionary analysis of four imprinted retrogenes. Evolution 2011; 65:1413-27. [PMID: 21166792 PMCID: PMC3107425 DOI: 10.1111/j.1558-5646.2010.01213.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 11/30/2010] [Indexed: 11/29/2022]
Abstract
Retroposition is a widespread phenomenon resulting in the generation of new genes that are initially related to a parent gene via very high coding sequence similarity. We examine the evolutionary fate of four retrogenes generated by such an event; mouse Inpp5f_v2, Mcts2, Nap1l5, and U2af1-rs1. These genes are all subject to the epigenetic phenomenon of parental imprinting. We first provide new data on the age of these retrogene insertions. Using codon-based models of sequence evolution, we show these retrogenes have diverse evolutionary trajectories, including divergence from the parent coding sequence under positive selection pressure, purifying selection pressure maintaining parent-retrogene similarity, and neutral evolution. Examination of the expression pattern of retrogenes shows an atypical, broad pattern across multiple tissues. Protein 3D structure modeling reveals that a positively selected residue in U2af1-rs1, not shared by its parent, may influence protein conformation. Our case-by-case analysis of the evolution of four imprinted retrogenes reveals that this interesting class of imprinted genes, while similar in regulation and sequence characteristics, follow very varied evolutionary paths.
Collapse
Affiliation(s)
- Ruth B McCole
- Department of Medical and Molecular Genetics, King's College LondonLondon SE1 9RT, United Kingdom
- E-mail:
| | - Noeleen B Loughran
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Faculty of Science and Health, Dublin City UniversityGlasnevin Dublin 9, Ireland
- Centre for Scientific Computing & Complex Systems modeling (SCI-SYM), Dublin City UniversityGlasnevin Dublin 9, Ireland
- E-mail:
| | - Mandeep Chahal
- Department of Medical and Molecular Genetics, King's College LondonLondon SE1 9RT, United Kingdom
- E-mail:
| | - Luis P Fernandes
- Randall Division of Cell and Molecular Biophysics, King's College LondonLondon SE1 1UL, United Kingdom
- E-mail:
| | - Roland G Roberts
- Department of Medical and Molecular Genetics, King's College LondonLondon SE1 9RT, United Kingdom
- E-mail:
| | - Franca Fraternali
- Randall Division of Cell and Molecular Biophysics, King's College LondonLondon SE1 1UL, United Kingdom
- E-mail:
| | - Mary J O'Connell
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Faculty of Science and Health, Dublin City UniversityGlasnevin Dublin 9, Ireland
- Centre for Scientific Computing & Complex Systems modeling (SCI-SYM), Dublin City UniversityGlasnevin Dublin 9, Ireland
- E-mail:
| | - Rebecca J Oakey
- Department of Medical and Molecular Genetics, King's College LondonLondon SE1 9RT, United Kingdom
- E-mail:
| |
Collapse
|
16
|
Cooper WN, Constância M. How genome-wide approaches can be used to unravel the remaining secrets of the imprintome. Brief Funct Genomics 2010; 9:315-28. [PMID: 20675687 DOI: 10.1093/bfgp/elq018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Genomic imprinting is the differential expression of genes according to their transmitting parent and is achieved by labelling of the two alleles with different epigenetic marks. The majority of described imprinted genes are present in clusters with coordinate regulation. Multiple mechanisms are known to regulate this differential expression, including repression of one allele by the action of cis-acting macro non-coding RNAs, insulator elements, allele specific histone modifications and DNA methylation. A hallmark of all imprinted regions described so far is the presence of one or more differentially methylated regions (DMRs). A DMR is a nucleotide sequence rich in CpG dinucleotides that is specifically methylated on one parental chromosome and unmethylated on the allele derived from the other parent. This parent-specific differential methylation may be imparted during spermatogenesis or oogenesis (as is the case for gametic DMRs) or may be acquired during embryogenesis (somatic DMRs). This review will describe the advantages and disadvantages of some of the techniques that can be used to compare epigenetic marks between parental chromosomes and to understand how these marks affect the 3D interactions and monoallelic expression at imprinted loci. Recent advances in sequencing technologies, in particular, provide exciting new opportunities to study imprinting. These analyses are likely to lead to the full characterization of the 'imprintome', which includes uncovering the totality of imprinted genes within a genome, their epigenetic landscape and unique features that render them resistant to epigenetic reprogramming in the early embryo.
Collapse
Affiliation(s)
- Wendy N Cooper
- Metabolic Research Laboratories, Department of Obstetrics and Gynaecology, The Rosie Hospital, Cambridge CB2 0SW, UK.
| | | |
Collapse
|
17
|
Abstract
Studies of large imprinted clusters, such as the Gnas locus, have revealed much about the significance of DNA methylation, transcription and other factors in the establishment and maintenance of imprinted gene expression. However, the complexity of such loci can make manipulating them and interpreting the results challenging. We review here a distinct class of imprinted genes, which have arisen by retrotransposition, and which have the potential to be used as models for the dissection of the fundamental features and mechanisms required for imprinting. They are also of interest in their own right, generating diversity in the transcriptome and providing raw material upon which selection can act.
Collapse
|