1
|
Li K, Li Y, Nakamura F. Identification and partial characterization of new cell density-dependent nucleocytoplasmic shuttling proteins and open chromatin. Sci Rep 2023; 13:21723. [PMID: 38066085 PMCID: PMC10709462 DOI: 10.1038/s41598-023-49100-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
The contact inhibition of proliferation (CIP) denotes the cell density-dependent inhibition of growth, and the loss of CIP represents a hallmark of cancer. However, the mechanism by which CIP regulates gene expression remains poorly understood. Chromatin is a highly complex structure consisting of DNA, histones, and trans-acting factors (TAFs). The binding of TAF proteins to specific chromosomal loci regulates gene expression. Therefore, profiling chromatin is crucial for gaining insight into the gene expression mechanism of CIP. In this study, using modified proteomics of TAFs bound to DNA, we identified a protein that shuttles between the nucleus and cytosol in a cell density-dependent manner. We identified TIPARP, PTGES3, CBFB, and SMAD4 as cell density-dependent nucleocytoplasmic shuttling proteins. In low-density cells, these proteins predominantly reside in the nucleus; however, upon reaching high density, they relocate to the cytosol. Given their established roles in gene regulation, our findings propose their involvement as CIP-dependent TAFs. We also identified and characterized potential open chromatin regions sensitive to changes in cell density. These findings provide insights into the modulation of chromatin structure by CIP.
Collapse
Affiliation(s)
- Kangjing Li
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China
| | - Yaxin Li
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China
| | - Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
2
|
Shidlovskii YV, Bylino OV, Shaposhnikov AV, Kachaev ZM, Lebedeva LA, Kolesnik VV, Amendola D, De Simone G, Formicola N, Schedl P, Digilio FA, Giordano E. Subunits of the PBAP Chromatin Remodeler Are Capable of Mediating Enhancer-Driven Transcription in Drosophila. Int J Mol Sci 2021; 22:ijms22062856. [PMID: 33799739 PMCID: PMC7999800 DOI: 10.3390/ijms22062856] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
The chromatin remodeler SWI/SNF is an important participant in gene activation, functioning predominantly by opening the chromatin structure on promoters and enhancers. Here, we describe its novel mode of action in which SWI/SNF factors mediate the targeted action of an enhancer. We studied the functions of two signature subunits of PBAP subfamily, BAP170 and SAYP, in Drosophila. These subunits were stably tethered to a transgene reporter carrying the hsp70 core promoter. The tethered subunits mediate transcription of the reporter in a pattern that is generated by enhancers close to the insertion site in multiple loci throughout the genome. Both tethered SAYP and BAP170 recruit the whole PBAP complex to the reporter promoter. However, we found that BAP170-dependent transcription is more resistant to the depletion of other PBAP subunits, suggesting that BAP170 may play a more critical role in establishing enhancer-dependent transcription.
Collapse
Affiliation(s)
- Yulii V. Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (O.V.B.); (A.V.S.); (Z.M.K.); (L.A.L.); (V.V.K.); (P.S.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
- Correspondence: (Y.V.S.); (F.A.D.); (E.G.)
| | - Oleg V. Bylino
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (O.V.B.); (A.V.S.); (Z.M.K.); (L.A.L.); (V.V.K.); (P.S.)
| | - Alexander V. Shaposhnikov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (O.V.B.); (A.V.S.); (Z.M.K.); (L.A.L.); (V.V.K.); (P.S.)
| | - Zaur M. Kachaev
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (O.V.B.); (A.V.S.); (Z.M.K.); (L.A.L.); (V.V.K.); (P.S.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Lyubov A. Lebedeva
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (O.V.B.); (A.V.S.); (Z.M.K.); (L.A.L.); (V.V.K.); (P.S.)
| | - Valeria V. Kolesnik
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (O.V.B.); (A.V.S.); (Z.M.K.); (L.A.L.); (V.V.K.); (P.S.)
| | - Diego Amendola
- Department of Biology, Università di Napoli Federico II, 80138 Naples, Italy; (D.A.); (G.D.S.)
| | - Giovanna De Simone
- Department of Biology, Università di Napoli Federico II, 80138 Naples, Italy; (D.A.); (G.D.S.)
- Department of Sciences, Roma Tre University, 00154 Rome, Italy
| | - Nadia Formicola
- Institute of Research on Terrestrial Ecosystems (IRET) National Research Council (CNR), 05010 Porano, Italy;
- Institut de Biologie Valrose iBV UMR CNRS 7277, Université Côte d’Azur, 06108 Nice, France
| | - Paul Schedl
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (O.V.B.); (A.V.S.); (Z.M.K.); (L.A.L.); (V.V.K.); (P.S.)
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | - Filomena Anna Digilio
- Institute of Research on Terrestrial Ecosystems (IRET) National Research Council (CNR), 05010 Porano, Italy;
- Correspondence: (Y.V.S.); (F.A.D.); (E.G.)
| | - Ennio Giordano
- Department of Biology, Università di Napoli Federico II, 80138 Naples, Italy; (D.A.); (G.D.S.)
- Correspondence: (Y.V.S.); (F.A.D.); (E.G.)
| |
Collapse
|
3
|
Liu J, Cai L, Sun W, Cheng R, Wang N, Jin L, Rozovsky S, Seiple IB, Wang L. Photocaged Quinone Methide Crosslinkers for Light‐Controlled Chemical Crosslinking of Protein–Protein and Protein–DNA Complexes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jun Liu
- University of California, San Francisco Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute 555 Mission Bay Blvd. South San Francisco CA 94158 USA
| | - Lingchao Cai
- University of California, San Francisco Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute 555 Mission Bay Blvd. South San Francisco CA 94158 USA
| | - Wei Sun
- University of California, San Francisco Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute 555 Mission Bay Blvd. South San Francisco CA 94158 USA
| | - Rujin Cheng
- University of Delaware Department of Chemistry and Biochemistry Newark DE 19716 USA
| | - Nanxi Wang
- University of California, San Francisco Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute 555 Mission Bay Blvd. South San Francisco CA 94158 USA
| | - Ling Jin
- University of Florida Department of Microbiology and Cell Science Gainesville FL 32611 USA
| | - Sharon Rozovsky
- University of Delaware Department of Chemistry and Biochemistry Newark DE 19716 USA
| | - Ian B. Seiple
- University of California, San Francisco Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute 555 Mission Bay Blvd. South San Francisco CA 94158 USA
| | - Lei Wang
- University of California, San Francisco Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute 555 Mission Bay Blvd. South San Francisco CA 94158 USA
| |
Collapse
|
4
|
Ueberschär M, Wang H, Zhang C, Kondo S, Aoki T, Schedl P, Lai EC, Wen J, Dai Q. BEN-solo factors partition active chromatin to ensure proper gene activation in Drosophila. Nat Commun 2019; 10:5700. [PMID: 31836703 PMCID: PMC6911014 DOI: 10.1038/s41467-019-13558-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 11/14/2019] [Indexed: 11/08/2022] Open
Abstract
The Drosophila genome encodes three BEN-solo proteins including Insensitive (Insv), Elba1 and Elba2 that possess activities in transcriptional repression and chromatin insulation. A fourth protein-Elba3-bridges Elba1 and Elba2 to form an ELBA complex. Here, we report comprehensive investigation of these proteins in Drosophila embryos. We assess common and distinct binding sites for Insv and ELBA and their genetic interdependencies. While Elba1 and Elba2 binding generally requires the ELBA complex, Elba3 can associate with chromatin independently of Elba1 and Elba2. We further demonstrate that ELBA collaborates with other insulators to regulate developmental patterning. Finally, we find that adjacent gene pairs separated by an ELBA bound sequence become less differentially expressed in ELBA mutants. Transgenic reporters confirm the insulating activity of ELBA- and Insv-bound sites. These findings define ELBA and Insv as general insulator proteins in Drosophila and demonstrate the functional importance of insulators to partition transcription units.
Collapse
Affiliation(s)
- Malin Ueberschär
- Department of Molecular Bioscience, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Huazhen Wang
- Department of Molecular Bioscience, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Chun Zhang
- Department of Molecular Bioscience, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- State Key Laboratory of Developmental Biology of Freshwater Fish College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shu Kondo
- Laboratory of Invertebrate Genetics, National Institute of Genetics, Mishima, Japan
| | - Tsutomu Aoki
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Eric C Lai
- Department of Developmental Biology, Memorial Sloan Kettering Institute, New York, NY, USA.
| | - Jiayu Wen
- Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| | - Qi Dai
- Department of Molecular Bioscience, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
5
|
Liu J, Cai L, Sun W, Cheng R, Wang N, Jin L, Rozovsky S, Seiple IB, Wang L. Photocaged Quinone Methide Crosslinkers for Light-Controlled Chemical Crosslinking of Protein-Protein and Protein-DNA Complexes. Angew Chem Int Ed Engl 2019; 58:18839-18843. [PMID: 31644827 DOI: 10.1002/anie.201910135] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/14/2019] [Indexed: 01/24/2023]
Abstract
Small-molecule crosslinkers are invaluable for probing biomolecular interactions and for crosslinking mass spectrometry. Existing chemical crosslinkers target only a small selection of amino acids, while conventional photo-crosslinkers target almost all residues non-specifically, complicating data analysis. Herein, we report photocaged quinone methide (PQM)-based crosslinkers that target nine nucleophilic residues through Michael addition, including Gln, Arg, and Asn, which are inaccessible to existing chemical crosslinkers. PQM crosslinkers were used in vitro, in Escherichia coli, and in mammalian cells to crosslink dimeric proteins and endogenous membrane receptors. The heterobifunctional crosslinker NHQM could crosslink proteins to DNA, for which few crosslinkers exist. The photoactivatable reactivity of these crosslinkers and their ability to target multiple amino acids will enhance the use of chemical crosslinking for studies of protein-protein and protein-DNA networks and for structural biology.
Collapse
Affiliation(s)
- Jun Liu
- University of California, San Francisco, Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, 555 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Lingchao Cai
- University of California, San Francisco, Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, 555 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Wei Sun
- University of California, San Francisco, Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, 555 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Rujin Cheng
- University of Delaware, Department of Chemistry and Biochemistry, Newark, DE, 19716, USA
| | - Nanxi Wang
- University of California, San Francisco, Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, 555 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Ling Jin
- University of Florida, Department of Microbiology and Cell Science, Gainesville, FL, 32611, USA
| | - Sharon Rozovsky
- University of Delaware, Department of Chemistry and Biochemistry, Newark, DE, 19716, USA
| | - Ian B Seiple
- University of California, San Francisco, Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, 555 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Lei Wang
- University of California, San Francisco, Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, 555 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| |
Collapse
|
6
|
Kyrchanova O, Wolle D, Sabirov M, Kurbidaeva A, Aoki T, Maksimenko O, Kyrchanova M, Georgiev P, Schedl P. Distinct Elements Confer the Blocking and Bypass Functions of the Bithorax Fab-8 Boundary. Genetics 2019; 213:865-876. [PMID: 31551239 PMCID: PMC6827379 DOI: 10.1534/genetics.119.302694] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/12/2019] [Indexed: 01/05/2023] Open
Abstract
Boundaries in the Drosophila bithorax complex (BX-C) enable the regulatory domains that drive parasegment-specific expression of the three Hox genes to function autonomously. The four regulatory domains (iab-5, iab-6, iab-7, and iab-8) that control the expression of the Abdominal-B (Abd-B) gene are located downstream of the transcription unit, and are delimited by the Mcp, Fab-6, Fab-7, and Fab-8 boundaries. These boundaries function to block cross talk between neighboring regulatory domains. In addition, three of the boundaries (Fab-6, Fab-7, and Fab-8) must also have bypass activity so that regulatory domains distal to the boundaries can contact the Abd-B promoter. In the studies reported here, we have undertaken a functional dissection of the Fab-8 boundary using a boundary-replacement strategy. Our studies indicate that the Fab-8 boundary has two separable subelements. The distal subelement blocks cross talk, but cannot support bypass. The proximal subelement has only minimal blocking activity but is able to mediate bypass. A large multiprotein complex, the LBC (large boundary complex), binds to sequences in the proximal subelement and contributes to its bypass activity. The same LBC complex has been implicated in the bypass activity of the Fab-7 boundary.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| | - Daniel Wolle
- Department of Molecular Biology, Princeton University, New Jersey 08544
| | - Marat Sabirov
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| | - Amina Kurbidaeva
- Department of Molecular Biology, Princeton University, New Jersey 08544
| | - Tsutomu Aoki
- Department of Molecular Biology, Princeton University, New Jersey 08544
| | - Oksana Maksimenko
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| | - Maria Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, New Jersey 08544
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
7
|
Policastro RA, Zentner GE. Enzymatic methods for genome-wide profiling of protein binding sites. Brief Funct Genomics 2019; 17:138-145. [PMID: 29028882 DOI: 10.1093/bfgp/elx030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Genome-wide mapping of protein-DNA interactions is a staple approach in many areas of modern molecular biology. Genome-wide profiles of protein-binding sites are most commonly generated by chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq). Although ChIP-seq has played a central role in studying genome-wide protein binding, recent work has highlighted systematic biases in the technique that warrant technical and interpretive caution and underscore the need for orthogonal techniques to both confirm the results of ChIP-seq studies and uncover new insights not accessible to ChIP. Several such techniques, based on genetic or immunological targeting of enzymatic activity to specific genomic loci, have been developed. Here, we review the development, applications and future prospects of these methods as complements to ChIP-based approaches and as powerful techniques in their own right.
Collapse
|
8
|
Fedotova A, Clendinen C, Bonchuk A, Mogila V, Aoki T, Georgiev P, Schedl P. Functional dissection of the developmentally restricted BEN domain chromatin boundary factor Insensitive. Epigenetics Chromatin 2019; 12:2. [PMID: 30602385 PMCID: PMC6317261 DOI: 10.1186/s13072-018-0249-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023] Open
Abstract
Background Boundaries in the Drosophila bithorax complex delimit autonomous regulatory domains that activate the parasegment (PS)-specific expression of homeotic genes. The Fab-7 boundary separates the iab-6 and iab-7 regulatory domains that control Abd-B expression in PS11 and PS12. This boundary is composed of multiple functionally redundant elements and has two key activities: it blocks crosstalk between iab-6 and iab-7 and facilitates boundary bypass. Results Here, we have used a structure–function approach to elucidate the biochemical properties and the in vivo activities of a conserved BEN domain protein, Insensitive, that is associated with Fab-7. Our biochemical studies indicate that in addition to the C-terminal BEN DNA-binding domain, Insv has two domains that mediate multimerization: one is a coiled-coil domain in the N-terminus, and the other is next to the BEN domain. These multimerization domains enable Insv to bind simultaneously to two canonical 8-bp recognition motifs, as well as to a ~ 100-bp non-canonical recognition sequence. They also mediate the assembly of higher-order multimers in the presence of DNA. Transgenic proteins lacking the N-terminal coiled-coil domain are compromised for boundary function in vivo. We also show that Insv interacts directly with CP190, a protein previously implicated in the boundary functions of several DNA-binding proteins, including Su(Hw) and dCTCF. While CP190 interaction is required for Insv binding to a subset of sites on polytene chromosomes, it has only a minor role in the boundary activity of Insv in the context of Fab-7. Conclusions The subdivision of eukaryotic chromosomes into discrete topological domains depends upon the pairing of boundary elements. In flies, pairing interactions are specific and typically orientation dependent. They occur in cis between neighboring heterologous boundaries, and in trans between homologous boundaries. One potential mechanism for ensuring pairing-interaction specificity is the use of sequence-specific DNA-binding proteins that can bind simultaneously with two or more recognition sequences. Our studies indicate that Insv can assemble into a multivalent DNA-binding complex and that the N-terminal Insv multimerization domain is critical for boundary function. Electronic supplementary material The online version of this article (10.1186/s13072-018-0249-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Fedotova
- Department of Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Chaevia Clendinen
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Artem Bonchuk
- Department of Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladic Mogila
- Department of Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Tsutomu Aoki
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Pavel Georgiev
- Department of Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
9
|
Singh AA, Schuurman K, Nevedomskaya E, Stelloo S, Linder S, Droog M, Kim Y, Sanders J, van der Poel H, Bergman AM, Wessels LF, Zwart W. Optimized ChIP-seq method facilitates transcription factor profiling in human tumors. Life Sci Alliance 2018; 2:e201800115. [PMID: 30620009 PMCID: PMC6311467 DOI: 10.26508/lsa.201800115] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 01/27/2023] Open
Abstract
This study presents an optimized ChIP-seq protocol to enhance transcription factor profiling in human tumours, enabling the analysis of highly challenging samples, including core needle biopsies. Chromatin immunoprecipitation (ChIP)-seq analyses of transcription factors in clinical specimens are challenging due to the technical limitations and low quantities of starting material, often resulting in low enrichments and poor signal-to-noise ratio. Here, we present an optimized protocol for transcription factor ChIP-seq analyses in human tissue, yielding an ∼100% success rate for all transcription factors analyzed. As proof of concept and to illustrate general applicability of the approach, human tissue from the breast, prostate, and endometrial cancers were analyzed. In addition to standard formaldehyde fixation, disuccinimidyl glutarate was included in the procedure, greatly increasing data quality. To illustrate the sensitivity of the optimized protocol, we provide high-quality ChIP-seq data for three independent factors (AR, FOXA1, and H3K27ac) from a single core needle prostate cancer biopsy specimen. In summary, double-cross-linking strongly improved transcription factor ChIP-seq quality on human tumor samples, further facilitating and enhancing translational research on limited amounts of tissue.
Collapse
Affiliation(s)
- Abhishek A Singh
- Divisions of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Karianne Schuurman
- Divisions of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ekaterina Nevedomskaya
- Divisions of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Suzan Stelloo
- Divisions of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Simon Linder
- Divisions of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marjolein Droog
- Divisions of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Yongsoo Kim
- Divisions of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Joyce Sanders
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Henk van der Poel
- Department of Urology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Andries M Bergman
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lodewyk Fa Wessels
- Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Faculty of Electrical Engineering, Mathematics, and Computer Science, Delft University of Technology, Delft, the Netherlands
| | - Wilbert Zwart
- Divisions of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
10
|
Copp W, O'Flaherty DK, Wilds CJ. Covalent capture of OGT's active site using engineered human-E. coli chimera and intrastrand DNA cross-links. Org Biomol Chem 2018; 16:9053-9058. [PMID: 30430154 DOI: 10.1039/c8ob02453g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
O 6-Alkylguanine DNA alkyltransferases (AGTs) are proteins found in most organisms whose role is to remove alkylation damage from the O6- and O4-positions of 2'-deoxyguanosine (dG) and thymidine (dT), respectively. Variations in active site residues between AGTs from different organisms leads to differences in repair proficiency: The human variant (hAGT) has a proclivity for removal of alkyl groups at the O6-position of guanine and the E. coli OGT protein has activity towards the O4-position of thymine. A chimeric protein (hOGT) that our laboratory has engineered with twenty of the active site residues mutated in hAGT to those found in OGT, exhibited activity towards a broader range of substrates relative to native OGT. Among the substrates that the hOGT protein was found to act upon was interstrand cross-linked DNA connected by an alkylene linkage at the O6-position of dG to the complementary strand. In the present study the activity of hOGT towards DNA containing alkylene intrastrand cross-links (IaCL) at the O6- and O4-positions respectively of dG and dT, which lack a phosphodiester linkage between the connected residues, was evaluated. The hOGT protein exhibited proficiency at removal of an alkylene linkage at the O6-atom of dG but the O4-position of dT was refractory to protein activity. The activity of the chimeric hOGT protein towards these IaCLs to prepare well defined DNA-protein cross-linked conjugates will enable mechanistic and high resolution structural studies to address the differences observed in the repair adeptness of O4-alkylated dT by the OGT protein relative to other AGT variants.
Collapse
Affiliation(s)
- William Copp
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec H4B1R6, Canada.
| | | | | |
Collapse
|
11
|
Yan W, Chen D, Smaczniak C, Engelhorn J, Liu H, Yang W, Graf A, Carles CC, Zhou DX, Kaufmann K. Dynamic and spatial restriction of Polycomb activity by plant histone demethylases. NATURE PLANTS 2018; 4:681-689. [PMID: 30104650 DOI: 10.1038/s41477-018-0219-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 07/12/2018] [Indexed: 05/23/2023]
Abstract
Targeted changes in chromatin state at thousands of genes are central to eukaryotic development. RELATIVE OF EARLY FLOWERING 6 (REF6) is a Jumonji-type histone demethylase that counteracts Polycomb repressive complex 2 (PRC2)-mediated gene silencing in plants and was reported to select its binding sites in a direct, sequence-specific manner1-3. Here we show that REF6 and its two close paralogues determine spatial 'boundaries' of the repressive histone H3K27me3 mark in the genome and control the tissue-specific release from PRC2-mediated gene repression. Targeted mutagenesis revealed that these histone demethylases display pleiotropic, redundant functions in plant development, several of which depend on trans factor-mediated recruitment. Thus, Jumonji-type histone demethylases restrict repressive chromatin domains and contribute to tissue-specific gene activation via complementary targeting mechanisms.
Collapse
Affiliation(s)
- Wenhao Yan
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Dijun Chen
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Cezary Smaczniak
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Engelhorn
- LPCV, CNRS, CEA, INRA, Université Grenoble Alpes, Grenoble, France
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Haiyang Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Wenjing Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Alexander Graf
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Cristel C Carles
- LPCV, CNRS, CEA, INRA, Université Grenoble Alpes, Grenoble, France
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Institute Plant Science Paris-Saclay (IPS2), CNRS, INRA, Université Paris-sud 11, Université Paris-Saclay, Orsay, France
| | - Kerstin Kaufmann
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
12
|
The BEN Domain Protein Insensitive Binds to the Fab-7 Chromatin Boundary To Establish Proper Segmental Identity in Drosophila. Genetics 2018; 210:573-585. [PMID: 30082280 DOI: 10.1534/genetics.118.301259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/25/2018] [Indexed: 01/07/2023] Open
Abstract
Boundaries (insulators) in the Drosophila bithorax complex (BX-C) delimit autonomous regulatory domains that orchestrate the parasegment (PS)-specific expression of the BX-C homeotic genes. The Fab-7 boundary separates the iab-6 and iab-7 regulatory domains, which control Abd-B expression in PS11 and PS12, respectively. This boundary is composed of multiple functionally redundant elements and has two key functions: it blocks cross talk between iab-6 and iab-7 and facilitates boundary bypass. Here, we show that two BEN domain protein complexes, Insensitive and Elba, bind to multiple sequences located in the Fab-7 nuclease hypersensitive regions. Two of these sequences are recognized by both Insv and Elba and correspond to a CCAATTGG palindrome. Elba also binds to a related CCAATAAG sequence, while Insv does not. However, the third Insv recognition sequences is ∼100 bp in length and contains the CCAATAAG sequence at one end. Both Insv and Elba are assembled into large complexes (∼420 and ∼265-290 kDa, respectively) in nuclear extracts. Using a sensitized genetic background, we show that the Insv protein is required for Fab-7 boundary function and that PS11 identity is not properly established in insv mutants. This is the first demonstration that a BEN domain protein is important for the functioning of an endogenous fly boundary.
Collapse
|
13
|
Streamlined discovery of cross-linked chromatin complexes and associated histone modifications by mass spectrometry. Proc Natl Acad Sci U S A 2016; 113:1784-9. [PMID: 26831069 DOI: 10.1073/pnas.1522750113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Posttranslational modifications (PTMs) are key contributors to chromatin function. The ability to comprehensively link specific histone PTMs with specific chromatin factors would be an important advance in understanding the functions and genomic targeting mechanisms of those factors. We recently introduced a cross-linked affinity technique, BioTAP-XL, to identify chromatin-bound protein interactions that can be difficult to capture with native affinity techniques. However, BioTAP-XL was not strictly compatible with similarly comprehensive analyses of associated histone PTMs. Here we advance BioTAP-XL by demonstrating the ability to quantify histone PTMs linked to specific chromatin factors in parallel with the ability to identify nonhistone binding partners. Furthermore we demonstrate that the initially published quantity of starting material can be scaled down orders of magnitude without loss in proteomic sensitivity. We also integrate hydrophilic interaction chromatography to mitigate detergent carryover and improve liquid chromatography-mass spectrometric performance. In summary, we greatly extend the practicality of BioTAP-XL to enable comprehensive identification of protein complexes and their local chromatin environment.
Collapse
|