1
|
Moradkasani S, Maurin M, Farrokhi AS, Esmaeili S. Development, Strategies, and Challenges for Tularemia Vaccine. Curr Microbiol 2024; 81:126. [PMID: 38564047 DOI: 10.1007/s00284-024-03658-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
Francisella tularensis is a facultative intracellular bacterial pathogen that affects both humans and animals. It was developed into a biological warfare weapon as a result. In this article, the current status of tularemia vaccine development is presented. A live-attenuated vaccine that was designed over 50 years ago using the less virulent F. tularensis subspecies holarctica is the only prophylactic currently available, but it has not been approved for use in humans or animals. Other promising live, killed, and subunit vaccine candidates have recently been developed and tested in animal models. This study will investigate some possible vaccines and the challenges they face during development.
Collapse
Affiliation(s)
- Safoura Moradkasani
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, KabudarAhang, Hamadan, Iran
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Max Maurin
- CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG, Universite Grenoble Alpes, 38000, Grenoble, France
| | | | - Saber Esmaeili
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, KabudarAhang, Hamadan, Iran.
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
2
|
Sharma R, Patil RD, Singh B, Chakraborty S, Chandran D, Dhama K, Gopinath D, Jairath G, Rialch A, Mal G, Singh P, Chaicumpa W, Saikumar G. Tularemia - a re-emerging disease with growing concern. Vet Q 2023; 43:1-16. [PMID: 37916743 PMCID: PMC10732219 DOI: 10.1080/01652176.2023.2277753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023] Open
Abstract
Tularemia caused by Gram-negative, coccobacillus bacterium, Francisella tularensis, is a highly infectious zoonotic disease. Human cases have been reported mainly from the United States, Nordic countries like Sweden and Finland, and some European and Asian countries. Naturally, the disease occurs in several vertebrates, particularly lagomorphs. Type A (subspecies tularensis) is more virulent and causes disease mainly in North America; type B (subspecies holarctica) is widespread, while subspecies mediasiatica is present in central Asia. F. tularensis is a possible bioweapon due to its lethality, low infectious dosage, and aerosol transmission. Small mammals like rabbits, hares, and muskrats are primary sources of human infections, but true reservoir of F. tularensis is unknown. Vector-borne tularemia primarily involves ticks and mosquitoes. The bacterial subspecies involved and mode of transmission determine the clinical picture. Early signs are flu-like illnesses that may evolve into different clinical forms of tularemia that may or may not include lymphadenopathy. Ulcero-glandular and glandular forms are acquired by arthropod bite or handling of infected animals, oculo-glandular form as a result of conjunctival infection, and oro-pharyngeal form by intake of contaminated food or water. Pulmonary form appears after inhalation of bacteria. Typhoidal form may occur after infection via different routes. Human-to-human transmission has not been known. Diagnosis can be achieved by serology, bacterial culture, and molecular methods. Treatment for tularemia typically entails use of quinolones, tetracyclines, or aminoglycosides. Preventive measures are necessary to avoid infection although difficult to implement. Research is underway for the development of effective live attenuated and subunit vaccines.
Collapse
Affiliation(s)
- Rinku Sharma
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, Himachal Pradesh, India
| | - Rajendra Damu Patil
- Department of Veterinary Pathology, DGCN College of Veterinary and Animal Sciences, CSK HPKV, Palampur, Himachal Pradesh, India
| | - Birbal Singh
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, Himachal Pradesh, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, R.K. Nagar, West Tripura, India
| | | | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Devi Gopinath
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, Himachal Pradesh, India
| | - Gauri Jairath
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, Himachal Pradesh, India
| | - Ajayta Rialch
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, Himachal Pradesh, India
| | - Gorakh Mal
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, Himachal Pradesh, India
| | - Putan Singh
- Disease Investigation Laboratory, ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, Himachal Pradesh, India
| | - Wanpen Chaicumpa
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - G. Saikumar
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
3
|
Zhao M, Zhai Y, Zai X, Mao Y, Hu E, Wei Z, Li Y, Li K, Liu Y, Xu J, Yu R, Chen W. Comparative evaluation of protective immunity against Francisella tularensis induced by subunit or adenovirus-vectored vaccines. Front Cell Infect Microbiol 2023; 13:1195314. [PMID: 37305410 PMCID: PMC10248143 DOI: 10.3389/fcimb.2023.1195314] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Tularemia is a highly contagious disease caused by infection with Francisella tularensis (Ft), a pathogenic intracellular gram-negative bacterium that infects a wide range of animals and causes severe disease and death in people, making it a public health concern. Vaccines are the most effective way to prevent tularemia. However, there are no Food and Drug Administration (FDA)-approved Ft vaccines thus far due to safety concerns. Herein, three membrane proteins of Ft, Tul4, OmpA, and FopA, and a molecular chaperone, DnaK, were identified as potential protective antigens using a multifactor protective antigen platform. Moreover, the recombinant DnaK, FopA, and Tul4 protein vaccines elicited a high level of IgG antibodies but did not protect against challenge. In contrast, protective immunity was elicited by a replication-defective human type 5 adenovirus (Ad5) encoding the Tul4, OmpA, FopA, and DnaK proteins (Ad5-Tul4, Ad5-OmpA, Ad5-FopA, and Ad5-DnaK) after a single immunization, and all Ad5-based vaccines stimulated a Th1-biased immune response. Moreover, intramuscular and intranasal vaccination with Ad5-Tul4 using the prime-boost strategy effectively eliminated Ft lung, spleen and liver colonization and provided nearly 80% protection against intranasal challenge with the Ft live vaccine strain (LVS). Only intramuscular, not intranasal vaccination, with Ad5-Tul4 protected mice from intraperitoneal challenge. This study provides a comprehensive comparison of protective immunity against Ft provided by subunit or adenovirus-vectored vaccines and suggests that mucosal vaccination with Ad5-Tul4 may yield desirable protective efficacy against mucosal infection, while intramuscular vaccination offers greater overall protection against intraperitoneal tularemia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Rui Yu
- *Correspondence: Rui Yu, ; Wei Chen,
| | - Wei Chen
- *Correspondence: Rui Yu, ; Wei Chen,
| |
Collapse
|
4
|
Improvement of Approaches to the Verification of the Vaccine Strain <i>Francisella tularensis</i> 15 NIIEG during Long-Term Storage. PROBLEMS OF PARTICULARLY DANGEROUS INFECTIONS 2022. [DOI: 10.21055/0370-1069-2022-3-137-144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The aim of the study was to improve the methods for verifying the vaccine strain Francisella tularensis 15 NIIEG during long-term storage under current conditions.Materials and methods. The paper summarizes the results of studying the phenotypic and genetic properties of lyophilized cultures of the vaccine strain F. tularensis 15 NIIEG (1953, 1966, 1969, 1987, 1990, 2003, 2012 and 2013) stored at SCEMAP for a period of one to 60 years.Results and discussion. Previous studies have revealed that freeze-dried cultures of F. tularensis 15 NIIEG generally had the characteristics of the vaccine strain, with the exception of deviations from the regulatory requirements for residual virulence and specific safety. The stability of preservation of deletions in the pilA and pilE genes (the region of differentiation RD19) and the genes encoding lpp lipoprotein (RD18) in the vaccine strain, which was stored for various periods of time in a lyophilized state, has been confirmed. The vaccine-strain-specific mutation C178404T (by the genome of F. tularensis LVS strain, GenBank NCBI no. CP009694) has been identified, and an approach to determine it has been developed. The data obtained are promising as regards using the above deletions in the RD18/RD19 regions in combination with the C178404T mutation to assess the authenticity of the vaccine strain using molecular genetic methods. Thus, the conducted retrospective analysis of the data on the cultures of tularemia microbe vaccine strain from the 1940s to 2013 and the gathered experimental data, made it possible to supplement the uniform requirements for the manufacture, study, maintenance, storage and movement of F. tularensis 15 NIIEG vaccine strain with new evidence. Based on the results obtained, the authors have drawn a draft methodological recommendations of the federal level “Vaccinal strain Francisella tularensis 15 NIIEG: order of handling”.
Collapse
|
5
|
Nagaratnam N, Martin-Garcia JM, Yang JH, Goode MR, Ketawala G, Craciunescu FM, Zook JD, Sonowal M, Williams D, Grant TD, Fromme R, Hansen DT, Fromme P. Structural and biophysical properties of FopA, a major outer membrane protein of Francisella tularensis. PLoS One 2022; 17:e0267370. [PMID: 35913965 PMCID: PMC9342783 DOI: 10.1371/journal.pone.0267370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
Abstract
Francisella tularensis is an extremely infectious pathogen and a category A bioterrorism agent. It causes the highly contagious zoonosis, Tularemia. Currently, FDA approved vaccines against tularemia are unavailable. F. tularensis outer membrane protein A (FopA) is a well-studied virulence determinant and protective antigen against tularemia. It is a major outer membrane protein (Omp) of F. tularensis. However, FopA-based therapeutic intervention is hindered due to lack of complete structural information for membrane localized mature FopA. In our study, we established recombinant expression, monodisperse purification, crystallization and X-ray diffraction (~6.5 Å) of membrane localized mature FopA. Further, we performed bioinformatics and biophysical experiments to unveil its structural organization in the outer membrane. FopA consists of 393 amino acids and has less than 40% sequence identity to known bacterial Omps. Using comprehensive sequence alignments and structure predictions together with existing partial structural information, we propose a two-domain organization for FopA. Circular dichroism spectroscopy and heat modifiability assay confirmed FopA has a β-barrel domain consistent with alphafold2’s prediction of an eight stranded β-barrel at the N-terminus. Small angle X-ray scattering (SAXS) and native-polyacrylamide gel electrophoresis revealed FopA purified in detergent micelles is predominantly dimeric. Molecular density derived from SAXS at 31 Å shows putative dimeric N-terminal β-barrels surrounded by detergent corona and connected to C-terminal domains via flexible linker. Disorder analysis predicts N- and C-terminal domains are interspersed by a long intrinsically disordered region and alphafold2 predicts this region to be largely unstructured. Taken together, we propose a dimeric, two-domain organization of FopA in the outer membrane: the N-terminal β-barrel is membrane embedded, provides dimerization interface and tethers to membrane extrinsic C-terminal domain via long flexible linker. Structure determination of membrane localized mature FopA is essential to understand its role in pathogenesis and develop anti-tularemia therapeutics. Our results pave the way towards it.
Collapse
Affiliation(s)
- Nirupa Nagaratnam
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Jose M. Martin-Garcia
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Jay-How Yang
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Matthew R. Goode
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Gihan Ketawala
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Felicia M. Craciunescu
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - James D. Zook
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Manashi Sonowal
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Dewight Williams
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- Eyring Materials Center, Arizona State University, Tempe, Arizona, United States of America
| | - Thomas D. Grant
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, New York, New York, United States of America
| | - Raimund Fromme
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Debra T. Hansen
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- Center for Innovations in Medicine, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Petra Fromme
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
6
|
Abstract
Category A agents are biological pathogens that could pose a threat to health and human safety if used as bioweapons. The exploration and possibility of these threats must be comprehensively reviewed to create a preparedness plan to recognize outbreaks, to educate the public, and to offer vaccinations and/or treatment options, if available. A scoping review using PRISMA guidelines was performed to categorize current information on Category A biological agents as well as understand their potential for future threats. The results used 34 articles and found that while botulin neurotoxins were the most lethal, anthrax posed the most likely threat for use as a bioweapon. Most research was conducted on plague, though it is not the most likely threat. Smallpox is the most likely agent to vaccinate against as there is already a working vaccine that has proven effective and the issue at hand is the need for a larger stockpile. Ultimately, preparedness efforts should include vaccinations and continued research and development of them. Category A agents are a serious public health concern; updated and reformed bioterrorism preparedness plans could greatly minimize panic and mortality.
Collapse
|
7
|
Deletion Mutants of Francisella Phagosomal Transporters FptA and FptF Are Highly Attenuated for Virulence and Are Protective Against Lethal Intranasal Francisella LVS Challenge in a Murine Model of Respiratory Tularemia. Pathogens 2021; 10:pathogens10070799. [PMID: 34202420 PMCID: PMC8308642 DOI: 10.3390/pathogens10070799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022] Open
Abstract
Francisella tularensis (Ft) is a Gram-negative, facultative intracellular bacterium that is a Tier 1 Select Agent of concern for biodefense for which there is no licensed vaccine. A subfamily of 9 Francisella phagosomal transporter (fpt) genes belonging to the Major Facilitator Superfamily of transporters was identified as critical to pathogenesis and potential targets for attenuation and vaccine development. We evaluated the attenuation and protective capacity of LVS derivatives with deletions of the fptA and fptF genes in the C57BL/6J mouse model of respiratory tularemia. LVSΔfptA and LVSΔfptF were highly attenuated with LD50 values of >20 times that of LVS when administered intranasally and conferred 100% protection against lethal challenge. Immune responses to the fpt mutant strains in mouse lungs on day 6 post-infection were substantially modified compared to LVS and were associated with reduced organ burdens and reduced pathology. The immune responses to LVSΔfptA and LVSΔfptF were characterized by decreased levels of IL-10 and IL-1β in the BALF versus LVS, and increased numbers of B cells, αβ and γδ T cells, NK cells, and DCs versus LVS. These results support a fundamental requirement for FptA and FptF in the pathogenesis of Ft and the modulation of the host immune response.
Collapse
|
8
|
Yeni DK, Büyük F, Ashraf A, Shah MSUD. Tularemia: a re-emerging tick-borne infectious disease. Folia Microbiol (Praha) 2021; 66:1-14. [PMID: 32989563 PMCID: PMC7521936 DOI: 10.1007/s12223-020-00827-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/18/2020] [Indexed: 11/24/2022]
Abstract
Tularemia is a bacterial disease of humans, wild, and domestic animals. Francisella tularensis, which is a Gram-negative coccobacillus-shaped bacterium, is the causative agent of tularemia. Recently, an increase in the number of human tularemia cases has been noticed in several countries around the world. It has been reported mostly from North America, several Scandinavian countries, and certain Asian countries. The disease spreads through vectors such as mosquitoes, horseflies, deer flies, and ticks. Humans can acquire the disease through direct contact of sick animals, consumption of infected animals, drinking or direct contact of contaminated water, and inhalation of bacteria-loaded aerosols. Low infectious dose, aerosol route of infection, and its ability to induce fatal disease make it a potential agent of biological warfare. Tularemia leads to several clinical forms, such as glandular, ulceroglandular, oculoglandular, oropharyngeal, respiratory, and typhoidal forms. The disease is diagnosed through the use of culture, serology, or molecular methods. Quinolones, tetracyclines, or aminoglycosides are frequently used in the treatment of tularemia. No licensed vaccine is available in the prophylaxis of tularemia and this is need of the time and high-priority research area. This review mostly focuses on general features, importance, current status, and preventive measures of this disease.
Collapse
Affiliation(s)
- Derya Karataş Yeni
- Veterinary Control Central Research Institute, Bacterial Disease Laboratory, Ankara, Turkey
| | - Fatih Büyük
- Department of Microbiology, Veterinary Faculty, University of Kafkas, Kars, Turkey.
| | - Asma Ashraf
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
9
|
Glycoconjugate vaccine using a genetically modified O antigen induces protective antibodies to Francisella tularensis. Proc Natl Acad Sci U S A 2019; 116:7062-7070. [PMID: 30872471 PMCID: PMC6452683 DOI: 10.1073/pnas.1900144116] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Francisella tularensis is the causative agent of tularemia, a category A bioterrorism agent. The lipopolysaccharide (LPS) O antigen (OAg) of F. tularensis has been considered for use in a glycoconjugate vaccine, but conjugate vaccines tested so far have failed to confer protection necessary against aerosolized pulmonary bacterial challenge. When F. tularensis OAg was purified under standard conditions, the antigen had a small molecular size [25 kDa, low molecular weight (LMW)]. Using milder extraction conditions, we found the native OAg had a larger molecular size [80 kDa, high molecular weight (HMW)], and in a mouse model of tularemia, a glycoconjugate vaccine made with the HMW polysaccharide coupled to tetanus toxoid (HMW-TT) conferred better protection against intranasal challenge than a conjugate made with the LMW polysaccharide (LMW-TT). To further investigate the role of OAg size in protection, we created an F. tularensis live vaccine strain (LVS) mutant with a significantly increased OAg size [220 kDa, very high molecular weight (VHMW)] by expressing in F. tularensis a heterologous chain-length regulator gene (wzz) from the related species Francisella novicida Immunization with VHMW-TT provided markedly increased protection over that obtained with TT glycoconjugates made using smaller OAgs. We found that protective antibodies recognize a length-dependent epitope better expressed on HMW and VHMW antigens, which bind with higher affinity to the organism.
Collapse
|
10
|
Mansour AA, Banik S, Suresh RV, Kaur H, Malik M, McCormick AA, Bakshi CS. An Improved Tobacco Mosaic Virus (TMV)-Conjugated Multiantigen Subunit Vaccine Against Respiratory Tularemia. Front Microbiol 2018; 9:1195. [PMID: 29922267 PMCID: PMC5996085 DOI: 10.3389/fmicb.2018.01195] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 05/16/2018] [Indexed: 12/22/2022] Open
Abstract
Francisella tularensis, the causative agent of the fatal human disease known as tularemia is classified as a Category A Select Agent by the Centers for Disease Control. No licensed vaccine is currently available for prevention of tularemia in the United States. Previously, we published that a tri-antigen tobacco mosaic virus (TMV) vaccine confers 50% protection in immunized mice against respiratory tularemia caused by F. tularensis. In this study, we refined the TMV-vaccine formulation to improve the level of protection in immunized C57BL/6 mice against respiratory tularemia. We developed a tetra-antigen vaccine by conjugating OmpA, DnaK, Tul4, and SucB proteins of Francisella to TMV. CpG was also included in the vaccine formulation as an adjuvant. Primary intranasal (i.n.) immunization followed by two booster immunizations with the tetra-antigen TMV vaccine protected 100% mice against i.n. 10LD100 challenges dose of F. tularensis live vaccine strain (LVS). Mice receiving three immunization doses of tetra-antigen TMV vaccine showed only transient body weight loss, cleared the infection rapidly, and showed minimal histopathological lesions in lungs, liver, and spleen following a lethal respiratory challenge with F. tularensis LVS. Mice immunized with the tetra-antigen TMV vaccine also induced strong ex vivo recall responses and were protected against a lethal challenge as late as 163 days post-primary immunization. Three immunization with the tetra-antigen TMV vaccine also induced a stronger humoral immune response predominated by IgG1, IgG2b, and IgG2c antibodies than mice receiving only a single or two immunizations. Remarkably, a single dose protected 40% of mice, while two doses protected 80% of mice from lethal pathogen challenge. Immunization of Interferon-gamma (IFN-γ)-deficient mice with the tetra-antigen TMV vaccine demonstrated an absolute requirement of IFN-γ for the generation of protective immune response against a lethal respiratory challenge with F. tularensis LVS. Collectively, this study further demonstrates the feasibility of TMV as an efficient platform for the delivery of multiple F. tularensis antigens and that tetra-antigen TMV vaccine formulation provides complete protection, and induces long-lasting protective and memory immune responses against respiratory tularemia caused by F. tularensis LVS.
Collapse
Affiliation(s)
- Ahd A Mansour
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Sukalyani Banik
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Ragavan V Suresh
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Hardeep Kaur
- College of Pharmacy, Touro University California, Vallejo, CA, United States
| | - Meenakshi Malik
- Department of Basic and Clinical Sciences, School of Arts and Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, United States
| | - Alison A McCormick
- College of Pharmacy, Touro University California, Vallejo, CA, United States
| | - Chandra S Bakshi
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
11
|
McCormick AA, Shakeel A, Yi C, Kaur H, Mansour AM, Bakshi CS. Intranasal administration of a two-dose adjuvanted multi-antigen TMV-subunit conjugate vaccine fully protects mice against Francisella tularensis LVS challenge. PLoS One 2018; 13:e0194614. [PMID: 29684046 PMCID: PMC5912714 DOI: 10.1371/journal.pone.0194614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/06/2018] [Indexed: 12/03/2022] Open
Abstract
Tularemia is a fatal human disease caused by Francisella tularensis, a Gram-negative encapsulated coccobacillus bacterium. Due to its low infectious dose, ease of aerosolized transmission, and lethal effects, the CDC lists F. tularensis as a Category A pathogen, the highest level for a potential biothreat agent. Previous vaccine studies have been conducted with live attenuated, inactivated, and subunit vaccines, which have achieved partial or full protection from F. tularensis live vaccine strain (LVS) challenge, but no vaccine has been approved for human use. We demonstrate the improved efficacy of a multi-antigen subunit vaccine by using Tobacco Mosaic virus (TMV) as an antigen carrier for the F. tularensis SchuS4 proteins DnaK, OmpA, SucB and Tul4 (DOST). The magnitude and quality of immune responses were compared after mice were immunized by subcutaneous or intranasal routes of administration with a TMV-DOST mixture, with or without four different adjuvants. Immune responses varied in magnitude and isotype profile, by antigen, by route of administration, and by protection in an F. tularensis LVS challenge model of disease. Interestingly, our analysis demonstrates an overwhelming IgG2 response to SucB after intranasal dosing, as well as a robust cellular response, which may account for the improved two-dose survival imparted by the tetravalent vaccine, compared to a previous study that tested efficacy of TMV-DOT. Our study provides evidence that potent humoral, cellular and mucosal immunity can be achieved by optimal antigen combination, delivery, adjuvant and appropriate route of administration, to improve vaccine potency and provide protection from pathogen challenge.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Administration, Intranasal
- Animals
- Antibodies, Bacterial/analysis
- Antibodies, Bacterial/metabolism
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Bacterial Proteins/metabolism
- Bacterial Vaccines/immunology
- Disease Models, Animal
- Female
- Francisella tularensis/immunology
- Immunity, Cellular
- Immunoglobulin G/analysis
- Immunoglobulin G/immunology
- Immunoglobulin G/metabolism
- Immunoglobulin Isotypes/immunology
- Immunoglobulin Isotypes/metabolism
- Mice
- Mice, Inbred C57BL
- Survival Rate
- Tobacco Mosaic Virus/genetics
- Tobacco Mosaic Virus/metabolism
- Tularemia/immunology
- Tularemia/microbiology
- Tularemia/prevention & control
- Vaccines, Conjugate/immunology
- Vaccines, Subunit/immunology
Collapse
Affiliation(s)
| | - Aisha Shakeel
- Touro University California, College of Pharmacy, Vallejo, CA
| | - Chris Yi
- Touro University California, College of Pharmacy, Vallejo, CA
| | - Hardeep Kaur
- Touro University California, College of Pharmacy, Vallejo, CA
| | - Ahd M. Mansour
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY
| | | |
Collapse
|
12
|
Deletion of the Major Facilitator Superfamily Transporter fptB Alters Host Cell Interactions and Attenuates Virulence of Type A Francisella tularensis. Infect Immun 2018; 86:IAI.00832-17. [PMID: 29311235 PMCID: PMC5820938 DOI: 10.1128/iai.00832-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/22/2017] [Indexed: 12/12/2022] Open
Abstract
Francisella tularensis is a Gram-negative, facultative, intracellular coccobacillus that can infect a wide variety of hosts. In humans, F. tularensis causes the zoonosis tularemia following insect bites, ingestion, inhalation, and the handling of infected animals. The fact that a very small inoculum delivered by the aerosol route can cause severe disease, coupled with the possibility of its use as an aerosolized bioweapon, has led to the classification of Francisella tularensis as a category A select agent and has renewed interest in the formulation of a vaccine. To this end, we engineered a type A strain SchuS4 derivative containing a targeted deletion of the major facilitator superfamily (MFS) transporter fptB. Based on the attenuating capacity of this deletion in the F. tularensis LVS background, we hypothesized that the deletion of this transporter would alter the intracellular replication and cytokine induction of the type A strain and attenuate virulence in the stringent C57BL/6J mouse model. Here we demonstrate that the deletion of fptB significantly alters the intracellular life cycle of F. tularensis, attenuating intracellular replication in both cell line-derived and primary macrophages and inducing a novel cytosolic escape delay. Additionally, we observed prominent differences in the in vitro cytokine profiles in human macrophage-like cells. The mutant was highly attenuated in the C57BL/6J mouse model and provided partial protection against virulent type A F. tularensis challenge. These results indicate a fundamental necessity for this nutrient transporter in the timely progression of F. tularensis through its replication cycle and in pathogenesis.
Collapse
|
13
|
Tian D, Uda A, Park ES, Hotta A, Fujita O, Yamada A, Hirayama K, Hotta K, Koyama Y, Azaki M, Morikawa S. Evaluation of Francisella tularensis ΔpdpC as a candidate live attenuated vaccine against respiratory challenge by a virulent SCHU P9 strain of Francisella tularensis in a C57BL/6J mouse model. Microbiol Immunol 2018; 62:24-33. [PMID: 29171073 DOI: 10.1111/1348-0421.12555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022]
Abstract
Francisella tularensis, which causes tularemia, is an intracellular gram-negative bacterium. F. tularensis has received significant attention in recent decades because of its history as a biological weapon. Thus, development of novel vaccines against tularemia has been an important goal. The attenuated F. tularensis strain ΔpdpC, in which the pathogenicity determinant protein C gene (pdpC) has been disrupted by TargeTron mutagenesis, was investigated as a potential vaccine candidate for tularemia in the present study. C57BL/6J mice immunized s.c. with 1 × 106 CFUs of ΔpdpC were challenged intranasally with 100× the median lethal dose (LD50 ) of a virulent SCHU P9 strain 21 days post immunization. Protection against this challenge was achieved in 38% of immunized C57BL/6J mice administered 100 LD50 of this strain. Conversely, all unimmunized mice succumbed to death 6 days post challenge. Survival rates were significantly higher in vaccinated than in unimmunized mice. In addition, ΔpdpC was passaged serially in mice to confirm its stable attenuation. Low bacterial loads persisted in mouse spleens during the first to tenth passages. No statistically significant changes in the number of CFUs were observed during in vivo passage of ΔpdpC. The inserted intron sequences for disrupting pdpC were completely maintained even after the tenth passage in mice. Considering the stable attenuation and intron sequences, it is suggested that ΔpdpC is a promising tularemia vaccine candidate.
Collapse
Affiliation(s)
- Deyu Tian
- Laboratory of Veterinary Public Health, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan.,Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Akihiko Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Eun-Sil Park
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Akitoyo Hotta
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Osamu Fujita
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Akio Yamada
- Laboratory of Veterinary Public Health, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Kazuhiro Hirayama
- Laboratory of Veterinary Public Health, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Kozue Hotta
- Laboratory of Veterinary Public Health, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Yuuki Koyama
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan.,Major Track of Applied Veterinary Science, Doctoral Course of the United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Mika Azaki
- Department of Integrated Science in Physics and Biology College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya, Tokyo 156-8550, Japan
| | - Shigeru Morikawa
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan.,Major Track of Applied Veterinary Science, Doctoral Course of the United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
14
|
|
15
|
Monophosphoryl Lipid A Enhances Efficacy of a Francisella tularensis LVS-Catanionic Nanoparticle Subunit Vaccine against F. tularensis Schu S4 Challenge by Augmenting both Humoral and Cellular Immunity. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00574-16. [PMID: 28077440 DOI: 10.1128/cvi.00574-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/06/2017] [Indexed: 01/01/2023]
Abstract
Francisella tularensis, a bacterial biothreat agent, has no approved vaccine in the United States. Previously, we showed that incorporating lysates from partially attenuated F. tularensis LVS or fully virulent F. tularensis Schu S4 strains into catanionic surfactant vesicle (V) nanoparticles (LVS-V and Schu S4-V, respectively) protected fully against F. tularensis LVS intraperitoneal (i.p.) challenge in mice. However, we achieved only partial protection against F. tularensis Schu S4 intranasal (i.n.) challenge, even when employing heterologous prime-boost immunization strategies. We now extend these findings to show that both LVS-V and Schu S4-V immunization (i.p./i.p.) elicited similarly high titers of anti-F. tularensis IgG and that the titers could be further increased by adding monophosphoryl lipid A (MPL), a nontoxic Toll-like receptor 4 (TLR4) adjuvant that is included in several U.S. FDA-approved vaccines. LVS-V+MPL immune sera also detected more F. tularensis antigens than LVS-V immune sera and, after passive transfer to naive mice, significantly delayed the time to death against F. tularensis Schu S4 subcutaneous (s.c.) but not i.n. challenge. Active immunization with LVS-V+MPL (i.p./i.p.) also increased the frequency of gamma interferon (IFN-γ)-secreting activated helper T cells, IFN-γ production, and the ability of splenocytes to control intramacrophage F. tularensis LVS replication ex vivo Active LVS-V+MPL immunization via heterologous routes (i.p./i.n.) significantly elevated IgA and IgG levels in bronchoalveolar lavage fluid and significantly enhanced protection against i.n. F. tularensis Schu S4 challenge (to ∼60%). These data represent a significant step in the development of a subunit vaccine against the highly virulent type A strains.
Collapse
|
16
|
Stinson E, Smith LP, Cole KS, Barry EM, Reed DS. Respiratory and oral vaccination improves protection conferred by the live vaccine strain against pneumonic tularemia in the rabbit model. Pathog Dis 2016; 74:ftw079. [PMID: 27511964 DOI: 10.1093/femspd/ftw079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2016] [Indexed: 01/19/2023] Open
Abstract
Tularemia is a severe, zoonotic disease caused by a gram-negative bacterium, Francisella tularensis We have previously shown that rabbits are a good model of human pneumonic tularemia when exposed to aerosols containing a virulent, type A strain, SCHU S4. We further demonstrated that the live vaccine strain (LVS), an attenuated type B strain, extended time to death when given by scarification. Oral or aerosol vaccination has been previously shown in humans to offer superior protection to parenteral vaccination against respiratory tularemia challenge. Both oral and aerosol vaccination with LVS were well tolerated in the rabbit with only minimal fever and no weight loss after inoculation. Plasma antibody titers against F. tularensis were higher in rabbits that were vaccinated by either oral or aerosol routes compared to scarification. Thirty days after vaccination, all rabbits were challenged with aerosolized SCHU S4. LVS given by scarification extended time to death compared to mock-vaccinated controls. One orally vaccinated rabbit did survive aerosol challenge, however, only aerosol vaccination extended time to death significantly compared to scarification. These results further demonstrate the utility of the rabbit model of pneumonic tularemia in replicating what has been reported in humans and macaques as well as demonstrating the utility of vaccination by oral and respiratory routes against an aerosol tularemia challenge.
Collapse
Affiliation(s)
- Elizabeth Stinson
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Le'Kneitah P Smith
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Kelly Stefano Cole
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Eileen M Barry
- Center for Vaccine Development, University of Maryland, Baltimore, MD 21201, USA
| | - Douglas S Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
17
|
Rabadi SM, Sanchez BC, Varanat M, Ma Z, Catlett SV, Melendez JA, Malik M, Bakshi CS. Antioxidant Defenses of Francisella tularensis Modulate Macrophage Function and Production of Proinflammatory Cytokines. J Biol Chem 2015; 291:5009-21. [PMID: 26644475 DOI: 10.1074/jbc.m115.681478] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Indexed: 11/06/2022] Open
Abstract
Francisella tularensis, the causative agent of a fatal human disease known as tularemia, has been used in the bioweapon programs of several countries in the past, and now it is considered a potential bioterror agent. Extreme infectivity and virulence of F. tularensis is due to its ability to evade immune detection and to suppress the host's innate immune responses. However, Francisella-encoded factors and mechanisms responsible for causing immune suppression are not completely understood. Macrophages and neutrophils generate reactive oxygen species (ROS)/reactive nitrogen species as a defense mechanism for the clearance of phagocytosed microorganisms. ROS serve a dual role; at high concentrations they act as microbicidal effector molecules that destroy intracellular pathogens, and at low concentrations they serve as secondary signaling messengers that regulate the expression of various inflammatory mediators. We hypothesized that the antioxidant defenses of F. tularensis maintain redox homeostasis in infected macrophages to prevent activation of redox-sensitive signaling components that ultimately result in suppression of pro-inflammatory cytokine production and macrophage microbicidal activity. We demonstrate that antioxidant enzymes of F. tularensis prevent the activation of redox-sensitive MAPK signaling components, NF-κB signaling, and the production of pro-inflammatory cytokines by inhibiting the accumulation of ROS in infected macrophages. We also report that F. tularensis inhibits ROS-dependent autophagy to promote its intramacrophage survival. Collectively, this study reveals novel pathogenic mechanisms adopted by F. tularensis to modulate macrophage innate immune functions to create an environment permissive for its intracellular survival and growth.
Collapse
Affiliation(s)
- Seham M Rabadi
- From the Department of Microbiology and Immunology, New York Medical College, Valhalla, New York 10595
| | - Belkys C Sanchez
- From the Department of Microbiology and Immunology, New York Medical College, Valhalla, New York 10595
| | - Mrudula Varanat
- From the Department of Microbiology and Immunology, New York Medical College, Valhalla, New York 10595
| | - Zhuo Ma
- the Department of Basic and Social Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York 12208, and
| | - Sally V Catlett
- the Department of Basic and Social Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York 12208, and
| | - Juan Andres Melendez
- the Colleges of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, New York 12203
| | - Meenakshi Malik
- the Department of Basic and Social Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York 12208, and
| | - Chandra Shekhar Bakshi
- From the Department of Microbiology and Immunology, New York Medical College, Valhalla, New York 10595,
| |
Collapse
|
18
|
Development of a Multivalent Subunit Vaccine against Tularemia Using Tobacco Mosaic Virus (TMV) Based Delivery System. PLoS One 2015; 10:e0130858. [PMID: 26098553 PMCID: PMC4476615 DOI: 10.1371/journal.pone.0130858] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/26/2015] [Indexed: 11/21/2022] Open
Abstract
Francisella tularensis is a facultative intracellular pathogen, and is the causative agent of a fatal human disease known as tularemia. F. tularensis is classified as a Category A Biothreat agent by the CDC based on its use in bioweapon programs by several countries in the past and its potential to be used as an agent of bioterrorism. No licensed vaccine is currently available for prevention of tularemia. In this study, we used a novel approach for development of a multivalent subunit vaccine against tularemia by using an efficient tobacco mosaic virus (TMV) based delivery platform. The multivalent subunit vaccine was formulated to contain a combination of F. tularensis protective antigens: OmpA-like protein (OmpA), chaperone protein DnaK and lipoprotein Tul4 from the highly virulent F. tularensis SchuS4 strain. Two different vaccine formulations and immunization schedules were used. The immunized mice were challenged with lethal (10xLD100) doses of F. tularensis LVS on day 28 of the primary immunization and observed daily for morbidity and mortality. Results from this study demonstrate that TMV can be used as a carrier for effective delivery of multiple F. tularensis antigens. TMV-conjugate vaccine formulations are safe and multiple doses can be administered without causing any adverse reactions in immunized mice. Immunization with TMV-conjugated F. tularensis proteins induced a strong humoral immune response and protected mice against respiratory challenges with very high doses of F. tularensis LVS. This study provides a proof-of-concept that TMV can serve as a suitable platform for simultaneous delivery of multiple protective antigens of F. tularensis. Refinement of vaccine formulations coupled with TMV-targeting strategies developed in this study will provide a platform for development of an effective tularemia subunit vaccine as well as a vaccination approach that may broadly be applicable to many other bacterial pathogens.
Collapse
|
19
|
Transmission-Blocking Vaccines: Focus on Anti-Vector Vaccines against Tick-Borne Diseases. Arch Immunol Ther Exp (Warsz) 2014; 63:169-79. [PMID: 25503555 PMCID: PMC4429137 DOI: 10.1007/s00005-014-0324-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/15/2014] [Indexed: 01/07/2023]
Abstract
Tick-borne diseases are a potential threat that account for significant morbidity and mortality in human population worldwide. Vaccines are not available to treat several of the tick-borne diseases. With the emergence and resurgence of several tick-borne diseases, emphasis on the development of transmission-blocking vaccines remains increasing. In this review, we provide a snap shot on some of the potential candidates for the development of anti-vector vaccines (a form of transmission-blocking vaccines) against wide range of hard and soft ticks that include Ixodes, Haemaphysalis, Dermacentor, Amblyomma, Rhipicephalus and Ornithodoros species.
Collapse
|
20
|
TolC-dependent modulation of host cell death by the Francisella tularensis live vaccine strain. Infect Immun 2014; 82:2068-78. [PMID: 24614652 DOI: 10.1128/iai.00044-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Francisella tularensis is a facultative intracellular, Gram-negative pathogen and the causative agent of tularemia. We previously identified TolC as a virulence factor of the F. tularensis live vaccine strain (LVS) and demonstrated that a ΔtolC mutant exhibits increased cytotoxicity toward host cells and elicits increased proinflammatory responses compared to those of the wild-type (WT) strain. TolC is the outer membrane channel component used by the type I secretion pathway to export toxins and other bacterial virulence factors. Here, we show that the LVS delays activation of the intrinsic apoptotic pathway in a TolC-dependent manner, both during infection of primary macrophages and during organ colonization in mice. The TolC-dependent delay in host cell death is required for F. tularensis to preserve its intracellular replicative niche. We demonstrate that TolC-mediated inhibition of apoptosis is an active process and not due to defects in the structural integrity of the ΔtolC mutant. These findings support a model wherein the immunomodulatory capacity of F. tularensis relies, at least in part, on TolC-secreted effectors. Finally, mice vaccinated with the ΔtolC LVS are protected from lethal challenge and clear challenge doses faster than WT-vaccinated mice, demonstrating that the altered host responses to primary infection with the ΔtolC mutant led to altered adaptive immune responses. Taken together, our data demonstrate that TolC is required for temporal modulation of host cell death during infection by F. tularensis and highlight how shifts in the magnitude and timing of host innate immune responses may lead to dramatic changes in the outcome of infection.
Collapse
|
21
|
Rotem S, Cohen O, Bar-Haim E, Bar-On L, Ehrlich S, Shafferman A. Protective immunity against lethal F. tularensis holarctica LVS provided by vaccination with selected novel CD8+ T cell epitopes. PLoS One 2014; 9:e85215. [PMID: 24400128 PMCID: PMC3882263 DOI: 10.1371/journal.pone.0085215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/02/2013] [Indexed: 01/05/2023] Open
Abstract
Recently we described an unbiased bacterial whole-genome immunoinformatic analysis aimed at selection of potential CTL epitopes located in "hotspots" of predicted MHC-I binders. Applying this approach to the proteome of the facultative intra-cellular pathogen Francisella tularensis resulted in identification of 170 novel CTL epitopes, several of which were shown to elicit highly robust T cell responses. Here we demonstrate that by DNA immunization using a short DNA fragment expressing six of the most prominent identified CTL epitopes a potent and specific CD8+ T cell responses is being induced, to all encoded epitopes, a response not observed in control mice immunized with the DNA vector alone Moreover, this CTL-specific mediated immune response prevented disease development, allowed for a rapid clearance of the bacterial infection and provided complete protection against lethal challenge (10LD50) with F. tularensis holarctica Live Vaccine Strain (LVS) (a total to 30 of 30 immunized mice survived the challenge while all control DNA vector immunized mice succumbed). Furthermore, and in accordance with these results, CD8 deficient mice could not be protected from lethal challenge after immunization with the CTL-polyepitope. Vaccination with the DNA poly-epitope construct could even protect mice (8/10) against the more demanding pulmonary lethal challenge of LVS. Our approach provides a proof-of-principle for selecting and generating a multi-epitpoe CD8 T cell-stimulating vaccine against a model intracellular bacterium.
Collapse
Affiliation(s)
- Shahar Rotem
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ofer Cohen
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Erez Bar-Haim
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Liat Bar-On
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Sharon Ehrlich
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Avigdor Shafferman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
- * E-mail:
| |
Collapse
|
22
|
Novel catanionic surfactant vesicle vaccines protect against Francisella tularensis LVS and confer significant partial protection against F. tularensis Schu S4 strain. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 21:212-26. [PMID: 24351755 DOI: 10.1128/cvi.00738-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Francisella tularensis is a Gram-negative immune-evasive coccobacillus that causes tularemia in humans and animals. A safe and efficacious vaccine that is protective against multiple F. tularensis strains has yet to be developed. In this study, we tested a novel vaccine approach using artificial pathogens, synthetic nanoparticles made from catanionic surfactant vesicles that are functionalized by the incorporation of either F. tularensis type B live vaccine strain (F. tularensis LVS [LVS-V]) or F. tularensis type A Schu S4 strain (F. tularensis Schu S4 [Schu S4-V]) components. The immunization of C57BL/6 mice with "bare" vesicles, which did not express F. tularensis components, partially protected against F. tularensis LVS, presumably through activation of the innate immune response, and yet it failed to protect against the F. tularensis Schu S4 strain. In contrast, immunization with LVS-V fully protected mice against intraperitoneal (i.p.) F. tularensis LVS challenge, while immunization of mice with either LVS-V or Schu S4-V partially protected C57BL/6 mice against an intranasal (i.n.) F. tularensis Schu S4 challenge and significantly increased the mean time to death for nonsurvivors, particularly following the i.n. and heterologous (i.e., i.p./i.n.) routes of immunization. LVS-V immunization, but not immunization with empty vesicles, elicited high levels of IgG against nonlipopolysaccharide (non-LPS) epitopes that were increased after F. tularensis LVS challenge and significantly increased early cytokine production. Antisera from LVS-V-immunized mice conferred passive protection against challenge with F. tularensis LVS. Together, these data indicate that functionalized catanionic surfactant vesicles represent an important and novel tool for the development of a safe and effective F. tularensis subunit vaccine and may be applicable for use with other pathogens.
Collapse
|
23
|
Schmitt DM, O'Dee DM, Cowan BN, Birch JWM, Mazzella LK, Nau GJ, Horzempa J. The use of resazurin as a novel antimicrobial agent against Francisella tularensis. Front Cell Infect Microbiol 2013; 3:93. [PMID: 24367766 PMCID: PMC3853850 DOI: 10.3389/fcimb.2013.00093] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 11/20/2013] [Indexed: 11/13/2022] Open
Abstract
The highly infectious and deadly pathogen, Francisella tularensis, is classified by the CDC as a Category A bioterrorism agent. Inhalation of a single bacterium results in an acute pneumonia with a 30-60% mortality rate without treatment. Due to the prevalence of antibiotic resistance, there is a strong need for new types of antibacterial drugs. Resazurin is commonly used to measure bacterial and eukaryotic cell viability through its reduction to the fluorescent product resorufin. When tested on various bacterial taxa at the recommended concentration of 44 μM, a potent bactericidal effect was observed against various Francisella and Neisseria species, including the human pathogens type A F. tularensis (Schu S4) and N. gonorrhoeae. As low as 4.4 μM resazurin was sufficient for a 10-fold reduction in F. tularensis growth. In broth culture, resazurin was reduced to resorufin by F. tularensis. Resorufin also suppressed the growth of F. tularensis suggesting that this compound is the biologically active form responsible for decreasing the viability of F. tularensis LVS bacteria. Replication of F. tularensis in primary human macrophages and non-phagocytic cells was abolished following treatment with 44 μM resazurin indicating this compound could be an effective therapy for tularemia in vivo.
Collapse
Affiliation(s)
- Deanna M Schmitt
- Department of Natural Sciences and Mathematics, West Liberty University West Liberty, WV, USA
| | - Dawn M O'Dee
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| | - Brianna N Cowan
- Department of Natural Sciences and Mathematics, West Liberty University West Liberty, WV, USA
| | - James W-M Birch
- Department of Natural Sciences and Mathematics, West Liberty University West Liberty, WV, USA
| | - Leanne K Mazzella
- Department of Natural Sciences and Mathematics, West Liberty University West Liberty, WV, USA
| | - Gerard J Nau
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine Pittsburgh, PA, USA ; Department of Medicine - Division of Infectious Diseases, University of Pittsburgh School of Medicine Pittsburgh, PA, USA ; Center for Vaccine Research, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| | - Joseph Horzempa
- Department of Natural Sciences and Mathematics, West Liberty University West Liberty, WV, USA
| |
Collapse
|
24
|
Current concepts in the management of biologic and chemical warfare causalities. J Trauma Acute Care Surg 2013; 75:582-9. [PMID: 24064869 DOI: 10.1097/ta.0b013e3182a11175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
|
26
|
Disruption of Francisella tularensis Schu S4 iglI, iglJ, and pdpC genes results in attenuation for growth in human macrophages and in vivo virulence in mice and reveals a unique phenotype for pdpC. Infect Immun 2012; 81:850-61. [PMID: 23275090 DOI: 10.1128/iai.00822-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Francisella tularensis is a facultative intracellular bacterial pathogen and the causative agent of tularemia. After infection of macrophages, the organism escapes from its phagosome and replicates to high density in the cytosol, but the bacterial factors required for these aspects of virulence are incompletely defined. Here, we describe the isolation and characterization of Francisella tularensis subsp. tularensis strain Schu S4 mutants that lack functional iglI, iglJ, or pdpC, three genes of the Francisella pathogenicity island. Our data demonstrate that these mutants were defective for replication in primary human monocyte-derived macrophages and murine J774 cells yet exhibited two distinct phenotypes. The iglI and iglJ mutants were similar to one another, exhibited profound defects in phagosome escape and intracellular growth, and appeared to be trapped in cathepsin D-positive phagolysosomes. Conversely, the pdpC mutant avoided trafficking to lysosomes, phagosome escape was diminished but not ablated, and these organisms replicated in a small subset of infected macrophages. The phenotype of each mutant strain was reversed by trans complementation. In vivo virulence was assessed by intranasal infection of BALB/c mice. The mutants appeared avirulent, as all mice survived infection with 10(8) CFU iglJ- or pdpC-deficient bacteria. Nevertheless, the pdpC mutant disseminated to the liver and spleen before being eliminated, whereas the iglJ mutant did not. Taken together, our data demonstrate that the pathogenicity island genes tested are essential for F. tularensis Schu S4 virulence and further suggest that pdpC may play a unique role in this process, as indicated by its distinct intermediate phenotype.
Collapse
|
27
|
Zvi A, Rotem S, Cohen O, Shafferman A. Clusters versus affinity-based approaches in F. tularensis whole genome search of CTL epitopes. PLoS One 2012; 7:e36440. [PMID: 22563500 PMCID: PMC3341354 DOI: 10.1371/journal.pone.0036440] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/02/2012] [Indexed: 12/31/2022] Open
Abstract
Deciphering the cellular immunome of a bacterial pathogen is challenging due to the enormous number of putative peptidic determinants. State-of-the-art prediction methods developed in recent years enable to significantly reduce the number of peptides to be screened, yet the number of remaining candidates for experimental evaluation is still in the range of ten-thousands, even for a limited coverage of MHC alleles. We have recently established a resource-efficient approach for down selection of candidates and enrichment of true positives, based on selection of predicted MHC binders located in high density “hotspots" of putative epitopes. This cluster-based approach was applied to an unbiased, whole genome search of Francisella tularensis CTL epitopes and was shown to yield a 17–25 fold higher level of responders as compared to randomly selected predicted epitopes tested in Kb/Db C57BL/6 mice. In the present study, we further evaluate the cluster-based approach (down to a lower density range) and compare this approach to the classical affinity-based approach by testing putative CTL epitopes with predicted IC50 values of <10 nM. We demonstrate that while the percent of responders achieved by both approaches is similar, the profile of responders is different, and the predicted binding affinity of most responders in the cluster-based approach is relatively low (geometric mean of 170 nM), rendering the two approaches complimentary. The cluster-based approach is further validated in BALB/c F. tularensis immunized mice belonging to another allelic restriction (Kd/Dd) group. To date, the cluster-based approach yielded over 200 novel F. tularensis peptides eliciting a cellular response, all were verified as MHC class I binders, thereby substantially increasing the F. tularensis dataset of known CTL epitopes. The generality and power of the high density cluster-based approach suggest that it can be a valuable tool for identification of novel CTLs in proteomes of other bacterial pathogens.
Collapse
Affiliation(s)
- Anat Zvi
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Shahar Rotem
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ofer Cohen
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Avigdor Shafferman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
- * E-mail:
| |
Collapse
|
28
|
Zvi A, Rotem S, Bar-Haim E, Cohen O, Shafferman A. Whole-genome immunoinformatic analysis of F. tularensis: predicted CTL epitopes clustered in hotspots are prone to elicit a T-cell response. PLoS One 2011; 6:e20050. [PMID: 21625462 PMCID: PMC3098878 DOI: 10.1371/journal.pone.0020050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Accepted: 04/13/2011] [Indexed: 12/21/2022] Open
Abstract
The cellular arm of the immune response plays a central role in the defense against intracellular pathogens, such as F. tularensis. To date, whole genome immunoinformatic analyses were limited either to relatively small genomes (e.g. viral) or to preselected subsets of proteins in complex pathogens. Here we present, for the first time, an unbiased bacterial global immunoinformatic screen of the 1740 proteins of F. tularensis subs. holarctica (LVS), aiming at identification of immunogenic peptides eliciting a CTL response. The very large number of predicted MHC class I binders (about 100,000, IC50 of 1000 nM or less) required the design of a strategy for further down selection of CTL candidates. The approach developed focused on mapping clusters rich in overlapping predicted epitopes, and ranking these “hotspot” regions according to the density of putative binding epitopes. Limited by the experimental load, we selected to screen a library of 1240 putative MHC binders derived from 104 top-ranking highly dense clusters. Peptides were tested for their ability to stimulate IFNγ secretion from splenocytes isolated from LVS vaccinated C57BL/6 mice. The majority of the clusters contained one or more CTL responder peptides and altogether 127 novel epitopes were identified, of which 82 are non-redundant. Accordingly, the level of success in identification of positive CTL responders was 17–25 fold higher than that found for a randomly selected library of 500 predicted MHC binders (IC50 of 500 nM or less). Most proteins (ca. 2/3) harboring the highly dense hotspots are membrane-associated. The approach for enrichment of true positive CTL epitopes described in this study, which allowed for over 50% increase in the dataset of known T-cell epitopes of F. tularensis, could be applied in immunoinformatic analyses of many other complex pathogen genomes.
Collapse
Affiliation(s)
- Anat Zvi
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Shahar Rotem
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Erez Bar-Haim
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ofer Cohen
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Avigdor Shafferman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
- * E-mail:
| |
Collapse
|