1
|
Titball RW. The Molecular Architecture and Mode of Action of Clostridium perfringens ε-Toxin. Toxins (Basel) 2024; 16:180. [PMID: 38668605 PMCID: PMC11053738 DOI: 10.3390/toxins16040180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024] Open
Abstract
Clostridium perfringens ε-toxin has long been associated with a severe enterotoxaemia of livestock animals, and more recently, was proposed to play a role in the etiology of multiple sclerosis in humans. The remarkable potency of the toxin has intrigued researchers for many decades, who suggested that this indicated an enzymatic mode of action. Recently, there have been major breakthroughs by finding that it is a pore-forming toxin which shows exquisite specificity for cells bearing the myelin and lymphocyte protein (MAL) receptor. This review details the molecular structures of the toxin, the evidence which identifies MAL as the receptor and the possible roles of other cell membrane components in toxin binding. The information on structure and mode of action has allowed the functions of individual amino acids to be investigated and has led to the creation of mutants with reduced toxicity that could serve as vaccines. In spite of this progress, there are still a number of key questions around the mode of action of the toxin which need to be further investigated.
Collapse
|
2
|
Du J, Meki I, Li Q, Liu Y, Zhu Z, Pan C, Xia Y, Fu L, Yang L, Zhang S, Yin C, Luo Y, Wang T, Liu B, Chen X. A non-toxic recombinant Clostridium septicum α toxin induces protective immunity in mice and rabbits. Toxicon 2023; 233:107234. [PMID: 37543293 DOI: 10.1016/j.toxicon.2023.107234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Clostridium septicum alpha toxin (CSA) plays significant roles in ruminant's braxy. Genetically engineered CSA has been shown to function as a potential vaccine candidate in the prevention of the disease caused by Clostridium septicum. In the present study, we synthesized a non-toxic recombinant, rCSAm4/TMD by introducing four amino acid substitutions (C86L/N296A/H301A/W342A) and 11-amino-acid deletion (residues 212 to 222). Compared to recombinant CSA, rCSAm4/TMD showed no cytotoxicity to MDCK cells and was not fatal to mice. Moreover, rCSAm4/TMD could protect immunized mice against 5 × mouse LD100 (100% lethal dose) of crude CSA without obvious pathological change. Most importantly, rabbits immunized with rCSAm4/TMD produced high titers of neutralizing antibodies which protected the rabbits against crude CSA challenge. These data suggest that genetically detoxified rCSAm4/TMD is a potential subunit vaccine candidate against braxy.
Collapse
Affiliation(s)
- Jige Du
- China Institute of Veterinary Drug Control, Beijing, People's Republic of China
| | - Irene Meki
- International Atomic Energy Agency, Vienna, Austria
| | - Qianlin Li
- China Institute of Veterinary Drug Control, Beijing, People's Republic of China
| | - Ying Liu
- China Institute of Veterinary Drug Control, Beijing, People's Republic of China
| | - Zhen Zhu
- China Institute of Veterinary Drug Control, Beijing, People's Republic of China
| | - Chenfan Pan
- China Institute of Veterinary Drug Control, Beijing, People's Republic of China
| | - Yingju Xia
- China Institute of Veterinary Drug Control, Beijing, People's Republic of China
| | - Lizhi Fu
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Liu Yang
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Suhui Zhang
- Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Chunsheng Yin
- China Institute of Veterinary Drug Control, Beijing, People's Republic of China
| | - Yufeng Luo
- China Institute of Veterinary Drug Control, Beijing, People's Republic of China
| | - Tuanjie Wang
- China Institute of Veterinary Drug Control, Beijing, People's Republic of China.
| | - Bo Liu
- China Institute of Veterinary Drug Control, Beijing, People's Republic of China; International Atomic Energy Agency, Vienna, Austria.
| | - Xiaoyun Chen
- China Institute of Veterinary Drug Control, Beijing, People's Republic of China.
| |
Collapse
|
3
|
Du J, Wang T, Xu L, Wang C, Liu Y, Pan C, Chen X, Zhu Z, Luo Y, Yin C. Clostridium perfringens epsilon prototoxin mutant rpETX Y30A/Y71A/H106P/Y196A as a vaccine candidate against enterotoxemia. Vaccine 2023:S0264-410X(23)00719-3. [PMID: 37357076 DOI: 10.1016/j.vaccine.2023.06.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
Epsilon toxin (ETX) is secreted by Clostridium perfringens (C. perfringens)as a relatively inactive prototoxin (pETX), which is enzymatically activated to ETX by removing carboxy-terminal and amino-terminal peptides. Genetically engineered ETX mutants have been shown to function as potential vaccine candidates in the prevention of the enterotoxemia caused by C. perfringens. In the present study, two recombinant site-directed mutants of pETX, rpETXY30A/Y71A/H106P/Y196A (rpETXm41) and rpETXY30A/H106P/Y196A/F199E (rpETXm42), were synthesized by mutating four essential amino acid residues (Tyr30, Tyr71, His106, Tyr196 or Phe199). Compared to recombinant pETX (rpETX), both rpETXm41 and rpETXm42 lacked the detectable toxicity in MDCK cells and mice, which suggested that both rpETXm41 and rpETXm42 are sufficiently safe to be vaccine candidates. Despite the fact that rpETXm41 and rpETXm42 were reactogenic with polyclonal antibodies against crude ETX, both single- and double-dose vaccination (Vs and Vd, respectively) of rpETXm41 induced a higher level of IgG titer and protection in mice than that of rpETXm42. Therefore, we selected rpETXm41 for the further study. Sheep received Vs of 150 μg rpETXm41 developed significant levels of toxin-neutralizing antibodies persisting for at least 6 months, which conferred protection against crude ETX challenge without microscopic lesions. These data suggest that genetically detoxified rpETXY30A/Y71A/H106P/Y196A could form the basis of a next-generation enterotoxemia vaccine.
Collapse
Affiliation(s)
- Jige Du
- China Institute of Veterinary Drug Control, Beijing, PR China.
| | - Tuanjie Wang
- China Institute of Veterinary Drug Control, Beijing, PR China
| | - Lei Xu
- China Institute of Veterinary Drug Control, Beijing, PR China
| | - Cong Wang
- China Animal Husbandry Industry Co., Ltd., Beijing 100070, PR China
| | - Ying Liu
- China Institute of Veterinary Drug Control, Beijing, PR China
| | - Chenfan Pan
- China Institute of Veterinary Drug Control, Beijing, PR China
| | - Xiaoyun Chen
- China Institute of Veterinary Drug Control, Beijing, PR China
| | - Zhen Zhu
- China Institute of Veterinary Drug Control, Beijing, PR China
| | - Yufeng Luo
- China Institute of Veterinary Drug Control, Beijing, PR China
| | - Chunsheng Yin
- China Institute of Veterinary Drug Control, Beijing, PR China.
| |
Collapse
|
4
|
Xu J, Li D, Kang L, Liu T, Huang J, Li J, Lv J, Wang J, Gao S, Li Y, Yuan B, Zhao B, Wang J, Xin W. Systematic evaluation of membrane-camouflaged nanoparticles in neutralizing Clostridium perfringens ε-toxin. J Nanobiotechnology 2023; 21:95. [PMID: 36932366 PMCID: PMC10021051 DOI: 10.1186/s12951-023-01852-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
Clostridium perfringens ε-toxin (ETX) is the main toxin leading to enterotoxemia of sheep and goats and is classified as a potential biological weapon. In addition, no effective treatment drug is currently available in clinical practice for this toxin. We developed membrane-camouflaged nanoparticles (MNPs) with different membrane origins to neutralize ETX and protect the host from fatal ETX intoxication. We evaluated the safety and therapeutic efficacy of these MNPs in vitro and in vivo. Compared with membranes from karyocytes, such as Madin-Darby canine kidney (MDCK) cells and mouse neuroblastoma N2a cells (N2a cells), membrane from erythrocytes, which do not induce any immune response, are superior in safety. The protective ability of MNPs was evaluated by intravenous injection and lung delivery. We demonstrate that nebulized inhalation is as safe as intravenous injection and that both modalities can effectively protect mice against ETX. In particular, pulmonary delivery of nanoparticles more effectively treated the challenge of inhaled toxins than intravenously injected nanoparticles. Moreover, MNPs can alter the biological distribution of ETX among different organs in the body, and ETX was captured, neutralized and slowly delivered to the liver and spleen, where nanoparticles with ETX could be phagocytized and metabolized. This demonstrates how MNPs treat toxin infections in vivo. Finally, we injected the MNPs into mice in advance to find out whether MNPs can provide preventive protection, and the results showed that the long-cycle MNPs could provide at least a 3-day protection in mice. These findings demonstrate that MNPs provide safe and effective protection against ETX intoxication, provide new insights into membrane choices and delivery routes of nanoparticles, and new evidence of the ability of nanoparticles to provide preventive protection against infections.
Collapse
Affiliation(s)
- Jinglin Xu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Dongxue Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Lin Kang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Tingting Liu
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jing Huang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jiaxin Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jing Lv
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jing Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Shan Gao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Yanwei Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Bing Yuan
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Baohua Zhao
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China.
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China.
| | - Wenwen Xin
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China.
| |
Collapse
|
5
|
Huang J, Zhao B, Liu T, Kang L, Li J, Guo Z, Chen M, Gao S, Wang J, Li Y, Wang J, Xin W. Statins as Potential Preventative Treatment of ETX and Multiple Pore-Forming Toxin-Induced Diseases. Int J Mol Sci 2023; 24:ijms24065414. [PMID: 36982489 PMCID: PMC10048941 DOI: 10.3390/ijms24065414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Epsilon toxin (ETX), produced by type B and D strains of Clostridium perfringens, can cause fatal enterotoxaemia in ruminant animals, particularly sheep, cattle, and goats. Previous studies show that the cytotoxicity of ETX is dependent on the integrity of lipid rafts, the maintenance of which is ensured by cholesterol. Zaragozic acid (ZA) is a statin drug that reduces the synthesis of squalene, which is responsible for cholesterol synthesis. In this study, ZA significantly reduced the toxicity of ETX in Madin–Darby canine kidney (MDCK) cells. We show that ZA does not affect the binding of ETX to MDCK cells, but propidium iodide staining (PI) and Western blotting confirmed that ZA significantly disrupts the ability of ETX to form pores or oligomers in MDCK cells. Additionally, ZA decreased the phosphatidylserine exposure on the plasma membrane and increased the Ca2+ influx of the cells. Results of density gradient centrifugation suggest that ZA decreased the number of lipid rafts in MDCK membranes, which probably contributed to the attenuation of pore-formation. Moreover, ZA protected mice against ETX in vivo. All mice pre-treated with ZA for 48 h before exposure to an absolute lethal dose of ETX (6400 ng/kg) survived. In summary, these findings provide an innovative method to prevent ETX intoxication. Considering many pore-forming toxins require lipid rafts, we tested and found ZA also inhibited the toxicity of other toxins such as Clostridium perfringens Net B and β-toxin (CPB) and Staphylococcus aureus α-hemolysin (Hla). We expect ZA can thus be developed as a broad-spectrum medicine for the treatment of multiple toxins. In addition, other statins, such as lovastatin (LO), also reduced the toxicity of ETX. These findings indicate that statin medicines are potential candidates for preventing and treating multiple toxin-induced diseases.
Collapse
Affiliation(s)
- Jing Huang
- Life Science Institute, Hebei Normal University, Shijiazhuang 050024, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Baohua Zhao
- Life Science Institute, Hebei Normal University, Shijiazhuang 050024, China
| | - Tingting Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Lin Kang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Jiaxin Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Zishuo Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Ming Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Shan Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Jing Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Yanwei Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
- Correspondence: (J.W.); (W.X.)
| | - Wenwen Xin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China
- Correspondence: (J.W.); (W.X.)
| |
Collapse
|
6
|
A non-toxic recombinant bivalent chimeric protein rETX m3CSA m4/TMD as a potential vaccine candidate against enterotoxemia and braxy. Vaccine 2023; 41:1232-1238. [PMID: 36635138 DOI: 10.1016/j.vaccine.2022.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 01/11/2023]
Abstract
Clostridium perfringens epsilon toxin (ETX) and Clostridium septicum alpha toxin (CSA) are lethal and necrotizing toxins, which play key roles in enterotoxemia and braxy of ruminants, respectively. In the present study, we synthesized a bivalent chimeric protein rETXm3CSAm4/TMD comprising ETXm3 (Y30A/H106P/Y196A) and CSAm4/TMD (C86L/N296A/H301A/W342A and a deletion of residues 212 to 222). Compared with recombinant ETX and recombinant CSA, rETXm3CSAm4/TMD showed no cytotoxicity in Madin-Darby Canine Kidney cells and was not fatal to mice. Moreover, rETXm3CSAm4/TMD could protect immunized mice against 10 × mouse LD100 of crude ETX or 3 × mouse LD100 of crude CSA without obvious histopathologic difference. Most importantly, both rabbits and sheep immunized with rETXm3CSAm4/TMD produced high titers of neutralizing antibody which protected the animals against the challenge with crude ETX or crude CSA. These data suggest that genetically detoxified rETXm3CSAm4/TMD is a potential subunit vaccine candidate against enterotoxemia and braxy.
Collapse
|
7
|
Geng Z, Kang L, Huang J, Gao S, Wang J, Yuan Y, Li Y, Wang J, Xin W. Epsilon toxin from Clostridium perfringens induces toxic effects on skin tissues and HaCaT and human epidermal keratinocytes. Toxicon 2021; 198:102-110. [PMID: 33965432 DOI: 10.1016/j.toxicon.2021.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/26/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022]
Abstract
Epsilon toxin (ETX) is a key pathogenic factor of C. perfringens type B and D, causing fatal enterotoxemia in sheep and goats. Excessive production of ETX increases intestinal permeability; its entrance into the bloodstream leads to severe edema in organs such as the brain and kidneys. At present, very few cell lines are known to be sensitive to ETX, with the most sensitive cell model for in vitro research being the MDCK cell line. Recently, more tissue-derived cell lines have been shown to be sensitive to ETX, but the mechanism of cytotoxicity remains unknown. Herein, for the first time, we aimed to evaluate the effects of ETX on HaCaT keratinocytes and human epidermal keratinocytes (HEKa). In addition, the median lethal dose of subcutaneous injection of ETX in mice was 109 ng/kg. At this dose, ETX rapidly entered the blood circulation, causing hemorrhage and edema in the brain and kidneys. ETX also increased the expression of aquaporin 3 in the muscle layer and hair follicles of the skin. We further showed the presence of the MAL protein in HaCaT keratinocytes and HEKa and skin tissues, supporting the hypothesis that it is a key element in the mechanism of cytotoxicity of ETX. In conclusion, skin cell lines were used for the first time as a model for studying the toxic effects of ETX, which will help elucidate the cytotoxicity induced by ETX and the related molecular mechanisms.
Collapse
Affiliation(s)
- Zhijun Geng
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, 233001, Anhui Province, PR China; State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, PR China
| | - Lin Kang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, PR China
| | - Jing Huang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, PR China; Life Science Institute of Hebei Normal University, Shijiazhuang, 050011, Hebei Province, PR China
| | - Shan Gao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, PR China
| | - Jing Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, PR China
| | - Yuan Yuan
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, PR China
| | - Yanwei Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, PR China
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, PR China.
| | - Wenwen Xin
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, PR China.
| |
Collapse
|
8
|
PENG X, LI X, PENG G, FENG L, JIANG Y, LUO Y. Recombinant unpurified rETX H106P/ CTB-rETX Y196E protects rabbits against Clostridium perfringens epsilon toxin. J Vet Med Sci 2021; 83:441-446. [PMID: 33551442 PMCID: PMC8025428 DOI: 10.1292/jvms.20-0385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/19/2021] [Indexed: 11/22/2022] Open
Abstract
Epsilon toxin (ETX), produced by Clostridium perfringens types B and D, has been touted as a potential biological weapon and is known to induce fatal enterotoxemia in a variety of livestock animals. For the efficient production of recombinant proteins with the objective of investigating the effects of different recombinant vaccines against ETX, a bicistronic design (BCD) expression system including the ETX coding sequence with mutation of amino acid 106 from Histidine to Proline (ETXH106P) in the first cistron, followed by Cholera Toxin B (CTB) linked with the ETX coding sequence with mutation of amino acid 196 from Tyrosine to Glutamic acid (ETXY196E) in the second cistron, was generated under the control of a single promoter. Rabbits were immunized twice with five inactivated recombinant Escherichia coli (E. coli) vaccines containing 100 µg/ml of the recombinant mutant rETXH106P/CTB-rETXY196E proteins mixed with different adjuvants. Apart from rETXH106P/CTB-rETXY196E-IMS1313-vaccinated rabbits, the neutralizing antibody titers of rETXH106P/CTB-rETXY196E-vaccinated rabbits were higher after the initial immunization than those administered the ETX toxoid or current commercial vaccines. rETXH106P/CTB-rETXY196E mixed with ISA201 induced the highest neutralizing antibody titer of 120 after the first immunization, suggesting that 0.1 ml of pooled sera could neutralize 120× mouse LD100 (100% lethal dose) of ETX. Following the second vaccination, rETXH106P/CTB-rETXY196E mixed with ISA201 or GR208 produced the highest neutralizing titer of 800. Rabbits from all vaccinated groups were completely protected from a 2× rabbit LD100 of ETX challenge. These results show that these novel recombinant proteins can induce a strong immune response and represent potential targets for the development of a commercial vaccine against the C. perfringens epsilon toxin.
Collapse
Affiliation(s)
- Xiaobing PENG
- Department of Bacterial Biologics, China Institute of Veterinary Drug Control, No. 8 Zhongguancun South Street, Beijing 100-081,
China
| | - Xuni LI
- Department of Bacterial Biologics, China Institute of Veterinary Drug Control, No. 8 Zhongguancun South Street, Beijing 100-081,
China
| | - Guorui PENG
- Department of Bacterial Biologics, China Institute of Veterinary Drug Control, No. 8 Zhongguancun South Street, Beijing 100-081,
China
| | - Lifang FENG
- Beijing Zhonghai Biotech Co., Ltd., No. 8 Zhongguancun South Street, Beijing 100-081, China
| | - Yuwen JIANG
- Department of Bacterial Biologics, China Institute of Veterinary Drug Control, No. 8 Zhongguancun South Street, Beijing 100-081,
China
| | - Yufeng LUO
- Department of Bacterial Biologics, China Institute of Veterinary Drug Control, No. 8 Zhongguancun South Street, Beijing 100-081,
China
| |
Collapse
|
9
|
Etx-Y71A as a non-toxic mutant of Clostridium perfringens epsilon toxin induces protective immunity in mice and sheep. Vaccine 2020; 38:6553-6561. [PMID: 32788135 DOI: 10.1016/j.vaccine.2020.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/25/2020] [Accepted: 08/03/2020] [Indexed: 11/21/2022]
Abstract
Epsilon toxin (Etx) is an extremely potent toxin produced by Clostridium perfringens toxinotypes B and D, which cause fatal enterotoxemia in many livestock species, mainly sheep and goats. Our previous study demonstrated that the aromatic amino acid (AA) residue at position 71 in domain III of Etx is needed for its cytotoxic activity toward MDCK cells. Here, we first determined that Etx mutants with non-aromatic AA substitutions at Tyr71 lost lethality in mice, indicating that the aromatic AA residue at position 71 is a toxicity determinant of Etx in vivo. After intravenous injection with a high dose of the trypsin-activated Etx-Y71A mutant, mice did not show any histopathological lesions, and confocal microscopy observations further showed that Etx-Y71A lost the ability to cross the blood-brain barrier of the mice. These results suggested that the Etx-Y71A mutant is sufficiently safe in vivo to be a vaccine candidate. Furthermore, the immune efficacy of Etx-Y71A was evaluated in model and host animals. Mice inoculated with this mutant produced high levels of neutralizing antibodies and were completely protected from a 100 LD50 of trypsin-activated Etx challenge. Sheep immunized with Etx-Y71A produced high levels of neutralizing antibodies that provided protection in mice against an activated Etx challenge, and lambs could receive passive immunity through immunization of pregnant ewes. Additionally, homology modeling and circular dichroism analysis showed that Etx-Y71A has structural similarity to Etx, which provides a structural basis for Etx-Y71A retaining the immunogenicity of Etx. Taken together, these results suggest that Etx-Y71A is a potential vaccine candidate against Etx-inducing enterotoxemia.
Collapse
|
10
|
Wang Y, Miao Y, Hu LP, Kai W, Zhu R. Immunization of mice against alpha, beta, and epsilon toxins of Clostridium perfringens using recombinant rCpa-b-x expressed by Bacillus subtilis. Mol Immunol 2020; 123:88-96. [PMID: 32447084 DOI: 10.1016/j.molimm.2020.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 03/30/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022]
Abstract
The anaerobic pathogen Clostridium perfringens is the most potent cause of intestinal diseases, such as enterotoxemia, hemorrhagic enteritis, and lamb dysentery, in sheep. Three toxinotypes (B, C, and D) are usually the cause of these diseases and are mainly mediated via three important exotoxins: alpha toxin (CPA), beta toxin (CPB), and epsilon toxin (ETX). We have designed a chimeric protein, rCpa-b-x, that contains the C-terminal binding region of CPA, partial sequence of CPB, and ETX (Cpa247-370, Cpb108-305, and EtxH118P, respectively) according to the principle of structural vaccinology. The rCpa-b-x protein was then expressed by pHT43 plasmid in vivo using Bacillus subtilis as a delivery vector (Bs-pHT43-Cpa-b-x). The immunological activity of the rCpa-b-x protein was verified by western blot and its immunological efficacy was evaluated in a murine model. Oral administration with a recombinant agent caused local mucosal and systemic immune responses, and serum lgG and intestinal mucosal secretory IgA (sIgA) antibody titers were significantly increased. Levels of IL-2, IL-4, and IFN-γ were significantly higher in lymphocytes isolated from the Bs-pHT43-Cpa-b-x group compared with levels from the control groups. The percentages of CD4+ and CD8+ T lymphocytes in the Bs-pHT43-Cpa-b-x and inactivated vaccine (IV) groups were in the normal range. Mice of vaccine groups and control groups were challenged with 1x LD100 unit filtrate containing alpha, beta, and epsilon toxins. Mice in the Bs-pHT43-Cpa-b-x group were found to have lower rates of morbidity. The active immunization of mice with Bs-pHT43-Cpa-b-x still maintained 85% to 90% survival at the end of the 10-day observation period, whereas mice of control groups died within two to five days. The results of this study demonstrate the effectiveness of Bs-pHT43-Cpa-b-x in preventing C. perfringens infection in mice, and that Bs-pHT43-Cpa-b-x could be considered a potential vaccine against C. perfringens.
Collapse
Affiliation(s)
- Yujian Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271000, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian 271000, China
| | - Yongqiang Miao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271000, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian 271000, China
| | - Li-Ping Hu
- Animal Disease Prevention and Control Center of Shandong Province, Animal Husbandry and Veterinary Bureau of Shandong Province, Jinan, China
| | - Wei Kai
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271000, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian 271000, China.
| | - Ruiliang Zhu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271000, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian 271000, China.
| |
Collapse
|
11
|
Dorca-Arévalo J, Dorca E, Torrejón-Escribano B, Blanch M, Martín-Satué M, Blasi J. Lung endothelial cells are sensitive to epsilon toxin from Clostridium perfringens. Vet Res 2020; 51:27. [PMID: 32093740 PMCID: PMC7041264 DOI: 10.1186/s13567-020-00748-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/22/2020] [Indexed: 11/12/2022] Open
Abstract
The pore-forming protein epsilon toxin (Etx) from Clostridium perfringens produces acute perivascular edema affecting several organs, especially the brain and lungs. Despite the toxin evident effect on microvasculature and endothelial cells, the underlying molecular and cellular mechanisms remain obscure. Moreover, no Etx-sensitive endothelial cell model has been identified to date. Here, we characterize the mouse lung endothelial cell line 1G11 as an Etx-sensitive cell line and compare it with the well-characterized Etx-sensitive Madin-Darby canine kidney epithelial cell line. Several experimental approaches, including morphological and cytotoxic assays, clearly demonstrate that the 1G11 cell line is highly sensitive to Etx and show the specific binding, oligomerization, and pore-forming activity of the toxin in these cells. Recently, the myelin and lymphocyte (MAL) protein has been postulated as a putative receptor for Etx. Here, we show the presence of Mal mRNA in the 1G11 cell line and the presence of the MAL protein in the endothelium of some mouse lung vessels, supporting the hypothesis that this protein is a key element in the Etx intoxication pathway. The existence of an Etx-sensitive cell line of endothelial origin would help shed light on the cellular and molecular mechanisms underlying Etx-induced edema and its consequences.
Collapse
Affiliation(s)
- Jonatan Dorca-Arévalo
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Campus of Bellvitge, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain. .,Biomedical Research Institute of Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain. .,Institute of Neurosciences, University of Barcelona, 08035, Barcelona, Spain.
| | - Eduard Dorca
- Pathology Service, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Benjamín Torrejón-Escribano
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Campus of Bellvitge, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain.,Centres Científics i Tecnològics, Universitat de Barcelona, Campus Bellvitge, Barcelona, Spain
| | - Marta Blanch
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Campus of Bellvitge, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain.,Biomedical Research Institute of Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, 08035, Barcelona, Spain
| | - Mireia Martín-Satué
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Campus of Bellvitge, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain.,Biomedical Research Institute of Bellvitge (IDIBELL), Oncobell Program, CIBERONC, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Juan Blasi
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Campus of Bellvitge, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain.,Biomedical Research Institute of Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, 08035, Barcelona, Spain
| |
Collapse
|
12
|
|
13
|
Gao J, Xin W, Huang J, Ji B, Gao S, Chen L, Kang L, Yang H, Shen X, Zhao B, Wang J. Research articleHemolysis in human erythrocytes by Clostridium perfringens epsilon toxin requires activation of P2 receptors. Virulence 2019; 9:1601-1614. [PMID: 30277122 PMCID: PMC6276848 DOI: 10.1080/21505594.2018.1528842] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Epsilon-toxin (ETX) is produced by types B and D strains of Clostridium perfringens, which cause fatal enterotoxaemia in sheep, goats and cattle. Previous studies showed that only a restricted number of cell lines are sensitive to ETX and ETX-induced hemolysis has not previously been reported. In this study, the hemolytic ability of ETX was examined using erythrocytes from 10 species including murine, rabbit, sheep, monkey and human. We found that ETX caused hemolysis in human erythrocytes (HC50 = 0.2 μM) but not erythrocytes from the other test species. Moreover, the mechanism of ETX-induced hemolysis was further explored. Recent studies showed that some bacterial toxins induce hemolysis through purinergic receptor (P2) activation. Hence, the function of purinergic receptors in ETX-induced hemolysis was tested, and we found that the non-selective P2 receptor antagonists PPADS inhibited ETX-induced lysis of human erythrocytes in a concentration-dependent manner, indicating that ETX-induced hemolysis requires activation of purinergic receptors. P2 receptors comprise seven P2X (P2X1-7) and eight P2Y (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11-P2Y14) receptor subtypes. The pattern of responsiveness to more selective P2-antagonists implies that both P2Y13 and P2X7 receptors are involved in ETX-induced hemolysis in human species. Furthermore, we demonstrated that extracellular ATP is likely not involved in ETX-induced hemolysis and the activation of P2 receptors. These findings clarified the mechanism of ETX-induced hemolysis and provided new insight into the activities and ETX mode of action.
Collapse
Affiliation(s)
- Jie Gao
- a State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology, AMMS , Beijing , China.,b College of Life Sciences , Hebei Normal University , Shijiazhuang , China
| | - Wenwen Xin
- a State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology, AMMS , Beijing , China
| | - Jing Huang
- a State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology, AMMS , Beijing , China.,b College of Life Sciences , Hebei Normal University , Shijiazhuang , China
| | - Bin Ji
- a State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology, AMMS , Beijing , China
| | - Shan Gao
- a State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology, AMMS , Beijing , China
| | - Liang Chen
- a State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology, AMMS , Beijing , China
| | - Lin Kang
- a State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology, AMMS , Beijing , China
| | - Hao Yang
- a State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology, AMMS , Beijing , China
| | - Xin Shen
- a State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology, AMMS , Beijing , China
| | - Baohua Zhao
- b College of Life Sciences , Hebei Normal University , Shijiazhuang , China
| | - Jinglin Wang
- a State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology, AMMS , Beijing , China
| |
Collapse
|
14
|
Immunogenicity of Clostridium perfringens epsilon toxin recombinant bacterin in rabbit and ruminants. Vaccine 2018; 36:7589-7592. [DOI: 10.1016/j.vaccine.2018.10.081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 10/16/2018] [Accepted: 10/21/2018] [Indexed: 11/19/2022]
|
15
|
A Novel Panel of Rabbit Monoclonal Antibodies and Their Diverse Applications Including Inhibition of Clostridium perfringens Epsilon Toxin Oligomerization. Antibodies (Basel) 2018; 7:antib7040037. [PMID: 31544887 PMCID: PMC6698963 DOI: 10.3390/antib7040037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/18/2018] [Accepted: 10/22/2018] [Indexed: 12/18/2022] Open
Abstract
The pore-forming epsilon toxin (ETX) produced by Clostridium perfringens is among the most lethal bacterial toxins known. Sensitive antibody-based reagents are needed to detect toxin, distinguish mechanisms of cell death, and prevent ETX toxicity. Using B-cell immuno-panning and cloning techniques, seven ETX-specific monoclonal antibodies were generated from immunized rabbits. ETX specificity and sensitivity were evaluated via western blot, ELISA, immunocytochemistry (ICC), and flow cytometry. ETX-neutralizing function was evaluated both in vitro and in vivo. All antibodies recognized both purified ETX and epsilon protoxin via western blot with two capable of detecting the ETX-oligomer complex. Four antibodies detected ETX via ELISA and three detected ETX bound to cells via ICC or flow cytometry. Several antibodies prevented ETX-induced cell death by either preventing ETX binding or by blocking ETX oligomerization. Antibodies that blocked ETX oligomerization inhibited ETX endocytosis and cellular vacuolation. Importantly, one of the oligomerization-blocking antibodies was able to protect against ETX-induced death post-ETX exposure in vitro and in vivo. Here we describe the production of a panel of rabbit monoclonal anti-ETX antibodies and their use in various biological assays. Antibodies possessing differential specificity to ETX in particular conformations will aid in the mechanistic studies of ETX cytotoxicity, while those with ETX-neutralizing function may be useful in preventing ETX-mediated mortality.
Collapse
|
16
|
Recombinant Lactobacillus casei expressing Clostridium perfringens toxoids α, β2, ε and β1 gives protection against Clostridium perfringens in rabbits. Vaccine 2017. [DOI: 10.1016/j.vaccine.2017.05.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Kang J, Gao J, Yao W, Kang L, Gao S, Yang H, Ji B, Li P, Liu J, Yao J, Xin W, Zhao B, Wang J. F199E substitution reduced toxicity of Clostridium perfringens epsilon toxin by depriving the receptor binding capability. Hum Vaccin Immunother 2017; 13:1598-1608. [PMID: 28304231 DOI: 10.1080/21645515.2017.1303022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epsilon toxin (ETX), a potent toxin, is produced by types B and D strains of Clostridium perfringens, which could cause severe diseases in humans and domestic animals. Mutant rETXF199E was previously demonstrated to be a good vaccine candidate. However, the mechanism concerned remains unknown. To clarify how F199E substitution reduced ETX toxicity, we performed a series of experiments. The results showed that the cell-binding and pore-forming ability of rETXF199E was almost abolished. We speculated that F199E substitution reduced toxicity by depriving the receptor binding capability of ETX, which contributed to the hypothesis that domain I of ETX is responsible for cell binding. In addition, our data suggested that ETX could cause Ca2+ release from intracellular Ca2+ stores, which may underlie an alternate pathway leading to cell death. Furthermore, ETX induced crenation of the MDCK cells was observed, with sags and crests first appearing on the surface of condensed MDCK cells, according to scanning electron microscopy. The data also demonstrated the safety and potentiality of rETXF199E as a vaccine candidate for humans. In summary, findings of this work potentially contribute to a better understanding of the pathogenic mechanism of ETX and the development of vaccine against diseases caused by ETX, using mutant proteins.
Collapse
Affiliation(s)
- Jingjing Kang
- a Life Science Institute of Hebei Normal University , Shijiazhuang, Hebei Province , PR China
| | - Jie Gao
- a Life Science Institute of Hebei Normal University , Shijiazhuang, Hebei Province , PR China
| | - Wenwu Yao
- b State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology , Beijing , PR China
| | - Lin Kang
- b State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology , Beijing , PR China
| | - Shan Gao
- b State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology , Beijing , PR China
| | - Hao Yang
- b State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology , Beijing , PR China
| | - Bin Ji
- b State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology , Beijing , PR China
| | - Ping Li
- b State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology , Beijing , PR China
| | - Jing Liu
- b State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology , Beijing , PR China
| | - Jiahao Yao
- b State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology , Beijing , PR China
| | - Wenwen Xin
- b State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology , Beijing , PR China
| | - Baohua Zhao
- a Life Science Institute of Hebei Normal University , Shijiazhuang, Hebei Province , PR China
| | - Jinglin Wang
- b State Key Laboratory of Pathogen and Biosecurity , Institute of Microbiology and Epidemiology , Beijing , PR China
| |
Collapse
|
18
|
Ferreira MRA, Moreira GMSG, Cunha CEPD, Mendonça M, Salvarani FM, Moreira ÂN, Conceição FR. Recombinant Alpha, Beta, and Epsilon Toxins of Clostridium perfringens: Production Strategies and Applications as Veterinary Vaccines. Toxins (Basel) 2016; 8:E340. [PMID: 27879630 PMCID: PMC5127136 DOI: 10.3390/toxins8110340] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 01/21/2023] Open
Abstract
Clostridium perfringens is a spore-forming, commensal, ubiquitous bacterium that is present in the gastrointestinal tract of healthy humans and animals. This bacterium produces up to 18 toxins. The species is classified into five toxinotypes (A-E) according to the toxins that the bacterium produces: alpha, beta, epsilon, or iota. Each of these toxinotypes is associated with myriad different, frequently fatal, illnesses that affect a range of farm animals and humans. Alpha, beta, and epsilon toxins are the main causes of disease. Vaccinations that generate neutralizing antibodies are the most common prophylactic measures that are currently in use. These vaccines consist of toxoids that are obtained from C. perfringens cultures. Recombinant vaccines offer several advantages over conventional toxoids, especially in terms of the production process. As such, they are steadily gaining ground as a promising vaccination solution. This review discusses the main strategies that are currently used to produce recombinant vaccines containing alpha, beta, and epsilon toxins of C. perfringens, as well as the potential application of these molecules as vaccines for mammalian livestock animals.
Collapse
Affiliation(s)
- Marcos Roberto A Ferreira
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas CEP 96160-000, Rio Grande do Sul, Brazil.
| | - Gustavo Marçal S G Moreira
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas CEP 96160-000, Rio Grande do Sul, Brazil.
| | - Carlos Eduardo P da Cunha
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas CEP 96160-000, Rio Grande do Sul, Brazil.
| | - Marcelo Mendonça
- Curso de Medicina Veterinária, Unidade Acadêmica de Garanhuns, Universidade Federal Rural de Pernambuco, Garanhuns CEP 55292-270, Pernambuco, Brazil.
| | - Felipe M Salvarani
- Instituto de Medicina Veterinária, Universidade Federal do Pará, Castanhal CEP 68740-970, Pará, Brazil.
| | - Ângela N Moreira
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas CEP 96160-000, Rio Grande do Sul, Brazil.
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas CEP 96010-610, Rio Grande do Sul, Brazil.
| | - Fabricio R Conceição
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas CEP 96160-000, Rio Grande do Sul, Brazil.
| |
Collapse
|
19
|
Zhang T, Yang H, Kang L, Gao S, Xin W, Yao W, Zhuang X, Ji B, Wang J. Strong protection against ricin challenge induced by a novel modified ricin A-chain protein in mouse model. Hum Vaccin Immunother 2016; 11:1779-87. [PMID: 26038805 PMCID: PMC4514271 DOI: 10.1080/21645515.2015.1038446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ricin toxin (RT) is an extremely potent toxin derived from the castor bean plant. As a possible bioterrorist weapon, it was categorized as a level B agent in international society. With the growing awareness and concerns of the “white powder incident” in recent years, it is indispensable to develop an effective countermeasure against RT intoxication. In this study we used site-directed mutagenesis and polymerase chain reaction (PCR) techniques to modify the gene of ricin A-chain (RTA). As a result, we have generated a mutated and truncated ricin A-chain (mtRTA) vaccine antigen by E.coli strain. The cytotoxicity assay was used to evaluate the safety of the as-prepared mtRTA antigen, and the results showed that there was no residual toxicity observed when compared to the recombinant RTA (rRTA) or native RT. Furthermore, BALB/c mice were subcutaneously (s.c.) vaccinated with mtRTA 3 times at an interval of 2 weeks, and then the survivals were evaluated after intraperitoneal (i.p.) or intratracheal challenge of RT. The vaccinated mice developed a strong protective immune response that was wholly protective against 40 × LD50 of RT i.p. injection or 20 × LD50 of RT intratracheal spraying. The mtRTA antigen has great potential to be a vaccine candidate for future application in humans.
Collapse
Key Words
- ELISA, enzyme-linked immunosorbent assay
- FBS, fetal bovine serum
- HRP, horseradish peroxidase
- IPTG, isopropyl-1-thio-β-galactopyranoside
- LD50, median lethal dose
- RT, ricin toxin
- RTA, ricin toxin A chain
- RTB, ricin toxin B chain
- SD, standard deviation
- i.p, intraperitoneally
- i.p., intraperitoneal
- immunity
- intratracheal
- mRTA, mutated RTA
- mtRTA, mutated and truncated RTA
- mutant
- rRTA, recombinant RTA
- ricin
- s.c., subcutaneously subcutaneous
- toxicity
- toxin
- truncation
- vaccine
Collapse
Affiliation(s)
- Tao Zhang
- a State Key Laboratory of Pathogen and Biosecurity; Beijing Institute of Microbiology and Epidemiology ; Beijing , China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Immunization with a novel Clostridium perfringens epsilon toxin mutant rETX(Y196E)-C confers strong protection in mice. Sci Rep 2016; 6:24162. [PMID: 27048879 PMCID: PMC4822168 DOI: 10.1038/srep24162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/21/2016] [Indexed: 11/08/2022] Open
Abstract
Epsilon toxin (ETX) is produced by toxinotypes B and D of Clostridium perfringens. It can induce lethal enterotoxemia in domestic animals, mainly in sheep, goats and cattle, causing serious economic losses to global animal husbandry. In this study, a novel and stable epsilon toxin mutant rETXY196E-C, obtained by substituting the 196th tyrosine (Y196) with glutamic acid (E) and introducing of 23 amino acids long C-terminal peptide, was determined as a promising recombinant vaccine candidate against enterotoxemia. After the third vaccination, the antibody titers against recombinant wild type (rETX) could reach 1:105 in each immunized group, and the mice were completely protected from 100 × LD50 (50% lethal dose) of rETX challenge. The mice in 15 μg subcutaneously immunized group fully survived at the dose of 500 × LD50 of rETX challenge and 80% of mice survived at 180 μg (1000 × LD50) of rETX administration. In vitro, immune sera from 15 μg subcutaneously immunized group could completely protect MDCK cells from 16 × CT50 (50% lethal dose of cells) of rETX challenge and protect against 10 × LD50 dose (1.8 μg) of rETX challenge in mice. These data suggest that recombinant protein rETXY196E-C is a potential vaccine candidate for future applied researches.
Collapse
|
21
|
Yao W, Kang L, Gao S, Zhuang X, Zhang T, Yang H, Ji B, Xin W, Wang J. Amino acid residue Y196E substitution and C-terminal peptide synergistically alleviate the toxicity of Clostridium perfringens epsilon toxin. Toxicon 2015; 100:46-52. [DOI: 10.1016/j.toxicon.2015.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/02/2015] [Accepted: 04/21/2015] [Indexed: 12/18/2022]
|
22
|
Zhang T, Kang L, Gao S, Yang H, Xin W, Wang J, Guo M, Wang J. Truncated abrin A chain expressed in Escherichia coli: a promising vaccine candidate. Hum Vaccin Immunother 2014; 10:2648-55. [PMID: 25483485 DOI: 10.4161/hv.29645] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abrin toxin (AT) is a highly potent toxin, and is classified as one of the most important biological warfare and bioterrorism agents. There is currently no approved vaccine for AT. Therefore, the development of an effective vaccine is important in the prevention of intoxication by abrin. In this study, five vectors containing different gene of truncated abrin toxin A chain (tATA) fragments were constructed, and two of them (tATA1(1-126), tATA4(1-188)) were successfully expressed as a soluble form in E.coli strain. Both of the two tATA retained most of their immunogenicity with either low or no toxic effects as determined by both in vitro and in vivo assays. They were used to immunize BALB/c mice three times at an interval of three weeks apart. As a result, the tATA1 can elicite 80% protective efficacy against i.p. challenge of 5×LD50 of abrin, and the tATA4 provides a better protection, which can elicite 100% protective efficacy against intraperitoneal challenge of 40×LD50 of abrin. The superior fragment (tATA4(1-188)) should be considered as a promising vaccine candidate for further investigations.
Collapse
Key Words
- AU, absorbance unit
- BSA, bovine serum albumin
- E.coli, Escherichia coli
- IPTG, isopropyl-1-thio-β-galactopyranoside
- LD50, 50% lethal dose
- PBS, phosphate–buffered saline solution
- PCR, polymerase chain reaction
- SD, standard deviation
- abrin
- i.g., intragastric
- i.n., intranasal
- i.p., intraperitoneal/intraperitoneally
- immunity
- pAb, polyclonal antibody
- protection
- rATA, recombinant A chain of abrin toxin
- s.c., subcutaneous/subcutaneously
- tATA, truncated A chain of abrin toxin
- toxicity
- toxin
- truncated protein
- vaccine
Collapse
Affiliation(s)
- Tao Zhang
- a State Key Laboratory of Pathogen and Biosecurity ; The Institute of Microbiology and Epidemiology; Academy of Military Medical Sciences ; Beijing , PR China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Bokori-Brown M, Hall CA, Vance C, Fernandes da Costa SP, Savva CG, Naylor CE, Cole AR, Basak AK, Moss DS, Titball RW. Clostridium perfringens epsilon toxin mutant Y30A-Y196A as a recombinant vaccine candidate against enterotoxemia. Vaccine 2014; 32:2682-7. [PMID: 24709588 PMCID: PMC4022833 DOI: 10.1016/j.vaccine.2014.03.079] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/11/2014] [Accepted: 03/25/2014] [Indexed: 12/17/2022]
Abstract
Etx mutant Y30A-Y196A showed markedly reduced cytotoxicity towards MDCK.2 cells. Y30A-Y196A is inactive in mice after intraperitoneal administration. Y30A-Y196A is able to induce a specific antibody response in rabbits. Y30A-Y196A polyclonal antibody is able to induce protective immunity in vitro. Y30A-Y196A could form the basis of a recombinant vaccine against enterotoxemia.
Epsilon toxin (Etx) is a β-pore-forming toxin produced by Clostridium perfringens toxinotypes B and D and plays a key role in the pathogenesis of enterotoxemia, a severe, often fatal disease of ruminants that causes significant economic losses to the farming industry worldwide. This study aimed to determine the potential of a site-directed mutant of Etx (Y30A-Y196A) to be exploited as a recombinant vaccine against enterotoxemia. Replacement of Y30 and Y196 with alanine generated a stable variant of Etx with significantly reduced cell binding and cytotoxic activities in MDCK.2 cells relative to wild type toxin (>430-fold increase in CT50) and Y30A-Y196A was inactive in mice after intraperitoneal administration of trypsin activated toxin at 1000× the expected LD50 dose of trypsin activated wild type toxin. Moreover, polyclonal antibody raised in rabbits against Y30A-Y196A provided protection against wild type toxin in an in vitro neutralisation assay. These data suggest that Y30A-Y196A mutant could form the basis of an improved recombinant vaccine against enterotoxemia.
Collapse
Affiliation(s)
- Monika Bokori-Brown
- College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom.
| | - Charlotte A Hall
- College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Charlotte Vance
- College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Sérgio P Fernandes da Costa
- College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Christos G Savva
- Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | - Claire E Naylor
- Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | - Ambrose R Cole
- Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | - Ajit K Basak
- Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | - David S Moss
- Department of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom
| | - Richard W Titball
- College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| |
Collapse
|