1
|
Hernández-Mercado A, Barrón-García CB, Romo-Amador J, Córdova-Dávalos LE, Jiménez M, Fernández-Ruiz JC, Castañeda-Delgado JE, Montes de Oca-Luna R, Salinas E, Cervantes-García D. Evaluation of an F Protein-Based Recombinant Protein for Immunization Against Respiratory Syncytial Virus. Viral Immunol 2025. [PMID: 39791530 DOI: 10.1089/vim.2024.0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Respiratory syncytial virus (RSV) is one of the most important etiologies of acute respiratory infections that cause bronchiolitis in children under 5 years of age. Treatments are expensive, no vaccine is available, and this is an important cause of hospitalization. Costimulatory molecules have been reported to be good inducers of antiviral type 1 immune response. This study aimed to generate a recombinant vaccine with the RSV F protein fused to 4-1BBL to evaluate the activation of an antiviral response in vitro and the production of neutralizing antibodies in vivo. The codon-optimized F gene was subcloned into an expression vector as follows: streptavidin core, gene F, and costimulatorytumor necrosis factor receptor superfamily member 9 -TNFRS9- ligand (4-1BBL). After the induction of expression in Escherichia coli C43, the recombinant protein (SA-F3x-4-1BBL, denominated SF4) was purified and verified by western blotting. Cultured RAW264.7 macrophages were stimulated with SF4 protein, then tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2), p38, and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) were analyzed by western blot, and mRNA cytokines were analyzed by RT-qPCR. Finally, male C57BL/6 mice were inoculated with SF4, and the generation of anti-RSV neutralizing antibodies and serum cytokines was examined. SF4 had a size of 84.4 kDa with a 5.6% yield. SA-F-4-1BBL upregulated TRAF2, TNF-α, and interferon (IFN)-γ expression levels and activated p38 mitogen-activated protein kinase and NF-κΒ pathways in RAW264.7 cells. Importantly, antibodies capable of neutralizing RSV infection and producing type 1 cytokines were detected in the sera of immunized animals. These results suggest that the fusion protein SF4 activates the 4-1BBL signaling pathway, resulting in an effective antiviral response mediated by neutralizing antibodies and antiviral cytokines.
Collapse
Affiliation(s)
- Alicia Hernández-Mercado
- Department of Microbiology, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| | | | - Jayline Romo-Amador
- Department of Microbiology, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| | - Laura E Córdova-Dávalos
- Department of Microbiology, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| | - Mariela Jiménez
- Department of Microbiology, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| | - Julio C Fernández-Ruiz
- Medical Research Unit from Zacatecas, Mexican Institute of Social Security, Zacatecas, Mexico
| | - Julio E Castañeda-Delgado
- Medical Research Unit from Zacatecas, Mexican Institute of Social Security, Zacatecas, Mexico
- National Council for the Humanities, Sciences and Technologies, Ciudad de Mexico, Mexico
| | | | - Eva Salinas
- Department of Microbiology, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| | - Daniel Cervantes-García
- Department of Microbiology, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes, Mexico
- National Council for the Humanities, Sciences and Technologies, Ciudad de Mexico, Mexico
| |
Collapse
|
2
|
Mascarelli DE, Rosa RSM, Toscaro JM, Semionatto IF, Ruas LP, Fogagnolo CT, Lima GC, Bajgelman MC. Boosting Antitumor Response by Costimulatory Strategies Driven to 4-1BB and OX40 T-cell Receptors. Front Cell Dev Biol 2021; 9:692982. [PMID: 34277638 PMCID: PMC8277962 DOI: 10.3389/fcell.2021.692982] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/27/2021] [Indexed: 01/01/2023] Open
Abstract
Immunotherapy explores several strategies to enhance the host immune system’s ability to detect and eliminate cancer cells. The use of antibodies that block immunological checkpoints, such as anti–programed death 1/programed death 1 ligand and cytotoxic T-lymphocyte–associated protein 4, is widely recognized to generate a long-lasting antitumor immune response in several types of cancer. Evidence indicates that the elimination of tumors by T cells is the key for tumor control. It is well known that costimulatory and coinhibitory pathways are critical regulators in the activation of T cells. Besides blocking checkpoints inhibitors, the agonistic signaling on costimulatory molecules also plays an important role in T-cell activation and antitumor response. Therefore, molecules driven to costimulatory pathways constitute promising targets in cancer therapy. The costimulation of tumor necrosis factor superfamily receptors on lymphocytes surface may transduce signals that control the survival, proliferation, differentiation, and effector functions of these immune cells. Among the members of the tumor necrosis factor receptor superfamily, there are 4-1BB and OX40. Several clinical studies have been carried out targeting these molecules, with agonist monoclonal antibodies, and preclinical studies exploring their ligands and other experimental approaches. In this review, we discuss functional aspects of 4-1BB and OX40 costimulation, as well as the progress of its application in immunotherapies.
Collapse
Affiliation(s)
- Daniele E Mascarelli
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Rhubia S M Rosa
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Jessica M Toscaro
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Medical School, University of Campinas (UNICAMP), Campinas, Brazil
| | - Isadora F Semionatto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Luciana P Ruas
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Carolinne T Fogagnolo
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Medical School of Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, Brazil
| | - Gabriel C Lima
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Pro Rectory of Graduation, University of São Paulo, São Paulo, Brazil
| | - Marcio C Bajgelman
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil.,Medical School, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
3
|
Wang Y, Wang P, Xu J. Phosphorylation: A Fast Switch For Checkpoint Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:347-398. [PMID: 32185718 DOI: 10.1007/978-981-15-3266-5_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Checkpoint signaling involves a variety of upstream and downstream factors that participate in the regulation of checkpoint expression, activation, and degradation. During the process, phosphorylation plays a critical role. Phosphorylation is one of the most well-documented post-translational modifications of proteins. Of note, the importance of phosphorylation has been emphasized in aspects of cell activities, including proliferation, metabolism, and differentiation. Here we summarize how phosphorylation of specific molecules affects the immune activities with preference in tumor immunity. Of course, immune checkpoints are given extra attention in this book. There are many common pathways that are involved in signaling of different checkpoints. Some of them are integrated and presented as common activities in the early part of this chapter, especially those associated with PD-1/PD-L1 and CTLA-4, because investigations concerning them are particularly abundant and variant. Their distinct regulation is supplementarily discussed in their respective section. As for checkpoints that are so far not well explored, their related phosphorylation modulations are listed separately in the later part. We hope to provide a clear and systematic view of the phosphorylation-modulated immune signaling.
Collapse
Affiliation(s)
- Yiting Wang
- School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Wang
- Shanghai Tenth People's Hospital of Tongji University, School of Medicine, School of Life Sciences and Technology, Tongji University Cancer Center, Tongji University, Shanghai, 200092, China
| | - Jie Xu
- Institutes of Biomedical Sciences, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Tsukahara T, Nakamura SI, Romero-Pèrez GA, Ohwaki M, Yanagisawa T, Kan T. Stimulation of murine cell-mediated immunity by dietary administration of a cell preparation of Enterococcus faecalis strain KH-2 and its possible activity against tumour development in mice. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2018; 37:49-57. [PMID: 30094120 PMCID: PMC6081610 DOI: 10.12938/bmfh.17-021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/09/2018] [Indexed: 01/09/2023]
Abstract
It is well known that dietary lactic acid bacteria (LAB) stimulate cell-mediated immunity such as natural killer (NK) activity in mice. Here, we aimed to assay the immunomodulatory effects of a cell preparation of Enterococcus faecalis strain KH-2 (CPEF). We further evaluated the possibility of antitumour activity caused by CPEF administration, because NK cells actively participate in the prevention of tumour formation. NK cell activity and gene expression of IFN-γ and Perforin 1, which were induced most likely by a synergetic action of their cytotoxic activity, were higher in splenocytes of CPEF-administered mice than they were in control mice. Moreover, unlike those of control mice, the splenocytes of CPEF-administered mice had significantly higher CD28+CD69+/CD4+ and CD28+CD69+/CD8+ ratios that resulted in a survival rate with a tendency toward improvement after 47 days of CPEF administration (p=0.1) in Meth-A fibrosarcoma-bearing mice. In conclusion, we showed that CPEF might be effective in treating Meth-A fibrosarcoma in mice, as it helped increase their survival rate via stimulation of an immune response in splenocytes, which involved systemic cellular immunity processes such as cytotoxic activity, and active T cells.
Collapse
Affiliation(s)
- Takamitsu Tsukahara
- Kyoto Institute of Nutrition and Pathology, 7-2 Furuikedani, Ujitawara-cho, Tsuzuki-gun, Kyoto 610-0231, Japan
| | - Shin-Ichi Nakamura
- Kyoto Institute of Nutrition and Pathology, 7-2 Furuikedani, Ujitawara-cho, Tsuzuki-gun, Kyoto 610-0231, Japan
| | - Gustavo A Romero-Pèrez
- Kyoto Institute of Nutrition and Pathology, 7-2 Furuikedani, Ujitawara-cho, Tsuzuki-gun, Kyoto 610-0231, Japan
| | - Makoto Ohwaki
- Non-Profit Organisation, The Japanese Association of Clinical Research on Supplements, 1-9-24 Shihogi, Hidaka-shi, Saitama 350-1248, Japan
| | - Takaharu Yanagisawa
- Broma Laboratory Ltd., 1-26 Kandasuda-cho, Chiyoda-ku, Tokyo 101-0041, Japan
| | - Tatsuhiko Kan
- Bio-Lab Co., Ltd., 2-1-3 Komagawa, Hidaka-shi, Saitama 350-1249, Japan
| |
Collapse
|
5
|
Evans JC, Malhotra M, Cryan JF, O'Driscoll CM. The therapeutic and diagnostic potential of the prostate specific membrane antigen/glutamate carboxypeptidase II (PSMA/GCPII) in cancer and neurological disease. Br J Pharmacol 2016; 173:3041-3079. [PMID: 27526115 PMCID: PMC5056232 DOI: 10.1111/bph.13576] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/08/2016] [Accepted: 07/25/2016] [Indexed: 12/11/2022] Open
Abstract
Prostate specific membrane antigen (PSMA) otherwise known as glutamate carboxypeptidase II (GCPII) is a membrane bound protein that is highly expressed in prostate cancer and in the neovasculature of a wide variety of tumours including glioblastomas, breast and bladder cancers. This protein is also involved in a variety of neurological diseases including schizophrenia and ALS. In recent years, there has been a surge in the development of both diagnostics and therapeutics that take advantage of the expression and activity of PSMA/GCPII. These include gene therapy, immunotherapy, chemotherapy and radiotherapy. In this review, we discuss the biological roles that PSMA/GCPII plays, both in normal and diseased tissues, and the current therapies exploiting its activity that are at the preclinical stage. We conclude by giving an expert opinion on the future direction of PSMA/GCPII based therapies and diagnostics and hurdles that need to be overcome to make them effective and viable.
Collapse
Affiliation(s)
- James C Evans
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Meenakshi Malhotra
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | |
Collapse
|
6
|
Youlin K, Jian K, Siming L, Li Z, Weiyang H, Chaodong L, Xin G. Potent anti-prostate cancer immune response induced by dendritic cells transduced with recombinant adenoviruses encoding 4-1BBL combined with cytokine-induced killer cells. Immunotherapy 2015; 7:13-20. [PMID: 25572476 DOI: 10.2217/imt.14.92] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM To test the effect of dendritic cells (DCs) transduced with recombinant adenoviruses encoding 4-1BBL combined with cytokine-induced killer cells (CIKs) against prostate cancer. METHOD Flow cytometry was used to detect the surface markers of the co-cultured cells, and cytotoxicity against prostate cancer cells in vitro as well as antitumor activities in vivo were observed. RESULTS Our results showed that Ad-4-1BBL-transduced DCs could increase percentage of CD3(+)CD56(+) cells in CIKs, and CIKs co-cultured with Ad-4-1BBL-transduced DCs could augment the secretion of IL-12 and IFN-γ and decrease TGF-β production. In addition, Ad-4-1BBL-transduced DCs enhanced the cytotoxicity of CIKs against prostate cancer and resulted in inhibition of tumor growth and tumor-bearing animals' survival. CONCLUSION These results demonstrate that 4-1BBL-engineered DCs can improve CIKs cytotoxicity against prostate cancer cells.
Collapse
Affiliation(s)
- Kuang Youlin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Xi HB, Wang GX, Fu B, Liu WP, Li Y. Survivin and PSMA Loaded Dendritic Cell Vaccine for the Treatment of Prostate Cancer. Biol Pharm Bull 2015; 38:827-35. [PMID: 25787895 DOI: 10.1248/bpb.b14-00518] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dendritic cell (DC)-based vaccines are a promising therapeutic modality for cancer. Results from recent trials and approval of the first DC vaccine by the U.S. Food and Drugs Administration for prostate cancer have paved the way for DC-based vaccines. A total of 21 hormone refractory prostate cancer (HRPC) patients with a life expectancy >3 months were randomised into two groups. DC loaded with recombinant Prostate Specific Membrane Antigen (rPSMA) and recombinant Survivin (rSurvivin) peptides was administered as an subcutaneous (s.c.) injection (5×10(6) cells). Docetaxel (75 mg/m(2) intravenous (i.v.)) and prednisone (5 mg, bis in die (b.i.d.)) served as control. Clinical and immunological responses were evaluated. Primary endpoints were safety and feasibility; secondary endpoint was overall survival. Responses were evaluated on day 15, day 30, day 60, and day 90. DC vaccination was well tolerated with no signs of grade 2 toxicity. DC vaccination induced delayed-type hypersensitivity reactivity and an immune response in all patients. Objective Response Rate (ORR) by Response Evaluation Criteria in Solid Tumours (RECIST) was 72.7% (8/11) versus 45.4 (5/11) in the docetaxel arm and immune related response criteria (irRC) was 54.5% (6/11) compared with 27.2% (3/11) in the control arm. The DC arm showed stable disease (SD) in 6 patients, progressive disease (PD) in 3 patients, and partial remission (PR) in two patients compared to SD in 5 patients, PD in 6 patients, and PR in none in the docetaxel arm. There was a cellular response, disease stabilization, no adverse events, and partial remission with the rPSMA and rSurvivin primed DC vaccine.
Collapse
Affiliation(s)
- Hai-Bo Xi
- Department of Urology, The First Affiliated Hospital of Nanchang University
| | | | | | | | | |
Collapse
|
8
|
Targeting of the tumor necrosis factor receptor superfamily for cancer immunotherapy. ISRN ONCOLOGY 2013; 2013:371854. [PMID: 23840967 PMCID: PMC3693168 DOI: 10.1155/2013/371854] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/11/2013] [Indexed: 12/17/2022]
Abstract
The tumor necrosis factor (TNF) ligand and cognate TNF receptor superfamilies constitute an important regulatory axis that is pivotal for immune homeostasis and correct execution of immune responses. TNF ligands and receptors are involved in diverse biological processes ranging from the selective induction of cell death in potentially dangerous and superfluous cells to providing costimulatory signals that help mount an effective immune response. This diverse and important regulatory role in immunity has sparked great interest in the development of TNFL/TNFR-targeted cancer immunotherapeutics. In this review, I will discuss the biology of the most prominent proapoptotic and co-stimulatory TNF ligands and review their current status in cancer immunotherapy.
Collapse
|