1
|
Costa F, Beltrami E, Mellone S, Sacchetti S, Boggio E, Gigliotti CL, Stoppa I, Dianzani U, Rolla R, Giordano M. Genes and Microbiota Interaction in Monogenic Autoimmune Disorders. Biomedicines 2023; 11:1127. [PMID: 37189745 PMCID: PMC10135656 DOI: 10.3390/biomedicines11041127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Monogenic autoimmune disorders represent an important tool to understand the mechanisms behind central and peripheral immune tolerance. Multiple factors, both genetic and environmental, are known to be involved in the alteration of the immune activation/immune tolerance homeostasis typical of these disorders, making it difficult to control the disease. The latest advances in genetic analysis have contributed to a better and more rapid diagnosis, although the management remains confined to the treatment of clinical manifestations, as there are limited studies on rare diseases. Recently, the correlation between microbiota composition and the onset of autoimmune disorders has been investigated, thus opening up new perspectives on the cure of monogenic autoimmune diseases. In this review, we will summarize the main genetic features of both organ-specific and systemic monogenic autoimmune diseases, reporting on the available literature data on microbiota alterations in these patients.
Collapse
Affiliation(s)
- Federica Costa
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Eleonora Beltrami
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| | - Simona Mellone
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| | - Sara Sacchetti
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Elena Boggio
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Casimiro Luca Gigliotti
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Ian Stoppa
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
| | - Umberto Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| | - Roberta Rolla
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| | - Mara Giordano
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (F.C.); (S.S.); (E.B.); (C.L.G.); (I.S.); (R.R.); (M.G.)
- Maggiore della Carità University Hospital, 28100 Novara, Italy; (E.B.); (S.M.)
| |
Collapse
|
2
|
Cabana-Puig X, Mu Q, Lu R, Swartwout B, Abdelhamid L, Zhu J, Prakash M, Cecere TE, Wang Z, Callaway S, Sun S, Reilly CM, Ahmed S, Luo XM. Lactobacillus spp. act in synergy to attenuate splenomegaly and lymphadenopathy in lupus-prone MRL/ lpr mice. Front Immunol 2022; 13:923754. [PMID: 35967418 PMCID: PMC9368192 DOI: 10.3389/fimmu.2022.923754] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/06/2022] [Indexed: 11/27/2022] Open
Abstract
Commensal bacteria and the immune system have a close and strong relationship that maintains a balance to control inflammation. Alterations of the microbiota, known as dysbiosis, can direct reactivity to self-antigens not only in the intestinal mucosa but also at the systemic level. Our laboratory previously reported gut dysbiosis, particularly lower abundance of bacteria in the family Lactobacillaceae, in lupus-prone MRL/lpr mice, a model of systemic autoimmunity. Restoring the microbiota with a mix of 5 different Lactobacillus species (spp.), L. reuteri, L. oris, L. johnsonii, L. gasseri and L. rhamnosus, attenuated lupus-liked clinical signs, including splenomegaly and lymphadenopathy. However, our understanding of the mechanism was limited. In this study, we first investigated the effects of individual species. Surprisingly, none of the species individually recapitulated the benefits of the mix. Instead, Lactobacillus spp. acted synergistically to attenuate splenomegaly and renal lymphadenopathy through secreted factors and a CX3CR1-dependent mechanism. Interestingly, oral administration of MRS broth exerted the same benefits likely through increasing the relative abundance of endogenous Lactobacillus spp. Mechanistically, we found increased percentages of FOXP3-negative type 1 regulatory T cells with administration of the mix in both spleen and mesenteric lymph nodes. In addition, oral gavage of Lactobacillus spp. decreased the percentage of central memory T cells while increasing that of effector memory T cells in the lymphoid organs. Furthermore, a decreased percentage of double negative T cells was observed in the spleen with the mix. These results suggest that Lactobacillus spp. might act on T cells to attenuate splenomegaly and lymphadenopathy. Together, this study advances our understanding of how Lactobacillus spp. attenuate lupus in MRL/lpr mice. The synergistic action of these bacteria suggests that multiple probiotic bacteria in combination may dampen systemic autoimmunity and benefit lupus patients.
Collapse
Affiliation(s)
- Xavier Cabana-Puig
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Qinghui Mu
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Ran Lu
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Brianna Swartwout
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Roanoke, VA, United States
| | - Leila Abdelhamid
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Jing Zhu
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Meeta Prakash
- Carilion School of Medicine, Virginia Tech, Roanoke, VA, United States
| | - Thomas E. Cecere
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Zhuang Wang
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Sabrina Callaway
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Sha Sun
- Department of Development and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | | | - S. Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
3
|
Castro-Alves VC, Nascimento JROD. Size matters: TLR4-mediated effects of α-(1,5)-linear arabino-oligosaccharides in macrophage-like cells depend on their degree of polymerization. Food Res Int 2021; 141:110093. [PMID: 33641969 DOI: 10.1016/j.foodres.2020.110093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 12/09/2020] [Accepted: 12/27/2020] [Indexed: 02/08/2023]
Abstract
Linear arabino-oligosaccharides (LAOS) produced from controlled enzymatic hydrolysis of arabinans from sugar beet are well-known because of their chain-length dependent prebiotic effects. However, it is not clear if these α-(1,5)-linked arabinose oligosaccharides can interact directly with immune system cells, as well as if its degree of polymerization (DP) influences possible biological effects. Four high purity LAOS with distinct DP were tested in macrophage-like cells exposed or not to LPS. Results shown that LAOS interact with Toll-like receptor (TLR) 4 in a chain length-dependent manner. LAOS with higher DP induce stimulatory effects mainly through the TLR4/MyD88 pathway, thereby enhancing the release of tumor necrosis factor alpha (TNF-α), interleukin (IL-) 1β, 6, 12, and chemokines including MCP-1, RANTES, IL-8, and IP-10. Notably, LAOS with lower DP appears to have an opposite effect to those counterparts with higher DP, as they does not induce the secretion of cytokines and chemokines in macrophages-like cells, while also inhibit TLR4-mediated effects induced by both lipopolysaccharide and LAOS with higher DP. These findings provide not only insights into potential biological effects of LAOS, but also reveal that controlled enzymatic hydrolysis of sugar beet arabinans may lead to dietary oligosaccharides with desired biological properties.
Collapse
Affiliation(s)
- Victor Costa Castro-Alves
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), Research, Innovation and Dissemination Centers, São Paulo Research Foundation (CEPID-FAPESP), São Paulo, Brazil.
| | - João Roberto Oliveira do Nascimento
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), Research, Innovation and Dissemination Centers, São Paulo Research Foundation (CEPID-FAPESP), São Paulo, Brazil; Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
4
|
CD16 + monocytes give rise to CD103 +RALDH2 +TCF4 + dendritic cells with unique transcriptional and immunological features. Blood Adv 2019; 2:2862-2878. [PMID: 30381402 DOI: 10.1182/bloodadvances.2018020123] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/03/2018] [Indexed: 12/23/2022] Open
Abstract
Classical CD16- vs intermediate/nonclassical CD16+ monocytes differ in their homing potential and biological functions, but whether they differentiate into dendritic cells (DCs) with distinct contributions to immunity against bacterial/viral pathogens remains poorly investigated. Here, we employed a systems biology approach to identify clinically relevant differences between CD16+ and CD16- monocyte-derived DCs (MDDCs). Although both CD16+ and CD16- MDDCs acquire classical immature/mature DC markers in vitro, genome-wide transcriptional profiling revealed unique molecular signatures for CD16+ MDDCs, including adhesion molecules (ITGAE/CD103), transcription factors (TCF7L2/TCF4), and enzymes (ALDH1A2/RALDH2), whereas CD16- MDDCs exhibit a CDH1/E-cadherin+ phenotype. Of note, lipopolysaccharides (LPS) upregulated distinct transcripts in CD16+ (eg, CCL8, SIGLEC1, MIR4439, SCIN, interleukin [IL]-7R, PLTP, tumor necrosis factor [TNF]) and CD16- MDDCs (eg, MMP10, MMP1, TGM2, IL-1A, TNFRSF11A, lysosomal-associated membrane protein 1, MMP8). Also, unique sets of HIV-modulated genes were identified in the 2 subsets. Further gene set enrichment analysis identified canonical pathways that pointed to "inflammation" as the major feature of CD16+ MDDCs at immature stage and on LPS/HIV exposure. Finally, functional validations and meta-analysis comparing the transcriptome of monocyte and MDDC subsets revealed that CD16+ vs CD16- monocytes preserved their superior ability to produce TNF-α and CCL22, as well as other sets of transcripts (eg, TCF4), during differentiation into DC. These results provide evidence that monocyte subsets are transcriptionally imprinted/programmed with specific differentiation fates, with intermediate/nonclassical CD16+ monocytes being precursors for pro-inflammatory CD103+RALDH2+TCF4+ DCs that may play key roles in mucosal immunity homeostasis/pathogenesis. Thus, alterations in the CD16+ /CD16- monocyte ratios during pathological conditions may dramatically influence the quality of MDDC-mediated immunity.
Collapse
|
5
|
Cabrera-Perez J, Badovinac VP, Griffith TS. Enteric immunity, the gut microbiome, and sepsis: Rethinking the germ theory of disease. Exp Biol Med (Maywood) 2016; 242:127-139. [PMID: 27633573 DOI: 10.1177/1535370216669610] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sepsis is a poorly understood syndrome of systemic inflammation responsible for hundreds of thousands of deaths every year. The integrity of the gut epithelium and competence of adaptive immune responses are notoriously compromised during sepsis, and the prevalent assumption in the scientific and medical community is that intestinal commensals have a detrimental role in the systemic inflammation and susceptibility to nosocomial infections seen in critically ill, septic patients. However, breakthroughs in the last decade provide strong credence to the idea that our mucosal microbiome plays an essential role in adaptive immunity, where a human host and its prokaryotic colonists seem to exist in a carefully negotiated armistice with compromises and benefits that go both ways. In this review, we re-examine the notion that intestinal contents are the driving force of critical illness. An overview of the interaction between the microbiome and the immune system is provided, with a special focus on the impact of commensals in priming and the careful balance between normal intestinal flora and pathogenic organisms residing in the gut microbiome. Based on the data in hand, we hypothesize that sepsis induces imbalances in microbial populations residing in the gut, along with compromises in epithelial integrity. As a result, normal antigen sampling becomes impaired, and proliferative cues are intermixed with inhibitory signals. This situates the microbiome, the gut, and its complex immune network of cells and bacteria, at the center of aberrant immune responses during and after sepsis.
Collapse
Affiliation(s)
- Javier Cabrera-Perez
- 1 Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota Medical School, Minneapolis, MN 55455, USA.,2 Medical Scientist Training Program, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Vladimir P Badovinac
- 3 Department of Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.,4 Interdisciplinary Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Thomas S Griffith
- 1 Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota Medical School, Minneapolis, MN 55455, USA.,5 Department of Urology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.,6 Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.,7 Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA.,8 Minneapolis VA Health Care System, Minneapolis, MN 55417, USA
| |
Collapse
|
6
|
The Wnt5a-Ror2 axis promotes the signaling circuit between interleukin-12 and interferon-γ in colitis. Sci Rep 2015; 5:10536. [PMID: 26030277 PMCID: PMC4450756 DOI: 10.1038/srep10536] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/23/2015] [Indexed: 01/30/2023] Open
Abstract
Wnt5a, which regulates various cellular functions in Wnt signaling, is involved in inflammatory responses, however the mechanism is not well understood. We examined the role of Wnt5a signaling in intestinal immunity using conditional knockout mice for Wnt5a and its receptor Ror2. Removing Wnt5a or Ror2 in adult mice suppressed dextran sodium sulfate (DSS)-induced colitis. It also attenuated the DSS-dependent increase in inflammatory cytokine production and decreased interferon-γ (IFN-γ)-producing CD4+ Th1 cell numbers in the colon. Wnt5a was highly expressed in stromal fibroblasts in ulcerative lesions in the DSS-treated mice and inflammatory bowel disease patients. Dendritic cells (DCs) isolated from the colon of Wnt5a and Ror2 deficient mice reduced the ability to differentiate naïve CD4+ T cells to IFN-γ-producing CD4+ Th1 cells. In vitro experiments demonstrated that the Wnt5a-Ror2 signaling axis augmented the DCs priming effect of IFN-γ, leading to enhanced lipopolysaccharide (LPS)-induced interleukin (IL)-12 expression. Taken together, these results suggest that Wnt5a promotes IFN-γ signaling, leading to IL-12 expression in DCs, and thereby inducing Th1 differentiation in colitis.
Collapse
|
7
|
Wang G, van Driel BJ, Liao G, O’Keeffe MS, Halibozek PJ, Flipse J, Yigit B, Azcutia V, Luscinskas FW, Wang N, Terhorst C. Migration of myeloid cells during inflammation is differentially regulated by the cell surface receptors Slamf1 and Slamf8. PLoS One 2015; 10:e0121968. [PMID: 25799045 PMCID: PMC4370648 DOI: 10.1371/journal.pone.0121968] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/05/2015] [Indexed: 01/22/2023] Open
Abstract
Previous studies have demonstrated that the cell surface receptor Slamf1 (CD150) is requisite for optimal NADPH-oxidase (Nox2) dependent reactive oxygen species (ROS) production by phagocytes in response to Gram- bacteria. By contrast, Slamf8 (CD353) is a negative regulator of ROS in response to Gram+ and Gram- bacteria. Employing in vivo migration after skin sensitization, induction of peritonitis, and repopulation of the small intestine demonstrates that in vivo migration of Slamf1-/- dendritic cells and macrophages is reduced, as compared to wt mice. By contrast, in vivo migration of Slamf8-/- dendritic cells, macrophages and neutrophils is accelerated. These opposing effects of Slamf1 and Slamf8 are cell-intrinsic as judged by in vitro migration in transwell chambers in response to CCL19, CCL21 or CSF-1. Importantly, inhibiting ROS production of Slamf8-/- macrophages by diphenyleneiodonium chloride blocks this in vitro migration. We conclude that Slamf1 and Slamf8 govern ROS–dependent innate immune responses of myeloid cells, thus modulating migration of these cells during inflammation in an opposing manner.
Collapse
Affiliation(s)
- Guoxing Wang
- Department of Medicine, Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Boaz J. van Driel
- Department of Medicine, Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gongxian Liao
- Department of Medicine, Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael S. O’Keeffe
- Department of Medicine, Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peter J. Halibozek
- Department of Medicine, Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jacky Flipse
- Department of Medicine, Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Burcu Yigit
- Department of Medicine, Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Veronica Azcutia
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Francis W. Luscinskas
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ninghai Wang
- Department of Medicine, Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Cox Terhorst
- Department of Medicine, Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
8
|
Berthelot JM, Le Goff B, Martin J, Maugars Y, Josien R. Essential role for CD103+ cells in the pathogenesis of spondyloarthritides. Joint Bone Spine 2014; 82:8-12. [PMID: 25241337 DOI: 10.1016/j.jbspin.2014.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2014] [Indexed: 02/07/2023]
Abstract
The clinical features of spondyloarthritides include extraarticular manifestations involving the skin, eyes, and gastrointestinal tract. At these sites, a membrane integrin can be acquired by virtue of the presence of CD4+ T cells and specific dendritic cells and correlates with a regulatory behavior of these cells. This membrane integrin conjugates the beta7 subunit and the alphaE subunit, also known as CD103. CD103 expression requires high levels of TGF-beta and retinoic acid; in addition, expression of CD103 by T cells requires antigen recognition. Whether CD103 is found in the entheses has not yet been investigated. CD103 is expressed at high levels in the skin, eyes, and bowel but it is found in only very low levels in the bloodstream. CD8+ CD103+ T cells differ markedly from other CD103+ cells in that they are resident cells with no tendency to migrate and usually exert predominantly cytotoxic functions as opposed to regulatory functions. Several bacteria, such as Salmonella, can become dormant within the mucous membranes and/or their lymph nodes, where they use CD103+ dendritic cells and CD4+ CD103+ regulatory T cells (Tregs) to evade the immune response. This phenomenon could be studied in other tissues targeted by spondyloarthritides, where dormant microorganisms can migrate by using M2 macrophages as Trojan horses, since M2 macrophages express the CD103 ligand E-cadherin. Microorganism peptide recognition by CD8+ CD103+ T cells (which are overrepresented in psoriasis and joint fluid in some forms of spondyloarthritis) induces an inflammatory response that may be sufficient to transiently reverse the regulatory function of the CD103+ dendritic cells and CD4+ CD103+ T cells during disease flares. The sensitivity of these diseases to retinoids further supports a pathogenic role for transient CD103+ cell failure.
Collapse
Affiliation(s)
- Jean-Marie Berthelot
- Service de Rhumatologie, Hôtel-Dieu, CHU de Nantes, 44093 Nantes cedex 01, France.
| | - Benoît Le Goff
- Service de Rhumatologie, Hôtel-Dieu, CHU de Nantes, 44093 Nantes cedex 01, France
| | | | - Yves Maugars
- Service de Rhumatologie, Hôtel-Dieu, CHU de Nantes, 44093 Nantes cedex 01, France
| | | |
Collapse
|
9
|
Intestinal CX3C chemokine receptor 1(high) (CX3CR1(high)) myeloid cells prevent T-cell-dependent colitis. Proc Natl Acad Sci U S A 2012; 109:5010-5. [PMID: 22403066 DOI: 10.1073/pnas.1114931109] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adequate activation of CD4(+) T lymphocytes is essential for host defense against invading pathogens; however, exaggerated activity of effector CD4(+) T cells induces tissue damage, leading to inflammatory disorders such as inflammatory bowel diseases. Several unique subsets of intestinal innate immune cells have been identified. However, the direct involvement of innate immune cell subsets in the suppression of T-cell-dependent intestinal inflammation is poorly understood. Here, we report that intestinal CX(3)C chemokine receptor 1(high) (CX(3)CR1(high)) CD11b(+) CD11c(+) cells are responsible for prevention of intestinal inflammation through inhibition of T-cell responses. These cells inhibit CD4(+) T-cell proliferation in a cell contact-dependent manner and prevent T-cell-dependent colitis. The suppressive activity is abrogated in the absence of the IL-10/Stat3 pathway. These cells inhibit T-cell proliferation by two steps. Initially, CX(3)CR1(high) CD11b(+) CD11c(+) cells preferentially interact with T cells through highly expressed intercellular adhesion molecule-1/vascular cell adhesion molecule-1; then, they fail to activate T cells because of defective expression of CD80/CD86. The IL-10/Stat3 pathway mediates the reduction of CD80/CD86 expression. Transfer of wild-type CX(3)CR1(high) CD11b(+) CD11c(+) cells prevents development of colitis in myeloid-specific Stat3-deficient mice. Thus, these cells are regulatory myeloid cells that are responsible for maintaining intestinal homeostasis.
Collapse
|