1
|
Jala VR, Bodduluri SR, Ghosh S, Chheda Z, Singh R, Smith ME, Chilton PM, Fleming CJ, Mathis SP, Sharma RK, Knight R, Yan J, Haribabu B. Absence of CCR2 reduces spontaneous intestinal tumorigenesis in the Apc Min /+ mouse model. Int J Cancer 2021; 148:2594-2607. [PMID: 33497467 DOI: 10.1002/ijc.33477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/15/2020] [Accepted: 01/08/2021] [Indexed: 12/19/2022]
Abstract
The biological activities of chemokine (C-C motif) ligand 2 (CCL2) are mediated via C-C chemokine receptor-2 (CCR2). Increased CCL2 level is associated with metastasis of many cancers. In our study, we investigated the role of the CCL2/CCR2 axis in the development of spontaneous intestinal tumorigenesis using the ApcMin/+ mouse model. Ablation of CCR2 in ApcMin/+ mice significantly increased the overall survival and reduced intestinal tumor burden. Immune cell analysis showed that CCR2-/- ApcMin/+ mice exhibited significant reduction in the myeloid cell population and increased interferon γ (IFN-γ) producing T cells both in spleen and mesenteric lymph nodes compared to ApcMin/+ mice. The CCR2-/- ApcMin/+ tumors showed significantly reduced levels of interleukin (IL)-17 and IL-23 and increased IFN-γ and Granzyme B compared to ApcMin/+ tumors. Transfer of CCR2+/+ ApcMin/+ CD4+ T cells into Rag2-/- mice led to development of colitis phenotype with increased CD4+ T cells hyper proliferation and IL-17 production. In contrast, adoptive transfer of CCR2-/- ApcMin/+ CD4+ T cells into Rag2-/- mice failed to enhance colonic inflammation or IL-17 production. These results a suggest novel additional role for CCR2, where it regulates migration of IL-17 producing cells mediating tumor-promoting inflammation in addition to its role in migration of tumor associated macrophages.
Collapse
Affiliation(s)
- Venkatakrishna Rao Jala
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Sobha Rani Bodduluri
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Sweta Ghosh
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Zinal Chheda
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Rajbir Singh
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Michelle E Smith
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Paula M Chilton
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Christopher J Fleming
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Steven Paul Mathis
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Rajesh Kumar Sharma
- James Graham Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
| | - Jun Yan
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
2
|
Gschwandtner M, Derler R, Midwood KS. More Than Just Attractive: How CCL2 Influences Myeloid Cell Behavior Beyond Chemotaxis. Front Immunol 2019; 10:2759. [PMID: 31921102 PMCID: PMC6923224 DOI: 10.3389/fimmu.2019.02759] [Citation(s) in RCA: 389] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022] Open
Abstract
Monocyte chemoattractant protein-1 (MCP-1/CCL2) is renowned for its ability to drive the chemotaxis of myeloid and lymphoid cells. It orchestrates the migration of these cell types both during physiological immune defense and in pathological circumstances, such as autoimmune diseases including rheumatoid arthritis and multiple sclerosis, inflammatory diseases including atherosclerosis, as well as infectious diseases, obesity, diabetes, and various types of cancer. However, new data suggest that the scope of CCL2's functions may extend beyond its original characterization as a chemoattractant. Emerging evidence shows that it can impact leukocyte behavior, influencing adhesion, polarization, effector molecule secretion, autophagy, killing, and survival. The direction of these CCL2-induced responses is context dependent and, in some cases, synergistic with other inflammatory stimuli. The involvement of CCL2 signaling in multiple diseases renders it an interesting therapeutic target, although current targeting strategies have not met early expectations in the clinic. A better understanding of how CCL2 affects immune cells will be pivotal to the improvement of existing therapeutic approaches and the development of new drugs. Here, we provide an overview of the pleiotropic effects of CCL2 signaling on cells of the myeloid lineage, beyond chemotaxis, and highlight how these actions might help to shape immune cell behavior and tumor immunity.
Collapse
Affiliation(s)
- Martha Gschwandtner
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Rupert Derler
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Kim S. Midwood
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Yasui H, Kajiyama H, Tamauchi S, Suzuki S, Peng Y, Yoshikawa N, Sugiyama M, Nakamura K, Kikkawa F. CCL2 secreted from cancer-associated mesothelial cells promotes peritoneal metastasis of ovarian cancer cells through the P38-MAPK pathway. Clin Exp Metastasis 2019; 37:145-158. [PMID: 31541326 DOI: 10.1007/s10585-019-09993-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/16/2019] [Indexed: 12/15/2022]
Abstract
Epithelial ovarian cancer (EOC) is considered to secrete various factors in order to promote peritoneal dissemination through cell-to-cell interaction between cancer and mesothelial cells. We previously revealed that TGF-β secreted from EOC induces normal human peritoneal mesothelial cells (HPMCs) to differentiate into cancer-associated mesothelial cells (CAMCs). However, the relationship between tumor cells and CAMCs in EOC is still unclear. We hypothesized that CAMCs also secrete chemokines that attract cancer cells and induce peritoneal dissemination of EOC. We examined chemokines secreted from HPMCs and CAMCs by human chemokine array, and revealed that conditioned medium of CAMCs (CAMCs-CM) included many types of chemokines. The signals of CCL2 were the highest compared with other chemokines. The secretion and relative expression of CCL2 were significantly higher in CAMCs. Recombinant CCL2 promoted trans-mesothelial migration of HPMCs and the migration and invasion by EOC cells. In addition, CCL2 secreted from CAMCs promoted invasion of EOC cells. Furthermore, the neutralizing antibody of CCL2 reduced invasion by EOC. Clinical outcomes of patients whose tissue expressed higher CCR2 were significantly poorer than in patients whose tissue expression was lower. CCL2 activated the phosphorylation of p38 mitogen-activated protein kinase (MAPK). In addition, CAMCs-CM activated the p38 MAPK pathway. Phosphorylation of p38 MAPK reduced with the presence of neutralizing antibody of CCL2. In conclusion, these data indicate CCL2 in CAMCs-CM promoted the malignant potential of EOC. CCL2 plays a crucial role in the tumor microenvironment of EOC.
Collapse
Affiliation(s)
- Hiroaki Yasui
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan.,Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, BMC C13, 22184, Lund, Sweden
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Satoshi Tamauchi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shiro Suzuki
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yang Peng
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Nobuhisa Yoshikawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Mai Sugiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kae Nakamura
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
4
|
Muccioli M, Nandigam H, Loftus T, Singh M, Venkatesh A, Wright J, Pate M, McCall K, Benencia F. Modulation of double-stranded RNA pattern recognition receptor signaling in ovarian cancer cells promotes inflammatory queues. Oncotarget 2018; 9:36666-36683. [PMID: 30613350 PMCID: PMC6291178 DOI: 10.18632/oncotarget.26378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/24/2018] [Indexed: 12/24/2022] Open
Abstract
Inflammation and cancer are inter-related, and both pro- and anti-tumorigenic effects are possible in different contexts, highlighting the importance of characterizing specific inflammatory pathways in distinct tumor types. Malignant cells and non-cancerous cells such as fibroblasts, infiltrating leukocytes (i.e., dendritic cells [DC], macrophages, or lymphocytes) and endothelial cells, in combination with the extracellular matrix, constitute the tumor microenvironment (TME). In the last decades, the role of the TME in cancer progression has gained increased attention and efforts directed at abrogating its deleterious effects on anti-cancer therapies have been ongoing. In this context, we investigated the potential of mouse and human ovarian cancer cells to produce inflammatory factors in response to pathogen recognition receptor (PRR) signaling, which might help to shape the biology of the TME. We determined that mouse ovarian tumors generate chemokines that are able to interact with receptors harbored by tumor-associated DCs. We also found that dsRNA triggers significant pro-inflammatory cytokine up-regulation in both human and mouse ovarian tumor cell lines, and that several PRR can simultaneously contribute to the stimulated inflammatory response displayed by these cells. Thus, dsRNA-activated PRRs may not only constitute potentially relevant drug targets for therapies aiming to prevent inflammation associated with leukocyte recruitment, or as co-adjuvants of therapeutic treatments, but also might have a role in development of nascent tumors, for example via activation of cancer cells by microbial molecules associated to pathogens, or with those appearing in circulation due to dysbiosis.
Collapse
Affiliation(s)
- Maria Muccioli
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.,Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH, 45701, USA
| | - Harika Nandigam
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.,Biomedical Engineering Program, Russ College of Engineering & Technology, Ohio University, Athens, OH, 45701, USA
| | - Tiffany Loftus
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Manindra Singh
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.,Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH, 45701, USA
| | - Amritha Venkatesh
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.,Biomedical Engineering Program, Russ College of Engineering & Technology, Ohio University, Athens, OH, 45701, USA
| | - Julia Wright
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Michelle Pate
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Kelly McCall
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH, 45701, USA.,Department of Specialty Medicine, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.,Diabetes Institute at Ohio University, Ohio University, Athens, OH, 45701, USA.,Biomedical Engineering Program, Russ College of Engineering & Technology, Ohio University, Athens, OH, 45701, USA.,Translational Biomedical Sciences Doctoral Program, Ohio University, Athens, OH, 45701, USA
| | - Fabian Benencia
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.,Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH, 45701, USA.,Diabetes Institute at Ohio University, Ohio University, Athens, OH, 45701, USA.,Biomedical Engineering Program, Russ College of Engineering & Technology, Ohio University, Athens, OH, 45701, USA.,Translational Biomedical Sciences Doctoral Program, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
5
|
Shih YT, Wang MC, Zhou J, Peng HH, Lee DY, Chiu JJ. Endothelial progenitors promote hepatocarcinoma intrahepatic metastasis through monocyte chemotactic protein-1 induction of microRNA-21. Gut 2015; 64:1132-47. [PMID: 24939570 DOI: 10.1136/gutjnl-2013-306302] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 05/27/2014] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Endothelial progenitor cells (EPCs) circulate with increased numbers in the peripheral blood of patients with highly-vascularised hepatocellular carcinoma (HCC) and contribute to angiogenesis and neovascularisation. We hypothesised that angiogenic EPCs, that is, colony forming unit-endothelial cells (CFU-ECs), and outgrowth EPCs, that is, endothelial colony-forming cells, may exert paracrine effects on the behaviours and metastatic capacities of human hepatoma cells. DESIGN Various molecular and functional approaches ranging from in vitro cell culture studies on molecular signalling to in vivo investigations on cell invasion and orthotropic transplantation models in mice and clinical specimens from patients with HCC were used. RESULTS Monocyte chemotactic protein-1 (MCP-1) was identified as a critical mediator released from CFU-ECs to contribute to the chemotaxis of Huh7 and Hep3B cells by inducing their microRNA-21 (miR-21) biogenesis through the C-C chemokine receptor-2/c-Jun N-terminal kinase/activator protein-1 signalling cascade. CFU-EC-induction of miR-21 in these cells activated their Rac1 and matrix metallopeptidase-9 by silencing Rho GTPase-activating protein-24 and tissue inhibitor of metalloproteinase-3, respectively, leading to increased cell mobility. MCP-1-induction of miR-21 induced epithelial-mesenchymal transformation of Huh7 cells in vitro and their intrahepatic metastatic capability in vivo. Moreover, increased numbers of MCP-1(+) EPCs and their positive correlations with miR-21 induction and metastatic stages in human HCC were found. CONCLUSIONS Our results provide new insights into the complexity of EPC-HCC interactions and indicate that anticancer therapies targeting either the MCP-1 released from angiogenic EPCs or the miR-21 biogenesis in HCC cells may prevent the malignant progression of primary tumours.
Collapse
Affiliation(s)
- Yu-Tsung Shih
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Mei-Cun Wang
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Jing Zhou
- Department of Physiology and Pathophysiology, Basic Medical College, Peking University, Beijing, China Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, USA
| | - Hsin-Hsin Peng
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Ding-Yu Lee
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Jeng-Jiann Chiu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
6
|
Lebel-Haziv Y, Meshel T, Soria G, Yeheskel A, Mamon E, Ben-Baruch A. Breast cancer: coordinated regulation of CCL2 secretion by intracellular glycosaminoglycans and chemokine motifs. Neoplasia 2015; 16:723-40. [PMID: 25246273 PMCID: PMC4234876 DOI: 10.1016/j.neo.2014.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/11/2014] [Accepted: 08/12/2014] [Indexed: 02/03/2023] Open
Abstract
The chemokine CCL2 (MCP-1) has been identified as a prominent tumor-promoting factor in breast cancer. The major source for CCL2 is in the tumor cells; thus, identifying the mechanisms regulating CCL2 release by these cells may enable the future design of modalities inhibiting CCL2 secretion and consequently reduce tumorigenicity. Using cells deficient in expression of glycosaminoglycans (GAGs) and short hairpin RNAs reducing heparan sulfate (HS) and chondroitin sulfate (CS) expression, we found that intracellular HS and CS (= GAGs) partly controlled the trafficking of CCL2 from the Golgi toward secretion. Next, we determined the secretion levels of GFP-CCL2-WT and GFP-CCL2-variants mutated in GAG-binding domains and/or in the 40s loop of CCL2 (45TIVA48). We have identified partial roles for R18+K19, H66, and the 45TIVA48 motif in regulating CCL2 secretion. We have also demonstrated that in the absence of R24 or R18+K19 +45TIVA48, the secretion of CCL2 by breast tumor cells was almost abolished. Analyses of the intracellular localization of GFP-CCL2-mutants in the Golgi or the endoplasmic reticulum revealed particular intracellular processes in which these CCL2 sequences controlled its intracellular trafficking and secretion. The R24, 45TIVA48 and R18+K19 +45TIVA48 domains controlled CCL2 secretion also in other cell types. We propose that targeting these chemokine regions may lead to reduced secretion of CCL2 by breast cancer cells (and potentially also by other malignant cells). Such a modality may limit tumor growth and metastasis, presumably without affecting general immune activities (as discussed below).
Collapse
Affiliation(s)
- Yaeli Lebel-Haziv
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tsipi Meshel
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gali Soria
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Adva Yeheskel
- Bioinformatics Unit, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Elad Mamon
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Adit Ben-Baruch
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
7
|
Pienta KJ, Walia G, Simons JW, Soule HR. Beyond the androgen receptor: new approaches to treating metastatic prostate cancer. Report of the 2013 Prouts Neck Prostate Cancer Meeting. Prostate 2014; 74:314-20. [PMID: 24249419 PMCID: PMC4253084 DOI: 10.1002/pros.22753] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 10/30/2013] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The Prouts Neck Meetings on Prostate Cancer began in 1985 through the efforts of the Organ Systems Branch of the National Cancer Institute to stimulate new research and focused around specific questions in prostate tumorigenesis and therapy. METHODS These meetings were think tanks, composed of around 75 individuals, and divided equally between young investigators and senior investigators. Over the years, many new concepts related to prostate cancer resulted from these meetings and the prostate cancer community has sorely missed them since the last one in 2007. RESULTS We report here the first of a new series of meetings. The 2013 meeting focused on defining how the field of treatment for metastatic prostate cancer needs to evolve to impact survival and was entitled: "Beyond AR: New Approaches to Treating Metastatic Prostate Cancer." As castrate resistant prostate cancers escape second generation anti-androgen agents, three phenotypes/genotypes of CRPC appear to be increasing in prevalence and remain resistant to treatment: NeuroEndocrine Prostate Cancer, Persistent AR-Dependent Prostate Cancer, and Androgen Receptor Pathway Independent Prostate Cancer. DISCUSSION It is clear that new treatment paradigms need to be developed for this diverse group of diseases. The Prouts Neck 2013 Meeting on Prostate Cancer helped to frame the current state of the field and jumpstart ideas for new avenues of treatment.
Collapse
Affiliation(s)
- Kenneth J Pienta
- Department of Urology, The James Buchanan Brady Urological InstituteBaltimore, Maryland
- Department of Oncology, The Johns Hopkins School of MedicineBaltimore, Maryland
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of MedicineBaltimore, Maryland
| | - Guneet Walia
- Prostate Cancer FoundationSanta Monica, California
| | | | | |
Collapse
|