1
|
Liu C, Huang Y, Guo X, Yi C, Liu Q, Zhang K, Zhu C, Liu Y, Han F. Young retrotransposons and non-B DNA structures promote the establishment of dominant rye centromere in the 1RS.1BL fused centromere. THE NEW PHYTOLOGIST 2024; 241:607-622. [PMID: 37897058 DOI: 10.1111/nph.19359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
The fine centromere structure in Robertsonian wheat-rye translocation chromosomes exhibits variation among different translocation genotypes. Within extensively employed wheat-rye 1RS.1BL translocation lines in wheat breeding, their translocated chromosomes frequently display fused centromere. Nevertheless, the mechanism governing the functionality of the fused centromere in 1RS.1BL translocated chromosomes remains to be clarified. In this study, we investigated the fine centromere structure of the 1RS.1BL translocated chromosome through a combination of cytological and genomics methods. We found that only the rye-derived centromere exhibits functional activity, whether in breeding applications or artificially synthesized translocation chromosomes. The active rye-derived centromere had higher proportion of young full-length long terminal repeat retrotransposons (flLTR-RTs) and more stable non-B DNA structures, which may be beneficial toward transcription of centromeric repeats and CENH3 loading to maintain the activity of rye centromeres. High levels of DNA methylation and H3K9me2 were found in the inactive wheat-derived centromeres, suggesting that it may play a crucial role in maintaining the inactive status of the wheat centromere. Our works elucidate the fine structure of 1RS.1BL translocations and the potential mechanism of centromere inactivation in the fused centromere, contributing knowledge to the application of fused centromere in wheat breeding formation of new wheat-rye translocation lines.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhong Huang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianrui Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Congyang Yi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kaibiao Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Congle Zhu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Wasserzug Pash P, Karavani G, Reich E, Zecharyahu L, Kay Z, Bauman D, Mordechai-Daniel T, Imbar T, Klutstein M. Pre-pubertal oocytes harbor altered histone modifications and chromatin configuration. Front Cell Dev Biol 2023; 10:1060440. [PMID: 36704200 PMCID: PMC9871384 DOI: 10.3389/fcell.2022.1060440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Pre-pubertal oocytes are still dormant. They are arrested in a GV state and do not undergo meiotic divisions naturally. A multitude of molecular pathways are changed and triggered upon initiation of puberty. It is not yet clear which epigenetic events occur in oocytes upon pubertal transition, and how significant these epigenetic events may be. We evaluated epigenetic marker levels in mouse pre-pubertal and post-pubertal female oocytes. In addition, we evaluated H3K9me2 levels in human oocytes collected from fertility preservation patients, comparing the levels between pre-pubertal patients and post-pubertal patients. The chromatin structure shows a lower number of chromocenters in mouse post-pubertal oocytes in comparison to pre-pubertal oocytes. All heterochromatin marker levels checked (H3K9me2, H3K27me3, H4K20me1) significantly rise across the pubertal transition. Euchromatin markers vary in their behavior. While H3K4me3 levels rise with the pubertal transition, H3K27Ac levels decrease with the pubertal transition. Treatment with SRT1720 [histone deacetylase (HDAC) activator] or overexpression of heterochromatin factors does not lead to increased heterochromatin in pre-pubertal oocytes. However, treatment of pre-pubertal oocytes with follicle-stimulating hormone (FSH) for 24 h - changes their chromatin structure to a post-pubertal configuration, lowers the number of chromocenters and elevates their histone methylation levels, showing that hormones play a key role in chromatin regulation of pubertal transition. Our work shows that pubertal transition leads to reorganization of oocyte chromatin and elevation of histone methylation levels, thus advancing oocyte developmental phenotype. These results provide the basis for finding conditions for in-vitro maturation of pre-pubertal oocytes, mainly needed to artificially mature oocytes of young cancer survivors for fertility preservation purposes.
Collapse
Affiliation(s)
- Pe’era Wasserzug Pash
- Institute of Biomedical and Oral research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gilad Karavani
- Fertility Preservation Service, Department of Obstetrics and Gynecology, Hadassah Ein Kerem Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eli Reich
- Institute of Biomedical and Oral research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lital Zecharyahu
- Institute of Biomedical and Oral research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Zehava Kay
- Institute of Biomedical and Oral research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dvora Bauman
- Fertility Preservation Service, Department of Obstetrics and Gynecology, Hadassah Ein Kerem Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Talya Mordechai-Daniel
- Fertility Preservation Service, Department of Obstetrics and Gynecology, Hadassah Ein Kerem Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tal Imbar
- Fertility Preservation Service, Department of Obstetrics and Gynecology, Hadassah Ein Kerem Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel,*Correspondence: Tal Imbar, ; Michael Klutstein,
| | - Michael Klutstein
- Institute of Biomedical and Oral research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel,*Correspondence: Tal Imbar, ; Michael Klutstein,
| |
Collapse
|
3
|
Shimotohno A, Aki SS, Takahashi N, Umeda M. Regulation of the Plant Cell Cycle in Response to Hormones and the Environment. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:273-296. [PMID: 33689401 DOI: 10.1146/annurev-arplant-080720-103739] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Developmental and environmental signals converge on cell cycle machinery to achieve proper and flexible organogenesis under changing environments. Studies on the plant cell cycle began 30 years ago, and accumulated research has revealed many links between internal and external factors and the cell cycle. In this review, we focus on how phytohormones and environmental signals regulate the cell cycle to enable plants to cope with a fluctuating environment. After introducing key cell cycle regulators, we first discuss how phytohormones and their synergy are important for regulating cell cycle progression and how environmental factors positively and negatively affect cell division. We then focus on the well-studied example of stress-induced G2 arrest and view the current model from an evolutionary perspective. Finally, we discuss the mechanisms controlling the transition from the mitotic cycle to the endocycle, which greatly contributes to cell enlargement and resultant organ growth in plants.
Collapse
Affiliation(s)
- Akie Shimotohno
- Department of Biological Science, The University of Tokyo, Tokyo 113-0033, Japan
- Current affiliation: Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan;
| | - Shiori S Aki
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan; , ,
| | - Naoki Takahashi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan; , ,
| | - Masaaki Umeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan; , ,
| |
Collapse
|
4
|
Balzano E, Giunta S. Centromeres under Pressure: Evolutionary Innovation in Conflict with Conserved Function. Genes (Basel) 2020; 11:E912. [PMID: 32784998 PMCID: PMC7463522 DOI: 10.3390/genes11080912] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/22/2022] Open
Abstract
Centromeres are essential genetic elements that enable spindle microtubule attachment for chromosome segregation during mitosis and meiosis. While this function is preserved across species, centromeres display an array of dynamic features, including: (1) rapidly evolving DNA; (2) wide evolutionary diversity in size, shape and organization; (3) evidence of mutational processes to generate homogenized repetitive arrays that characterize centromeres in several species; (4) tolerance to changes in position, as in the case of neocentromeres; and (5) intrinsic fragility derived by sequence composition and secondary DNA structures. Centromere drive underlies rapid centromere DNA evolution due to the "selfish" pursuit to bias meiotic transmission and promote the propagation of stronger centromeres. Yet, the origins of other dynamic features of centromeres remain unclear. Here, we review our current understanding of centromere evolution and plasticity. We also detail the mutagenic processes proposed to shape the divergent genetic nature of centromeres. Changes to centromeres are not simply evolutionary relics, but ongoing shifts that on one side promote centromere flexibility, but on the other can undermine centromere integrity and function with potential pathological implications such as genome instability.
Collapse
Affiliation(s)
- Elisa Balzano
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, 00185 Roma, Italy;
| | - Simona Giunta
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
5
|
Quevedo R, Spreafico A, Bruce J, Danesh A, El Ghamrasni S, Giesler A, Hanna Y, Have C, Li T, Yang SYC, Zhang T, Asa SL, Haibe-Kains B, Krzyzanowska M, Smith AC, Singh S, Siu LL, Pugh TJ. Centromeric cohesion failure invokes a conserved choreography of chromosomal mis-segregations in pancreatic neuroendocrine tumor. Genome Med 2020; 12:38. [PMID: 32345369 PMCID: PMC7189550 DOI: 10.1186/s13073-020-00730-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/10/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Pancreatic neuroendocrine tumors (PANETs) are rare, slow growing cancers that often present with local and distant metastasis upon detection. PANETS contain distinct karyotypes, epigenetic dysregulation, and recurrent mutations in MEN1, ATRX, and DAXX (MAD+); however, the molecular basis of disease progression remains uncharacterized. METHODS We evaluated associations between aneuploidy and the MAD+ mutational state of 532 PANETs from 11 published genomic studies and 19 new cases using a combination of exome, targeted panel, shallow WGS, or RNA-seq. We mapped the molecular timing of MAD+ PANET progression using cellular fractions corrected for inferred tumor content. RESULTS In 287 PANETs with mutational data, MAD+ tumors always exhibited a highly recurrent signature of loss of heterozygosity (LOH) and copy-number alterations affecting 11 chromosomes, typically followed by genome doubling upon metastasis. These LOH chromosomes substantially overlap with those that undergo non-random mis-segregation due to ectopic CENP-A localization to flanking centromeric regions in DAXX-depleted cell lines. Using expression data from 122 PANETs, we found decreased gene expression in the regions immediately adjacent to the centromere in MAD+ PANETs. Using 43 PANETs from AACR GENIE, we inferred this signature to be preceded by mutations in MEN1, ATRX, and DAXX. We conducted a meta-analysis on 226 PANETs from 8 CGH studies to show an association of this signature with metastatic incidence. Our study shows that MAD+ tumors are a genetically diverse and aggressive subtype of PANETs that display extensive chromosomal loss after MAD+ mutation, which is followed by genome doubling. CONCLUSIONS We propose an evolutionary model for a subset of aggressive PANETs that is initiated by mutation of MEN1, ATRX, and DAXX, resulting in defects in centromere cohesion from ectopic CENP-A deposition that leads to selective loss of chromosomes and the LOH phenotype seen in late-stage metastatic PANETs. These insights aid in disease risk stratification and nominate potential therapeutic vulnerabilities to treat this disease.
Collapse
Affiliation(s)
- Rene Quevedo
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Suite 5-718, Toronto, Ontario, M5G 2M9, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Anna Spreafico
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Suite 5-718, Toronto, Ontario, M5G 2M9, Canada.,Division of Medical Oncology and Hematology, University of Toronto, Toronto, Ontario, Canada
| | - Jeff Bruce
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Suite 5-718, Toronto, Ontario, M5G 2M9, Canada
| | - Arnavaz Danesh
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Suite 5-718, Toronto, Ontario, M5G 2M9, Canada
| | - Samah El Ghamrasni
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Suite 5-718, Toronto, Ontario, M5G 2M9, Canada
| | - Amanda Giesler
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Suite 5-718, Toronto, Ontario, M5G 2M9, Canada
| | - Youstina Hanna
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Suite 5-718, Toronto, Ontario, M5G 2M9, Canada
| | - Cherry Have
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Tiantian Li
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Suite 5-718, Toronto, Ontario, M5G 2M9, Canada
| | - S Y Cindy Yang
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Suite 5-718, Toronto, Ontario, M5G 2M9, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Tong Zhang
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Suite 5-718, Toronto, Ontario, M5G 2M9, Canada.,Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Sylvia L Asa
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Suite 5-718, Toronto, Ontario, M5G 2M9, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Monika Krzyzanowska
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Suite 5-718, Toronto, Ontario, M5G 2M9, Canada
| | - Adam C Smith
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Simron Singh
- Susan Leslie Clinic for Neuroendocrine Cancer, Sunnybrook Odette Cancer Center, Toronto, Ontario, Canada
| | - Lillian L Siu
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Suite 5-718, Toronto, Ontario, M5G 2M9, Canada. .,Division of Medical Oncology and Hematology, University of Toronto, Toronto, Ontario, Canada.
| | - Trevor J Pugh
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada. .,Ontario Institute for Cancer Research, Toronto, Ontario, Canada. .,Princess Margaret Cancer Centre, University Health Network, 101 College Street, TMDT, Room 9-305, Toronto, Ontario, M5G 1L7, Canada.
| |
Collapse
|
6
|
Achrem M, Szućko I, Kalinka A. The epigenetic regulation of centromeres and telomeres in plants and animals. COMPARATIVE CYTOGENETICS 2020; 14:265-311. [PMID: 32733650 PMCID: PMC7360632 DOI: 10.3897/compcytogen.v14i2.51895] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/18/2020] [Indexed: 05/10/2023]
Abstract
The centromere is a chromosomal region where the kinetochore is formed, which is the attachment point of spindle fibers. Thus, it is responsible for the correct chromosome segregation during cell division. Telomeres protect chromosome ends against enzymatic degradation and fusions, and localize chromosomes in the cell nucleus. For this reason, centromeres and telomeres are parts of each linear chromosome that are necessary for their proper functioning. More and more research results show that the identity and functions of these chromosomal regions are epigenetically determined. Telomeres and centromeres are both usually described as highly condensed heterochromatin regions. However, the epigenetic nature of centromeres and telomeres is unique, as epigenetic modifications characteristic of both eu- and heterochromatin have been found in these areas. This specificity allows for the proper functioning of both regions, thereby affecting chromosome homeostasis. This review focuses on demonstrating the role of epigenetic mechanisms in the functioning of centromeres and telomeres in plants and animals.
Collapse
Affiliation(s)
- Magdalena Achrem
- Institute of Biology, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
- Molecular Biology and Biotechnology Center, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
| | - Izabela Szućko
- Institute of Biology, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
- Molecular Biology and Biotechnology Center, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
| | - Anna Kalinka
- Institute of Biology, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
- Molecular Biology and Biotechnology Center, University of Szczecin, Szczecin, PolandUniversity of SzczecinSzczecinPoland
| |
Collapse
|
7
|
Wu CC, Ekanem TI, Phan NN, Loan DTT, Hou SY, Lee KH, Wang CY. Gene signatures and prognostic analyses of the Tob/BTG pituitary tumor-transforming gene (PTTG) family in clinical breast cancer patients. Int J Med Sci 2020; 17:3112-3124. [PMID: 33173433 PMCID: PMC7646110 DOI: 10.7150/ijms.49652] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most common cancer type in females, and exploring the mechanisms of disease progression is playing a crucial role in the development of potential therapeutics. Pituitary tumor-transforming gene (PTTG) family members are well documented to be involved in cell-cycle regulation and mitosis, and contribute to cancer development by their involvement in cellular transformation in several tumor types. The critical roles of PTTG family members as crucial transcription factors in diverse types of cancers are recognized, but how they regulate breast cancer development still remains mostly unknown. Meanwhile, a holistic genetic analysis exploring whether PTTG family members regulate breast cancer progression via the cell cycle as well as the energy metabolism-related network is lacking. To comprehensively understand the messenger RNA expression profiles of PTTG proteins in breast cancer, we herein conducted a high-throughput screening approach by integrating information from various databases such as Oncomine, Kaplan-Meier Plotter, Metacore, ClueGo, and CluePedia. These useful databases and tools provide expression profiles and functional analyses. The present findings revealed that PTTG1 and PTTG3 are two important genes with high expressions in breast cancer relative to normal breast cells, implying their unique roles in breast cancer progression. Results of our coexpression analysis demonstrated that PTTG family genes were positively correlated with thiamine triphosphate (TTP), deoxycytidine triphosphate (dCTP) metabolic, glycolysis, gluconeogenesis, and cell-cycle related pathways. Meanwhile, through Cytoscape analyzed indicated that in addition to the metastasis markers AURKA, AURKB, and NDC80, many of the kinesin superfamily (KIF) members including KIFC1, KIF2C, KIF4A, KIF14, KIF20A, KIF23, were also correlated with PTTG family transcript expression. Finally, we revealed that high levels of PTTG1 and PTTG3 transcription predicted poor survival, which provided useful insights into prospective research of cancer associated with the PTTG family. Therefore, these members of the PTTG family would serve as distinct and essential prognostic biomarkers in breast cancer.
Collapse
Affiliation(s)
- Chung-Che Wu
- Division of Neurosurgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Titus Ime Ekanem
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan.,Department of Hematology, University of Uyo, Uyo 520221, Nigeria
| | - Nam Nhut Phan
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Do Thi Thuy Loan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Sz-Ying Hou
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Kuen-Haur Lee
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan.,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.,Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei 11031, Taiwan
| | - Chih-Yang Wang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan.,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
8
|
Hernández-Saavedra D, Strakovsky RS, Ostrosky-Wegman P, Pan YX. Epigenetic Regulation of Centromere Chromatin Stability by Dietary and Environmental Factors. Adv Nutr 2017; 8:889-904. [PMID: 29141972 PMCID: PMC5683002 DOI: 10.3945/an.117.016402] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The centromere is a genomic locus required for the segregation of the chromosomes during cell division. This chromosomal region together with pericentromeres has been found to be susceptible to damage, and thus the perturbation of the centromere could lead to the development of aneuploidic events. Metabolic abnormalities that underlie the generation of cancer include inflammation, oxidative stress, cell cycle deregulation, and numerous others. The micronucleus assay, an early clinical marker of cancer, has been shown to provide a reliable measure of genotoxic damage that may signal cancer initiation. In the current review, we will discuss the events that lead to micronucleus formation and centromeric and pericentromeric chromatin instability, as well transcripts emanating from these regions, which were previously thought to be inactive. Studies were selected in PubMed if they reported the effects of nutritional status (macro- and micronutrients) or environmental toxicant exposure on micronucleus frequency or any other chromosomal abnormality in humans, animals, or cell models. Mounting evidence from epidemiologic, environmental, and nutritional studies provides a novel perspective on the origination of aneuploidic events. Although substantial evidence exists describing the role that nutritional status and environmental toxicants have on the generation of micronuclei and other nuclear aberrations, limited information is available to describe the importance of macro- and micronutrients on centromeric and pericentromeric chromatin stability. Moving forward, studies that specifically address the direct link between nutritional status, excess, or deficiency and the epigenetic regulation of the centromere will provide much needed insight into the nutritional and environmental regulation of this chromosomal region and the initiation of aneuploidy.
Collapse
Affiliation(s)
| | | | | | - Yuan-Xiang Pan
- Division of Nutritional Sciences,,Department of Food Science and Human Nutrition,,Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Champaign, IL; and
| |
Collapse
|
9
|
Tasselli L, Xi Y, Zheng W, Tennen RI, Odrowaz Z, Simeoni F, Li W, Chua KF. SIRT6 deacetylates H3K18ac at pericentric chromatin to prevent mitotic errors and cellular senescence. Nat Struct Mol Biol 2016; 23:434-40. [PMID: 27043296 PMCID: PMC5826646 DOI: 10.1038/nsmb.3202] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 03/11/2016] [Indexed: 12/12/2022]
Abstract
Pericentric heterochromatin silencing at mammalian centromeres is essential for mitotic fidelity and genomic stability. Defective pericentric silencing has been observed in senescent cells, aging tissues, and mammalian tumors, but the underlying mechanisms and functional consequences of these defects are unclear. Here, we uncover an essential role of the human SIRT6 enzyme in pericentric transcriptional silencing, and we show that this function protects against mitotic defects, genomic instability, and cellular senescence. At pericentric heterochromatin, SIRT6 promotes deacetylation of a new substrate, residue K18 of histone H3 (H3K18), and inactivation of SIRT6 in cells leads to H3K18 hyperacetylation and aberrant accumulation of pericentric transcripts. Strikingly, depletion of these transcripts through RNA interference rescues the mitotic and senescence phenotypes of SIRT6-deficient cells. Together, our findings reveal a new function for SIRT6 and regulation of acetylated H3K18 at heterochromatin, and demonstrate the pathogenic role of deregulated pericentric transcription in aging- and cancer-related cellular dysfunction.
Collapse
Affiliation(s)
- Luisa Tasselli
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.,Geriatric Research, Education, and Clinical Center, Veterans Affairs, Palo Alto Health Care System, Palo Alto, California, USA
| | - Yuanxin Xi
- Division of Biostatistics, Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Wei Zheng
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.,Geriatric Research, Education, and Clinical Center, Veterans Affairs, Palo Alto Health Care System, Palo Alto, California, USA
| | - Ruth I Tennen
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Zaneta Odrowaz
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.,Geriatric Research, Education, and Clinical Center, Veterans Affairs, Palo Alto Health Care System, Palo Alto, California, USA
| | - Federica Simeoni
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.,Geriatric Research, Education, and Clinical Center, Veterans Affairs, Palo Alto Health Care System, Palo Alto, California, USA
| | - Wei Li
- Division of Biostatistics, Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Katrin F Chua
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.,Geriatric Research, Education, and Clinical Center, Veterans Affairs, Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|
10
|
González-Barrios R, Soto-Reyes E, Quiroz-Baez R, Fabián-Morales E, Díaz-Chávez J, Del Castillo V, Mendoza J, López-Saavedra A, Castro C, Herrera LA. Differential distribution of HP1 proteins after trichostatin a treatment influences chromosomal stability in HCT116 and WI-38 cells. Cell Div 2014; 9:6. [PMID: 25729403 PMCID: PMC4343280 DOI: 10.1186/s13008-014-0006-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/02/2014] [Indexed: 11/19/2022] Open
Abstract
Background Heterochromatin protein 1 (HP1) is important in the establishment, propagation, and maintenance of constitutive heterochromatin, especially at the pericentromeric region. HP1 might participate in recruiting and directing Mis12 to the centromere during interphase, and HP1 disruption or abrogation might lead to the loss of Mis12 incorporation into the kinetochore. Therefore, the centromere structure and kinetochore relaxation that are promoted in the absence of Mis12 could further induce chromosome instability (CIN) by reducing the capacity of the kinetochore to anchor microtubules. The aim of this study was to determine whether alterations in the localization of HP1 proteins induced by trichostatin A (TSA) modify Mis12 and Centromere Protein A (CENP-A) recruitment to the centromere and whether changes in the expression of HP1 proteins and H3K9 methylation at centromeric chromatin increase CIN in HCT116 and WI-38 cells. Methods HCT116 and WI-38 cells were cultured and treated with TSA to evaluate CIN after 24 and 48 h of exposure. Immunofluorescence, Western blot, ChIP, and RT-PCR assays were performed in both cell lines to evaluate the localization and abundance of HP1α/β, Mis12, and CENP-A and to evaluate chromatin modifications during interphase and mitosis, as well as after 24 and 48 h of TSA treatment. Results Our results show that the TSA-induced reduction in heterochromatic histone marks on centromeric chromatin reduced HP1 at the centromere in the non-tumoral WI-38 cells and that this reduction was associated with cell cycle arrest and CIN. However, in HCT116 cells, HP1 proteins, together with MIS12 and CENP-A, relocated to centromeric chromatin in response to TSA treatment, even after H3K9me3 depletion in the centromeric nucleosomes. The enrichment of HP1 and the loss of H3K9me3 were associated with an increase in CIN, suggesting a response mechanism at centromeric and pericentromeric chromatin that augments the presence of HP1 proteins in those regions, possibly ensuring chromosome segregation despite serious CIN. Our results provide new insight into the epigenetic landscape of centromeric chromatin and the role of HP1 proteins in CIN. Electronic supplementary material The online version of this article (doi:10.1186/s13008-014-0006-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), México, DF 14080 México
| | - Ernesto Soto-Reyes
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), México, DF 14080 México
| | - Ricardo Quiroz-Baez
- Departamento de Investigación Básica, Dirección de Investigación, Instituto Nacional de Geriatría, Secretaría de Salud, México, DF 10200 México
| | - Eunice Fabián-Morales
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), México, DF 14080 México
| | - José Díaz-Chávez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), México, DF 14080 México
| | - Victor Del Castillo
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), México, DF 14080 México
| | - Julia Mendoza
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), México, DF 14080 México
| | - Alejandro López-Saavedra
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), México, DF 14080 México
| | - Clementina Castro
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), México, DF 14080 México
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), México, DF 14080 México ; Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Ciudad Universitaria, Coyoacán, México, DF 04510 México
| |
Collapse
|
11
|
McGregor M, Hariharan N, Joyo AY, Margolis RL, Sussman MA. CENP-A is essential for cardiac progenitor cell proliferation. Cell Cycle 2013; 13:739-48. [PMID: 24362315 PMCID: PMC3979910 DOI: 10.4161/cc.27549] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Centromere protein A (CENP-A) is a homolog of histone H3 that epigenetically marks the heterochromatin of chromosomes. CENP-A is a critical component of the cell cycle machinery that is necessary for proper assembly of the mitotic spindle. However, the role of CENP-A in the heart and cardiac progenitor cells (CPCs) has not been previously studied. This study shows that CENP-A is expressed in CPCs and declines with age. Silencing CENP-A results in a decreased CPC growth rate, reduced cell number in phase G2/M of the cell cycle, and increased senescence associated β-galactosidase activity. Lineage commitment is not affected by CENP-A silencing, suggesting that cell cycle arrest induced by loss of CENP-A is a consequence of senescence and not differentiation. CENP-A knockdown does not exacerbate cell death in undifferentiated CPCs, but increases apoptosis upon lineage commitment. Taken together, these results indicate that CPCs maintain relatively high levels of CENP-A early in life, which is necessary for sustaining proliferation, inhibiting senescence, and promoting survival following differentiation of CPCs.
Collapse
Affiliation(s)
- Michael McGregor
- San Diego Heart Research Institute and the Department of Biology; San Diego State University; San Diego, CA USA
| | - Nirmala Hariharan
- San Diego Heart Research Institute and the Department of Biology; San Diego State University; San Diego, CA USA
| | - Anya Y Joyo
- San Diego Heart Research Institute and the Department of Biology; San Diego State University; San Diego, CA USA
| | | | - Mark A Sussman
- San Diego Heart Research Institute and the Department of Biology; San Diego State University; San Diego, CA USA
| |
Collapse
|
12
|
Lermontova I, Kuhlmann M, Friedel S, Rutten T, Heckmann S, Sandmann M, Demidov D, Schubert V, Schubert I. Arabidopsis kinetochore null2 is an upstream component for centromeric histone H3 variant cenH3 deposition at centromeres. THE PLANT CELL 2013; 25:3389-404. [PMID: 24014547 PMCID: PMC3809539 DOI: 10.1105/tpc.113.114736] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/17/2013] [Accepted: 08/14/2013] [Indexed: 05/18/2023]
Abstract
The centromeric histone H3 variant cenH3 is an essential centromeric protein required for assembly, maintenance, and proper function of kinetochores during mitosis and meiosis. We identified a kinetochore null2 (KNL2) homolog in Arabidopsis thaliana and uncovered features of its role in cenH3 loading at centromeres. We show that Arabidopsis KNL2 colocalizes with cenH3 and is associated with centromeres during all stages of the mitotic cell cycle, except from metaphase to mid-anaphase. KNL2 is regulated by the proteasome degradation pathway. The KNL2 promoter is mainly active in meristematic tissues, similar to the cenH3 promoter. A knockout mutant for KNL2 shows a reduced level of cenH3 expression and reduced amount of cenH3 protein at chromocenters of meristematic nuclei, anaphase bridges during mitosis, micronuclei in pollen tetrads, and 30% seed abortion. Moreover, knl2 mutant plants display reduced expression of suppressor of variegation 3-9 homologs2, 4, and 9 and reduced DNA methylation, suggesting an impact of KNL2 on the epigenetic environment for centromere maintenance.
Collapse
Affiliation(s)
- Inna Lermontova
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
- Address correspondence to
| | - Markus Kuhlmann
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
- Interdisciplinary Center for Crop Plant Research, Martin Luther University Halle-Wittenberg, D\x{2013}06120 Halle (Saale), Germany
| | - Swetlana Friedel
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
| | - Stefan Heckmann
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
| | - Michael Sandmann
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
| | - Dmitri Demidov
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
- Faculty of Science and Central European Institute of Technology, Masaryk University, CZ-61137 Brno, Czech Republic
| |
Collapse
|
13
|
Gabrielli B, Brown M. Histone deacetylase inhibitors disrupt the mitotic spindle assembly checkpoint by targeting histone and nonhistone proteins. Adv Cancer Res 2013; 116:1-37. [PMID: 23088867 DOI: 10.1016/b978-0-12-394387-3.00001-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Histone deacetylase inhibitors exhibit pleiotropic effects on cell functions, both in vivo and in vitro. One of the more dramatic effects of these drugs is their ability to disrupt normal mitotic division, which is a significant contributor to the anticancer properties of these drugs. The most important feature of the disrupted mitosis is that drug treatment overcomes the mitotic spindle assembly checkpoint and drives mitotic slippage, but in a manner that triggers apoptosis. The mechanism by which histone deacetylase inhibitors affect mitosis is now becoming clearer through the identification of a number of chromatin and nonchromatin protein targets that are critical to the regulation of normal mitotic progression and cell division. These proteins are directly regulated by acetylation and deacetylation, or in some cases indirectly through the acetylation of essential partner proteins. There appears to be little contribution from deacetylase inhibitor-induced transcriptional changes to the mitotic effects of these drugs. The overall mitotic phenotype of drug treatment appears to be the sum of these disrupted mechanisms.
Collapse
Affiliation(s)
- Brian Gabrielli
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia.
| | | |
Collapse
|