1
|
Enk LUB, Hellmig M, Riecken K, Kilian C, Datlinger P, Jauch-Speer SL, Neben T, Sultana Z, Sivayoganathan V, Borchers A, Paust HJ, Zhao Y, Asada N, Liu S, Agalioti T, Pelczar P, Wiech T, Bock C, Huber TB, Huber S, Bonn S, Gagliani N, Fehse B, Panzer U, Krebs CF. Targeting T cell plasticity in kidney and gut inflammation by pooled single-cell CRISPR screening. Sci Immunol 2024; 9:eadd6774. [PMID: 38875317 DOI: 10.1126/sciimmunol.add6774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 05/23/2024] [Indexed: 06/16/2024]
Abstract
Pro-inflammatory CD4+ T cells are major drivers of autoimmune diseases, yet therapies modulating T cell phenotypes to promote an anti-inflammatory state are lacking. Here, we identify T helper 17 (TH17) cell plasticity in the kidneys of patients with antineutrophil cytoplasmic antibody-associated glomerulonephritis on the basis of single-cell (sc) T cell receptor analysis and scRNA velocity. To uncover molecules driving T cell polarization and plasticity, we established an in vivo pooled scCRISPR droplet sequencing (iCROP-seq) screen and applied it to mouse models of glomerulonephritis and colitis. CRISPR-based gene targeting in TH17 cells could be ranked according to the resulting transcriptional perturbations, and polarization biases into T helper 1 (TH1) and regulatory T cells could be quantified. Furthermore, we show that iCROP-seq can facilitate the identification of therapeutic targets by efficient functional stratification of genes and pathways in a disease- and tissue-specific manner. These findings uncover TH17 to TH1 cell plasticity in the human kidney in the context of renal autoimmunity.
Collapse
Affiliation(s)
- Leon U B Enk
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Hellmig
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristoffer Riecken
- Department of Stem Cell Transplantation, Research Department Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Kilian
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Datlinger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Saskia L Jauch-Speer
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Neben
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Zeba Sultana
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Varshi Sivayoganathan
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alina Borchers
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Joachim Paust
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yu Zhao
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nariaki Asada
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shuya Liu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Theodora Agalioti
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Penelope Pelczar
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Institute of Pathology, Division of Nephropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence and Decision Support, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Gagliani
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Boris Fehse
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Stem Cell Transplantation, Research Department Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulf Panzer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian F Krebs
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Kaeuferle T, Stief TA, Canzar S, Kutlu NN, Willier S, Stenger D, Ferrada‐Ernst P, Habjan N, Peters AE, Busch DH, Feuchtinger T. Genome‐wide off‐target analyses of CRISPR/Cas9‐mediated T‐cell receptor engineering in primary human T cells. Clin Transl Immunology 2022; 11:e1372. [PMID: 35106156 PMCID: PMC8784854 DOI: 10.1002/cti2.1372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 11/04/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
Objectives Exploiting the forces of human T cells for treatment has led to the current paradigm of emerging immunotherapy strategies. Genetic engineering of the T‐cell receptor (TCR) redirects specificity, ablates alloreactivity and brings significant progress and off‐the‐shelf options to emerging adoptive T‐cell transfer (ACT) approaches. Targeted CRISPR/Cas9‐mediated double‐strand breaks in the DNA enable knockout or knock‐in engineering. Methods Here, we perform CRISPR/Cas9‐mediated TCR knockout using a therapeutically relevant ribonucleoprotein (RNP) delivery method to assess the safety of genetically engineered T‐cell products. Whole‐genome sequencing was performed to analyse whether CRISPR/Cas9‐mediated DNA double‐strand break at the TCR locus is associated with off‐target events in human primary T cells. Results TCRα chain and TCRβ chain knockout leads to high on‐target InDel frequency and functional knockout. None of the predicted off‐target sites could be confirmed experimentally, whereas whole‐genome sequencing and manual Integrative Genomics Viewer (IGV) review revealed 9 potential low‐frequency off‐target events genome‐wide. Subsequent amplification and targeted deep sequencing in 7 of 7 evaluable loci did not confirm these low‐frequency InDels. Therefore, off‐target events are unlikely to be caused by the CRISPR/Cas9 engineering. Conclusion The combinatorial approach of whole‐genome sequencing and targeted deep sequencing confirmed highly specific genetic engineering using CRISPR/Cas9‐mediated TCR knockout without potentially harmful exonic off‐target effects.
Collapse
Affiliation(s)
- Theresa Kaeuferle
- Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation Dr. von Hauner Children’s Hospital University Hospital, LMU Munich Munich Germany
- German Center for Infection Research (DZIF) Munich Germany
| | - Tanja A Stief
- Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation Dr. von Hauner Children’s Hospital University Hospital, LMU Munich Munich Germany
- German Center for Infection Research (DZIF) Munich Germany
| | - Stefan Canzar
- Gene Center Ludwig Maximilians University of Munich Munich Germany
| | - Nayad N Kutlu
- Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation Dr. von Hauner Children’s Hospital University Hospital, LMU Munich Munich Germany
| | - Semjon Willier
- Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation Dr. von Hauner Children’s Hospital University Hospital, LMU Munich Munich Germany
| | - Dana Stenger
- Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation Dr. von Hauner Children’s Hospital University Hospital, LMU Munich Munich Germany
| | - Paulina Ferrada‐Ernst
- Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation Dr. von Hauner Children’s Hospital University Hospital, LMU Munich Munich Germany
| | - Nicola Habjan
- Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation Dr. von Hauner Children’s Hospital University Hospital, LMU Munich Munich Germany
| | - Annika E Peters
- Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation Dr. von Hauner Children’s Hospital University Hospital, LMU Munich Munich Germany
| | - Dirk H Busch
- German Center for Infection Research (DZIF) Munich Germany
- Institute for Medical Microbiology, Immunology and Hygiene Technische Universität München (TUM) Munich Germany
| | - Tobias Feuchtinger
- Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation Dr. von Hauner Children’s Hospital University Hospital, LMU Munich Munich Germany
- German Center for Infection Research (DZIF) Munich Germany
| |
Collapse
|
3
|
Stief TA, Kaeuferle T, Müller TR, Döring M, Jablonowski LM, Schober K, Feucht J, Dennehy KM, Willier S, Blaeschke F, Handgretinger R, Lang P, Busch DH, Feuchtinger T. Protective T cell receptor identification for orthotopic reprogramming of immunity in refractory virus infections. Mol Ther 2022; 30:198-208. [PMID: 34058386 PMCID: PMC8753271 DOI: 10.1016/j.ymthe.2021.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/30/2021] [Accepted: 05/25/2021] [Indexed: 01/07/2023] Open
Abstract
Viral infections cause life-threatening disease in immunocompromised patients and especially following transplantation. T cell receptor (TCR) engineering redirects specificity and can bring significant progress to emerging adoptive T cell transfer (ACT) approaches. T cell epitopes are well described, although knowledge is limited on which TCRs mediate protective immunity. In this study, refractory adenovirus (AdV) infection after hematopoietic stem cell transplantation (HSCT) was treated with ACT of highly purified Hexon5-specific T cells using peptide major histocompatibility complex (pMHC)-Streptamers against the immunodominant human leukocyte antigen (HLA)-A∗0101-restricted peptide LTDLGQNLLY. AdV was successfully controlled through this oligoclonal ACT. Novel protective TCRs were isolated ex vivo and preclinically engineered into the TCR locus of allogeneic third-party primary T cells by CRISPR-Cas9-mediated orthotopic TCR replacement. Both TCR knockout and targeted integration of the new TCR in one single engineering step led to physiological expression of the transgenic TCR. Reprogrammed TCR-edited T cells showed strong virus-specific functionality such as cytokine release, effector marker upregulation, and proliferation capacity, as well as cytotoxicity against LTDLGQNLLY-presenting and AdV-infected targets. In conclusion, ex vivo isolated TCRs with clinical proven protection through ACT could be redirected into T cells from naive third-party donors. This approach ensures that transgenic TCRs are protective with potential off-the-shelf use and widened applicability of ACT to various refractory emerging viral infections.
Collapse
Affiliation(s)
- Tanja A. Stief
- Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich Germany,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Theresa Kaeuferle
- Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich Germany,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Thomas R. Müller
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Michaela Döring
- Department I – General Pediatrics, Hematology/Oncology, University Hospital Tubingen, Children’s Hospital, Tubingen, Germany
| | - Lena M. Jablonowski
- Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich Germany
| | - Kilian Schober
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Judith Feucht
- Department I – General Pediatrics, Hematology/Oncology, University Hospital Tubingen, Children’s Hospital, Tubingen, Germany,Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kevin M. Dennehy
- German Center for Infection Research (DZIF), Partner Site Tubingen, Tubingen, Germany,Institute for Laboratory Medicine and Microbiology, University Hospital Augsburg, Germany
| | - Semjon Willier
- Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich Germany
| | - Franziska Blaeschke
- Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich Germany,Department I – General Pediatrics, Hematology/Oncology, University Hospital Tubingen, Children’s Hospital, Tubingen, Germany
| | - Rupert Handgretinger
- Department I – General Pediatrics, Hematology/Oncology, University Hospital Tubingen, Children’s Hospital, Tubingen, Germany
| | - Peter Lang
- Department I – General Pediatrics, Hematology/Oncology, University Hospital Tubingen, Children’s Hospital, Tubingen, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Tobias Feuchtinger
- Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich Germany,Department I – General Pediatrics, Hematology/Oncology, University Hospital Tubingen, Children’s Hospital, Tubingen, Germany,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany,Corresponding author: Tobias Feuchtinger, MD, Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Dr. von Hauner Children’s Hospital, LMU Munich, Lindwurmstrasse 4, 80337 Munich, Germany.
| |
Collapse
|
4
|
Migliori E, Chang M, Muranski P. Restoring antiviral immunity with adoptive transfer of ex-vivo generated T cells. Curr Opin Hematol 2018; 25:486-493. [PMID: 30281036 DOI: 10.1097/moh.0000000000000461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Latent viruses such as cytomegalovirus (CMV), Epstein-Barr virus (EBV) and adenovirus (ADV) often reactivate in immunocompromised patients, contributing to poor clinical outcomes. A rapid reconstitution of antiviral responses via adoptive transfer of virus-specific T cells (VSTs) can prevent or eradicate even refractory infections. Here, we evaluate this strategy and the associated methodological, manufacturing and clinical advances. RECENT FINDINGS From the early pioneering but cumbersome efforts to isolate CMV-specific T cell clones, new approaches and techniques have been developed to provide quicker, safer and broader-aimed ex-vivo antigen-specific cells. New manufacturing strategies, such as the use of G-Rex flasks or 'priming' with a library of overlapping viral peptides, allow for culturing greater numbers of cells that could be patient-specific or stored in cell banks for off-the-shelf applications. Rapid isolation of T cells using major histocompatibility complex tetramer or cytokine capture approaches, or genetic reprogramming of cells to target viral antigens can accelerate the generation of potent cellular products. SUMMARY Advances in the ex-vivo generation of VSTs in academic medical centres and as off-the-shelf blood bank-based or commercially produced reagents are likely to result in broader accessibility and possible manufacturing cost reduction of these cell products, and will open new therapeutic prospects for vulnerable and critically ill immunocompromised patients.
Collapse
Affiliation(s)
- Edoardo Migliori
- Columbia Center for Translational Immunology (CCTI), Division of Hematology/Oncology, Columbia University Medical Center, New York, New York, USA
| | | | | |
Collapse
|
5
|
Xin G, Schauder DM, Zander R, Cui W. Two is better than one: advances in pathogen-boosted immunotherapy and adoptive T-cell therapy. Immunotherapy 2017; 9:837-849. [PMID: 28877635 PMCID: PMC5941714 DOI: 10.2217/imt-2017-0055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/11/2017] [Indexed: 01/31/2023] Open
Abstract
The recent tremendous successes in clinical trials take cancer immunotherapy into a new era and have attracted major attention from both academia and industry. Among the variety of immunotherapy strategies developed to boost patients' own immune systems to fight against malignant cells, the pathogen-based and adoptive cell transfer therapies have shown the most promise for treating multiple types of cancer. Pathogen-based therapies could either break the immune tolerance to enhance the effectiveness of cancer vaccines or directly infect and kill cancer cells. Adoptive cell transfer can induce a strong durable antitumor response, with recent advances including engineering dual specificity into T cells to recognize multiple antigens and improving the metabolic fitness of transferred cells. In this review, we focus on the recent prospects in these two areas and summarize some ongoing studies that represent potential advancements for anticancer immunotherapy, including testing combinations of these two strategies.
Collapse
Affiliation(s)
- Gang Xin
- Blood Research Institute, Blood Center of Wisconsin, 8727 West Watertown Plank Road, Milwaukee, WI 53213, USA
| | - David M Schauder
- Blood Research Institute, Blood Center of Wisconsin, 8727 West Watertown Plank Road, Milwaukee, WI 53213, USA
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, 8701 West Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Ryan Zander
- Blood Research Institute, Blood Center of Wisconsin, 8727 West Watertown Plank Road, Milwaukee, WI 53213, USA
| | - Weiguo Cui
- Blood Research Institute, Blood Center of Wisconsin, 8727 West Watertown Plank Road, Milwaukee, WI 53213, USA
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, 8701 West Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
6
|
Mancini N, Marrone L, Clementi N, Sautto GA, Clementi M, Burioni R. Adoptive T-cell therapy in the treatment of viral and opportunistic fungal infections. Future Microbiol 2016; 10:665-82. [PMID: 25865200 DOI: 10.2217/fmb.14.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Viral infections and opportunistic fungal pathogens represent a major menace for immunocompromised patients. Despite the availability of antifungal and antiviral drugs, mortality in these patients remains high, underlining the need of novel therapeutic options based on completely different strategies. This review describes the potential of several T-cell-based therapeutic approaches in the prophylaxis and treatment of infectious diseases with a particular focus on persistent viral infections and opportunistic fungal infections, as these mostly affect immunocompromised patients.
Collapse
Affiliation(s)
- Nicasio Mancini
- Laboratorio di Microbiologia e Virologia, Università 'Vita-Salute' San Raffaele, DIBIT2, via Olgettina 58, 20132, Milan, Italy
| | | | | | | | | | | |
Collapse
|
7
|
Cancer-testis antigen SLLP1 represents a promising target for the immunotherapy of multiple myeloma. J Transl Med 2015; 13:197. [PMID: 26088750 PMCID: PMC4474344 DOI: 10.1186/s12967-015-0562-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 06/03/2015] [Indexed: 11/22/2022] Open
Abstract
Background Most patients with multiple myeloma (MM) will relapse after an initial response and eventually succumb to their disease. This is due to the persistence of chemotherapy-resistant tumor cells in the patients’ bone marrow (BM) and immunotherapeutic approaches could contribute to eradicating these remaining cells. We evaluated SLLP1 as a potential
immunotherapeutic target for MM. Methods We determined SLLP1 expression in myeloma cell lines and 394 BM samples from myeloma patients (n = 177) and BM samples from healthy donors (n = 11). 896 blood samples and 64 BM samples from myeloma patients (n = 263) and blood from healthy donors (n = 112) were analyzed for anti-SLLP1 antibodies. Seropositive patients were evaluated regarding SLLP1-specific T cells. Results Most cell lines showed SLLP1 RNA and protein expression while it was absent from normal BM. Of 177 patients 41% evidenced SLLP1 expression at least once during the course of their disease and 44% of newly diagnosed patients were SLLP1-positive. Expression of SLLP1 was associated with adverse cytogenetics and with negative prognostic factors including the patient’s age, number of BM-infiltrating plasma cells, serum albumin, β2-microglobulin, creatinine, and hemoglobin. Among patients treated with allogeneic stem cell transplantation those with SLLP1 expression showed a trend towards a reduced overall survival. Spontaneous anti-SLLP humoral immunity was detectable in 9.5% of patients but none of the seropositive patients evidenced SLLP1-specific T cells. However, antigen-specific T cells could readily be induced in vitro after stimulation with SLLP1. Conclusions SLLP1 represents a promising target for the immunotherapy of MM, in particular for the adoptive transfer of T cell receptor-transduced T cells.
Collapse
|
8
|
TALEN-mediated editing of endogenous T-cell receptors facilitates efficient reprogramming of T lymphocytes by lentiviral gene transfer. Gene Ther 2014; 21:539-48. [PMID: 24670996 DOI: 10.1038/gt.2014.26] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 12/16/2022]
Abstract
Adoptive immunotherapy with T lymphocytes expressing transgenic T-cell receptors (TCRs) has shown significant clinical efficacy in various malignant diseases. However, concurrent expression of endogenous and transgenic TCRs in one and the same T cell may impair efficacy and cause safety problems owing to mispairings. The most elegant approach to address these issues is the complete shutoff of the endogenous receptor chains by genome editing. To this end, we designed TCR-α and TCR-β-specific pairs of transcription activator-like effector nucleases (TALENs). TALENs were delivered into T cells using an optimized messenger RNA-electroporation protocol. Based thereon, we obtained precise and highly efficient knockout (KO) in Jurkat (TCR-α: 59.7 ± 4.0%, TCR-β: 37.4 ± 7.3%) as well as primary T cells (TCR-α: 58.0 ± 15.0%, TCR-β: 41.0 ± 17.6%). Moreover, a successive KO strategy for the endogenous TCR chains combined with subsequent transduction of the respective chains of an Influenza virus-specific model TCR led to complete reprogramming of T cells with strongly improved expression and functionality of transgenic TCRs. In conclusion, we have developed novel means for the efficient genome editing in primary T lymphocytes.
Collapse
|