1
|
Bezbaruah R, Chavda VP, Nongrang L, Alom S, Deka K, Kalita T, Ali F, Bhattacharjee B, Vora L. Nanoparticle-Based Delivery Systems for Vaccines. Vaccines (Basel) 2022; 10:1946. [PMID: 36423041 PMCID: PMC9694785 DOI: 10.3390/vaccines10111946] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022] Open
Abstract
Vaccination is still the most cost-effective way to combat infectious illnesses. Conventional vaccinations may have low immunogenicity and, in most situations, only provide partial protection. A new class of nanoparticle-based vaccinations has shown considerable promise in addressing the majority of the shortcomings of traditional and subunit vaccines. This is due to recent breakthroughs in chemical and biological engineering, which allow for the exact regulation of nanoparticle size, shape, functionality, and surface characteristics, resulting in improved antigen presentation and robust immunogenicity. A blend of physicochemical, immunological, and toxicological experiments can be used to accurately characterize nanovaccines. This narrative review will provide an overview of the current scenario of the nanovaccine.
Collapse
Affiliation(s)
- Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380008, Gujarat, India
| | - Lawandashisha Nongrang
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Shahnaz Alom
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India
| | - Kangkan Deka
- Department of Pharmacognosy, NETES Institute of Pharmaceutical Science, Mirza, Guwahati 781125, Assam, India
| | - Tutumoni Kalita
- Department of Pharmaceutical Chemistry, Girijananda Chowdhury Institute of Pharmaceutical Sciences, Azara, Guwahati 781017, Assam, India
| | - Farak Ali
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
- Department of Pharmaceutical Chemistry, Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India
| | - Bedanta Bhattacharjee
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Sonitpur 784501, Assam, India
| | | |
Collapse
|
2
|
Raoufi E, Bahramimeimandi B, Salehi-Shadkami M, Chaosri P, Mozafari MR. Methodical Design of Viral Vaccines Based on Avant-Garde Nanocarriers: A Multi-Domain Narrative Review. Biomedicines 2021; 9:520. [PMID: 34066608 PMCID: PMC8148582 DOI: 10.3390/biomedicines9050520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
The current health crisis caused by coronavirus 2019 (COVID-19) and associated pathogens emphasize the urgent need for vaccine systems that can generate protective and long-lasting immune responses. Vaccination, employing peptides, nucleic acids, and other molecules, or using pathogen-based strategies, in fact, is one of the most potent approaches in the management of viral diseases. However, the vaccine candidate requires protection from degradation and precise delivery to the target cells. This can be achieved by employing different types of drug and vaccine delivery strategies, among which, nanotechnology-based systems seem to be more promising. This entry aims to provide insight into major aspects of vaccine design and formulation to address different diseases, including the recent outbreak of SARS-CoV-2. Special emphasis of this review is on the technical and practical aspects of vaccine construction and theranostic approaches to precisely target and localize the active compounds.
Collapse
Affiliation(s)
- Ehsan Raoufi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (E.R.); (B.B.)
| | - Bahar Bahramimeimandi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (E.R.); (B.B.)
| | - M. Salehi-Shadkami
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran;
| | - Patcharida Chaosri
- Supreme NanoBiotics Co. Ltd. and Supreme Pharmatech Co. Ltd., 399/90-95 Moo 13 Kingkaew Rd. Soi 25/1, T. Rachateva, A. Bangplee, Samutprakan 10540, Thailand;
| | - M. R. Mozafari
- Supreme NanoBiotics Co. Ltd. and Supreme Pharmatech Co. Ltd., 399/90-95 Moo 13 Kingkaew Rd. Soi 25/1, T. Rachateva, A. Bangplee, Samutprakan 10540, Thailand;
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
3
|
Kheirollahpour M, Mehrabi M, Dounighi NM, Mohammadi M, Masoudi A. Nanoparticles and Vaccine Development. Pharm Nanotechnol 2020; 8:6-21. [PMID: 31647394 DOI: 10.2174/2211738507666191024162042] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/23/2019] [Accepted: 10/02/2019] [Indexed: 12/12/2022]
Abstract
In spite of the progress of conventional vaccines, improvements are required due to concerns about the low immunogenicity of the toxicity, instability, and the need for multiple administrations of the vaccines. To overcome the mentioned problems, nanotechnology has recently been incorporated into vaccine development. Nanotechnology increasingly plays an important role in vaccine development nanocarrier-based delivery systems that offer an opportunity to increase the cellular and humoral immune responses. The use of nanoparticles in vaccine formulations allows not only enhanced immunogenicity and stability of antigen, but also targeted delivery and slow release. Over the past decade, nanoscale size materials such as virus-like particles, liposomes, ISCOMs, polymeric, inorganic nanoparticles and emulsions have gained attention as potential delivery vehicles for vaccine antigens, which can both stabilize vaccine antigens and act as adjuvants. This advantage is attributable to the nanoscale particle size, which facilitates uptake by Antigen- Presenting Cells (APCs), then leading to efficient antigen recognition and presentation. Modifying the surfaces of nanoparticles with different targeting moieties permits the delivery of antigens to specific receptors on the cell surface, thereby stimulating selective and specific immune responses. This review provides an overview of recent advances in nanovaccinology.
Collapse
Affiliation(s)
- Mehdi Kheirollahpour
- Department of Human Vaccine and Serum, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.,Chemistry & Chemical Engineering Research Center of Iran, P.O. Box 14334-186, Tehran, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Naser Mohammadpour Dounighi
- Department of Human Vaccine and Serum, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohsen Mohammadi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Alireza Masoudi
- Department of Pharmacology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
4
|
Arslan I. Quillaic Acid–Containing Saponin-Based Immunoadjuvants Trigger Early Immune Responses. REVISTA BRASILEIRA DE FARMACOGNOSIA 2020. [DOI: 10.1007/s43450-020-00080-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Cibulski SP, Rivera-Patron M, Mourglia-Ettlin G, Casaravilla C, Yendo ACA, Fett-Neto AG, Chabalgoity JA, Moreno M, Roehe PM, Silveira F. Quillaja brasiliensis saponin-based nanoparticulate adjuvants are capable of triggering early immune responses. Sci Rep 2018; 8:13582. [PMID: 30206376 PMCID: PMC6134118 DOI: 10.1038/s41598-018-31995-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 08/30/2018] [Indexed: 11/22/2022] Open
Abstract
Commercially available saponins are extracted from Quillaja saponaria barks, being Quil A® the most widely used. Nanoparticulate immunostimulating complexes (ISCOMs or ISCOMATRIX) formulated with these, are able to stimulate strong humoral and cellular immune responses. Recently, we formulated novel ISCOMs replacing QuilA® by QB-90 (IQB-90), a Quillaja brasiliensis leaf-extracted saponin fraction, and reported that IQB-90 improved antigen uptake, and induced systemic and mucosal antibody production, and T-cell responses. However, its mechanism of action remains unclear. In this study we provide a deeper insight into the immune stimulatory properties of QB-90 and ISCOMATRIX-like based on this fraction (IMXQB-90). We show herein that, when used as a viral vaccine adjuvant, QB-90 promotes an "immunocompetent environment". In addition, QB-90 and IMXQB-90 induce immune-cells recruitment at draining-lymph nodes and spleen. Subsequently, we prove that QB-90 or IMXQB-90 stimulated dendritic cells secret IL-1β by mechanisms involving Caspase-1/11 and MyD88 pathways, implying canonical inflammasome activation. Finally, both formulations induce a change in the expression of cytokines and chemokines coding genes, many of which are up-regulated. Findings reported here provide important insights into the molecular and cellular mechanisms underlying the adjuvant activity of Q. brasiliensis leaf-saponins and its respective nanoparticles.
Collapse
Affiliation(s)
- Samuel Paulo Cibulski
- Departamento de Microbiologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Biología Celular e Molecular. Centro de Biotecnologia - CBiotec., Universidade Federal da Paraíba. Cidade Universitária, CEP 58051-900, João Pessoa, Paraíba, Brazil
| | - Mariana Rivera-Patron
- Departamento de Desarrollo Biotecnológico. Instituto de Higiene - Facultad de Medicina, Universidad de la República (UdelaR). Av. Alfredo Navarro 3051. CP., 11600, Montevideo, Uruguay
| | - Gustavo Mourglia-Ettlin
- Área Inmunología, Departamento de Biociencias/Instituto de Química Biológica - Facultad de Química/Ciencias, Universidad de la República (UdelaR). Av. Alfredo Navarro 3051. CP., 11600, Montevideo, Uruguay
| | - Cecilia Casaravilla
- Área Inmunología, Departamento de Biociencias/Instituto de Química Biológica - Facultad de Química/Ciencias, Universidad de la República (UdelaR). Av. Alfredo Navarro 3051. CP., 11600, Montevideo, Uruguay
| | - Anna Carolina Alves Yendo
- Laboratório de Fisiologia Vegetal, Centro de Biotecnologia e Departamento de Botânica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande Do Sul, Brazil
| | - Arthur Germano Fett-Neto
- Laboratório de Fisiologia Vegetal, Centro de Biotecnologia e Departamento de Botânica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande Do Sul, Brazil
| | - José Alejandro Chabalgoity
- Departamento de Desarrollo Biotecnológico. Instituto de Higiene - Facultad de Medicina, Universidad de la República (UdelaR). Av. Alfredo Navarro 3051. CP., 11600, Montevideo, Uruguay
| | - María Moreno
- Departamento de Desarrollo Biotecnológico. Instituto de Higiene - Facultad de Medicina, Universidad de la República (UdelaR). Av. Alfredo Navarro 3051. CP., 11600, Montevideo, Uruguay
| | - Paulo Michel Roehe
- Departamento de Microbiologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fernando Silveira
- Departamento de Desarrollo Biotecnológico. Instituto de Higiene - Facultad de Medicina, Universidad de la República (UdelaR). Av. Alfredo Navarro 3051. CP., 11600, Montevideo, Uruguay.
| |
Collapse
|
6
|
|
7
|
Marty-Roix R, Vladimer GI, Pouliot K, Weng D, Buglione-Corbett R, West K, MacMicking JD, Chee JD, Wang S, Lu S, Lien E. Identification of QS-21 as an Inflammasome-activating Molecular Component of Saponin Adjuvants. J Biol Chem 2015; 291:1123-36. [PMID: 26555265 DOI: 10.1074/jbc.m115.683011] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Indexed: 01/09/2023] Open
Abstract
Many immunostimulants act as vaccine adjuvants via activation of the innate immune system, although in many cases it is unclear which specific molecules contribute to the stimulatory activity. QS-21 is a defined, highly purified, and soluble saponin adjuvant currently used in licensed and exploratory vaccines, including vaccines against malaria, cancer, and HIV-1. However, little is known about the mechanisms of cellular activation induced by QS-21. We observed QS-21 to elicit caspase-1-dependent IL-1β and IL-18 release in antigen-presenting cells such as macrophages and dendritic cells when co-stimulated with the TLR4-agonist adjuvant monophosphoryl lipid A. Furthermore, our data suggest that the ASC-NLRP3 inflammasome is responsible for QS-21-induced IL-1β/IL-18 release. At higher concentrations, QS-21 induced macrophage and dendritic cell death in a caspase-1-, ASC-, and NLRP3-independent manner, whereas the presence of cholesterol rescued cell viability. A nanoparticulate adjuvant that contains QS-21 as part of a heterogeneous mixture of saponins also induced IL-1β in an NLRP3-dependent manner. Interestingly, despite the role NLRP3 plays for cellular activation in vitro, NLRP3-deficient mice immunized with HIV-1 gp120 and QS-21 showed significantly higher levels of Th1 and Th2 antigen-specific T cell responses and increased IgG1 and IgG2c compared with wild type controls. Thus, we have identified QS-21 as a nonparticulate single molecular saponin that activates the NLRP3 inflammasome, but this signaling pathway may contribute to decreased antigen-specific responses in vivo.
Collapse
Affiliation(s)
- Robyn Marty-Roix
- From the Program in Innate Immunity, Division of Infectious Diseases and Immunology and
| | - Gregory I Vladimer
- From the Program in Innate Immunity, Division of Infectious Diseases and Immunology and
| | - Kimberly Pouliot
- From the Program in Innate Immunity, Division of Infectious Diseases and Immunology and
| | - Dan Weng
- From the Program in Innate Immunity, Division of Infectious Diseases and Immunology and
| | - Rachel Buglione-Corbett
- the Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School Worcester, Massachusetts 01605
| | - Kim West
- the Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School Worcester, Massachusetts 01605
| | - John D MacMicking
- the Department of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, and
| | - Jonathan D Chee
- the Department of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, and
| | - Shixia Wang
- the Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School Worcester, Massachusetts 01605
| | - Shan Lu
- the Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School Worcester, Massachusetts 01605
| | - Egil Lien
- From the Program in Innate Immunity, Division of Infectious Diseases and Immunology and the Centre of Molecular Inflammation Research, Department of Cancer and Molecular Medicine, NTNU, 7491 Trondheim, Norway
| |
Collapse
|
8
|
Poteet E, Lewis P, Li F, Zhang S, Gu J, Chen C, Ho SO, Do T, Chiang S, Fujii G, Yao Q. A Novel Prime and Boost Regimen of HIV Virus-Like Particles with TLR4 Adjuvant MPLA Induces Th1 Oriented Immune Responses against HIV. PLoS One 2015; 10:e0136862. [PMID: 26312747 PMCID: PMC4552547 DOI: 10.1371/journal.pone.0136862] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 08/10/2015] [Indexed: 01/11/2023] Open
Abstract
HIV virus-like particles (VLPs) present the HIV envelope protein in its native conformation, providing an ideal vaccine antigen. To enhance the immunogenicity of the VLP vaccine, we sought to improve upon two components; the route of administration and the additional adjuvant. Using HIV VLPs, we evaluated sub-cheek as a novel route of vaccine administration when combined with other conventional routes of immunization. Of five combinations of distinct prime and boost sequences, which included sub-cheek, intranasal, and intradermal routes of administration, intranasal prime and sub-cheek boost (IN+SC) resulted in the highest HIV-specific IgG titers among the groups tested. Using the IN+SC regimen we tested the adjuvant VesiVax Conjugatable Adjuvant Lipid Vesicles (CALV) + monophosphoryl lipid A (MPLA) at MPLA concentrations of 0, 7.5, 12.5, and 25 μg/dose in combination with our VLPs. Mice that received 12.5 or 25 μg/dose MPLA had the highest concentrations of Env-specific IgG2c (20.7 and 18.4 μg/ml respectively), which represents a Th1 type of immune response in C57BL/6 mice. This was in sharp contrast to mice which received 0 or 7.5 μg MPLA adjuvant (6.05 and 5.68 μg/ml of IgG2c respectively). In contrast to IgG2c, MPLA had minor effects on Env-specific IgG1; therefore, 12.5 and 25 μg/dose of MPLA induced the optimal IgG1/IgG2c ratio of 1.3. Additionally, the percentage of germinal center B cells increased significantly from 15.4% in the control group to 31.9% in the CALV + 25 μg MPLA group. These mice also had significantly more IL-2 and less IL-4 Env-specific CD8+ T cells than controls, correlating with an increased percentage of Env-specific central memory CD4+ and CD8+ T cells. Our study shows the strong potential of IN+SC as an efficacious route of administration and the effectiveness of VLPs combined with MPLA adjuvant to induce Env specific Th1-oriented HIV-specific immune responses.
Collapse
Affiliation(s)
- Ethan Poteet
- Michael E. DeBakey Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, TX, 77030, United States of America
| | - Phoebe Lewis
- Michael E. DeBakey Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, TX, 77030, United States of America
| | - Feng Li
- Michael E. DeBakey Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, TX, 77030, United States of America
| | - Sheng Zhang
- Michael E. DeBakey Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, TX, 77030, United States of America
| | - Jianhua Gu
- Houston Methodist Research Institute, Houston, TX, 77030, United States of America
| | - Changyi Chen
- Michael E. DeBakey Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, TX, 77030, United States of America
| | - Sam On Ho
- Molecular Express, Inc., Rancho Domínguez, CA, 90220, United States of America
| | - Thai Do
- Molecular Express, Inc., Rancho Domínguez, CA, 90220, United States of America
| | - SuMing Chiang
- Molecular Express, Inc., Rancho Domínguez, CA, 90220, United States of America
| | - Gary Fujii
- Molecular Express, Inc., Rancho Domínguez, CA, 90220, United States of America
| | - Qizhi Yao
- Michael E. DeBakey Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, TX, 77030, United States of America
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX, 77030, United States of America
- * E-mail:
| |
Collapse
|
9
|
Smith JD, Morton LD, Ulery BD. Nanoparticles as synthetic vaccines. Curr Opin Biotechnol 2015; 34:217-24. [DOI: 10.1016/j.copbio.2015.03.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/21/2015] [Indexed: 12/16/2022]
|