1
|
Hu S, Zhou Q, Lu Q, Guo X, Wang Y, Duan YX. miR-199a/214 cluster enhances prostate cancer sensitiveness to nimotuzumab via targeting TBL1XR1. Kaohsiung J Med Sci 2023; 39:1178-1189. [PMID: 37772770 DOI: 10.1002/kjm2.12758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/14/2023] [Accepted: 08/27/2023] [Indexed: 09/30/2023] Open
Abstract
Prostate cancer (PCa) is a significant health concern affecting men worldwide. Previous studies have shown that nimotuzumab, a drug targeting the epidermal growth factor receptor (EGFR), can effectively inhibit cancer progression. Here, we aimed to explore the role of miR-199a/214 cluster in mediating the inhibitory effect of nimotuzumab on the development of PCa. In this study, we conducted an MTT assay to assess cell proliferation and utilized flow cytometry to evaluate cell apoptosis and cell cycle arrest. To investigate the molecular mechanisms underlying the effects of nimotuzumab on prostate cancer development, we focused on the miR-199a-5p and miR-214-3p miRNA clusters. The TargetScan Human database was used to predict the binding sites between miR-199a-5p or miR-214-3p and the 3'-UTR of the transducin (β)-like 1 X-linked receptor 1 (TBL1XR1) mRNA. To confirm the direct interaction and binding between miR-199a-5p or miR-214-3p and the 3'-UTR of TBL1XR1 mRNA, we performed luciferase reporter assays. Our findings demonstrated that nimotuzumab exerted a significant dosage-dependent suppression of PCa cell proliferation and facilitated PCa cell apoptosis and cell cycle arrest. Concurrently, nimotuzumab obviously impeded the activity of Wnt/β-catenin and EGFR signaling pathways in PCa cells. We also observed downregulation of miR-199a-5p and miR-214-3p in PCa cells. Overexpression of miR-199a/214 cluster inhibited PCa cell viability and enhanced cell apoptosis. Furthermore, we found that miR-199a/214 cluster augmented the inhibitory effect of nimotuzumab on PCa cell proliferation and promoted its ability to induce apoptosis and cell cycle arrest. This effect was reversed upon TBL1XR1 overexpression, indicating that TBL1XR1 is involved in the regulatory pathway of miR-199a/214 and nimotuzumab in PCa cells. We further revealed that TBL1XR1 was overexpressed in PCa and was identified as a downstream target of the miR-199a/214 cluster. In nimotuzumab-treated PCa cells, the overexpression of miR-199a/214 markedly inhibited Wnt/β-catenin and EGFR signaling, and this effect was also rescued by TBL1XR1 overexpression. In summary, our data indicated that miR-199a/214 cluster play a crucial role in enhancing the inhibitory effect of nimotuzumab on PCa development by downregulating TBL1XR1 and modulating Wnt/β-catenin and EGFR signaling pathways. These findings offer a novel therapeutic approach for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Sheng Hu
- Department of Urology, Hunan Provincial People's Hospital (The first-affiliated hospital of Hunan normal university), Changsha, Hunan Province, P.R. China
| | - Qiang Zhou
- Department of Urology, Hunan Provincial People's Hospital (The first-affiliated hospital of Hunan normal university), Changsha, Hunan Province, P.R. China
| | - Qiang Lu
- Department of Urology, Hunan Provincial People's Hospital (The first-affiliated hospital of Hunan normal university), Changsha, Hunan Province, P.R. China
| | - Xi Guo
- Department of Urology, Hunan Provincial People's Hospital (The first-affiliated hospital of Hunan normal university), Changsha, Hunan Province, P.R. China
| | - Yong Wang
- Department of Urology, Hunan Provincial People's Hospital (The first-affiliated hospital of Hunan normal university), Changsha, Hunan Province, P.R. China
| | - Yi-Xing Duan
- Department of Urology, Hunan Provincial People's Hospital (The first-affiliated hospital of Hunan normal university), Changsha, Hunan Province, P.R. China
| |
Collapse
|
2
|
Dewdney B, Ursich L, Fletcher EV, Johns TG. Anoctamins and Calcium Signalling: An Obstacle to EGFR Targeted Therapy in Glioblastoma? Cancers (Basel) 2022; 14:cancers14235932. [PMID: 36497413 PMCID: PMC9740065 DOI: 10.3390/cancers14235932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Glioblastoma is the most common form of high-grade glioma in adults and has a poor survival rate with very limited treatment options. There have been no significant advancements in glioblastoma treatment in over 30 years. Epidermal growth factor receptor is upregulated in most glioblastoma tumours and, therefore, has been a drug target in recent targeted therapy clinical trials. However, while many inhibitors and antibodies for epidermal growth factor receptor have demonstrated promising anti-tumour effects in preclinical models, they have failed to improve outcomes for glioblastoma patients in clinical trials. This is likely due to the highly plastic nature of glioblastoma tumours, which results in therapeutic resistance. Ion channels are instrumental in the development of many cancers and may regulate cellular plasticity in glioblastoma. This review will explore the potential involvement of a class of calcium-activated chloride channels called anoctamins in brain cancer. We will also discuss the integrated role of calcium channels and anoctamins in regulating calcium-mediated signalling pathways, such as epidermal growth factor signalling, to promote brain cancer cell growth and migration.
Collapse
Affiliation(s)
- Brittany Dewdney
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
- Correspondence: ; Tel.: +61-8-6319-1023
| | - Lauren Ursich
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Emily V. Fletcher
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
| | - Terrance G. Johns
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
3
|
Diaz H, Jiménez J, Hernández A, Valdés L, Martínez A, Porto L, Hernández R, Travieso N, Jova JH, Medel L, Troche M, Gorte A, Batista D, Valls AR, Cabrera L, Domeq M, Pérez L, Lorenzo-Luaces P, Sánchez L, Saavedra D, Ramos M, Crombet T. Nimotuzumab Increases the Recovery Rate of Severe and Critical COVID-19 Patients: Evaluation in the Real-World Scenario. Front Public Health 2022; 10:948520. [PMID: 35937253 PMCID: PMC9353117 DOI: 10.3389/fpubh.2022.948520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022] Open
Abstract
EGFR signaling is an important regulator of SARS-CoV induced lung damage, inflammation and fibrosis. Nimotuzumab is a humanized anti-EGFR antibody registered for several cancer indications. An expanded access study was conducted to evaluate the safety and recovery rate of severe and critical patients with confirmed SARS-CoV-2 infection, treated with nimotuzumab in combination with the standard of care in the real-world scenario. The antibody was administered as an intravenous infusions every 72 h, up to 5 doses. In order to assess the impact of nimotuzumab, the recovery rate was compared with a paired retrospective cohort. Control patients received standard treatment according the national protocol but not nimotuzumab. Overall, 1,151 severe or critical patients received nimotuzumab in 21 hospitals of Cuba. Median age was 65 and 773 patients had at least one comorbidity. Nimotuzumab was very well-tolerated and mild or moderate adverse events were detected in 19 patients. 1,009 controls matching with the nimotuzumab patients, were selected using a "propensity score" method. The 14-day recovery rate of the nimotuzumab cohort was 72 vs. 42% in the control group. Controls had a higher mortality risk (RR 2.08, 95% CI: 1.79, 2.38) than the nimotuzumab treated patients. The attributable fraction was 0.52 (95% CI: 0.44%; 0.58), and indicates the proportion of deaths that were prevented with nimotuzumab. Our preliminary results suggest that nimotuzumab is a safe antibody that can reduce the mortality of severe and critical COVID-19 patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Loipa Medel
- Center of Molecular Immunology, Havana, Cuba
| | | | - Annia Gorte
- Center of Molecular Immunology, Havana, Cuba
| | | | | | | | | | | | | | | | | | - Mayra Ramos
- Center of Molecular Immunology, Havana, Cuba
| | | |
Collapse
|
4
|
Wyss J, Frank NA, Soleman J, Scheinemann K. Novel Pharmacological Treatment Options in Pediatric Glioblastoma-A Systematic Review. Cancers (Basel) 2022; 14:2814. [PMID: 35681794 PMCID: PMC9179254 DOI: 10.3390/cancers14112814] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Pediatric glioblastoma (GBM) is an aggressive central nervous system tumor in children that has dismal prognosis. Standard of care is surgery with subsequent irradiation and temozolomide. We aimed to outline currently available data on novel pharmacological treatments for pediatric GBM. METHODS We conducted a systematic literature search in PubMed and Embase, including reports published in English from 2010 to 2021. We included randomized trials, cohort studies and case series. Phase I trials were not analyzed. We followed PRISMA guidelines, assessed the quality of the eligible reports using the Newcastle-Ottawa scale (NOS) and the RoB-2 tool and registered the protocol on PROSPERO. RESULTS We included 6 out of 1122 screened reports. All six selected reports were prospective, multicenter phase II trials (five single-arm and one randomized controlled trial). None of the investigated novel treatment modalities showed any benefit regarding overall or progression free survival. CONCLUSIONS To date, the role of pharmacological approaches regarding pediatric GBM remains unclear, since no novel treatment approach could provide a significant impact on overall or progression free survival. Further research should aim to combine different treatment strategies in large international multicenter trials with central comprehensive diagnostics regarding subgrouping. These novel treatment approaches should include targeted and immunotherapeutic treatments, potentially leading to a more successful outcome.
Collapse
Affiliation(s)
- Johanna Wyss
- Division of Oncology-Hematology, Department of Pediatrics, Kantonsspital Aarau, 5001 Aarau, Switzerland;
- Division of Pediatric Oncology-Hematology, University Children’s Hospital of Basel, 4056 Basel, Switzerland
| | - Nicole Alexandra Frank
- Department of Neurosurgery, University Hospital of Basel, 4031 Basel, Switzerland; (N.A.F.); (J.S.)
| | - Jehuda Soleman
- Department of Neurosurgery, University Hospital of Basel, 4031 Basel, Switzerland; (N.A.F.); (J.S.)
- Department of Pediatric Neurosurgery, University Children’s Hospital of Basel, 4056 Basel, Switzerland
- Faculty of Medicine, University of Basel, 4056 Basel, Switzerland
| | - Katrin Scheinemann
- Division of Oncology-Hematology, Department of Pediatrics, Kantonsspital Aarau, 5001 Aarau, Switzerland;
- Department of Health Sciences and Medicine, University of Lucerne, 6002 Lucerne, Switzerland
- Department of Pediatrics, McMaster University Hamilton, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
5
|
High-Grade Gliomas in Children-A Multi-Institutional Polish Study. Cancers (Basel) 2021; 13:cancers13092062. [PMID: 33923337 PMCID: PMC8123180 DOI: 10.3390/cancers13092062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/07/2021] [Accepted: 04/22/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary High-grade gliomas constitute less than 5% of pediatric brain tumors. Due to the rarity of such a diagnosis, the lack of consensus about the best therapeutic approach, and the difficulty in conducting prospective trials; a retrospective multi-institutional analysis, such as the one presented in this article, is needed. We carried out the survival analysis of children diagnosed and treated with high-grade gliomas in seven major polish institutions. The assessment of the outcome of 82 consecutive patients with grade III and grade IV tumors was performed and showed a 5-year overall survival of only 30%. The extent of resection, immediate temozolomide-based chemotherapy, and radical radiotherapy were found as factors positively influencing survival. Abstract Due to the rarity of high-grade gliomas (HGG) in children, data on this topic are scarce. The study aimed to investigate the long-term results of treatment of children with HGG and to identify factors related to better survival. We performed a retrospective analysis of patients treated for HGG who had the main tumor located outside the brainstem. The evaluation of factors that correlated with better survival was performed with the Cox proportional-hazard model. Survival was estimated with the Kaplan–Meier method. The study group consisted of 82 consecutive patients. All of them underwent surgery as primary treatment. Chemotherapy was applied in 93% of children with one third treated with temozolomide. After or during the systemic treatment, 79% of them received radiotherapy with a median dose of 54 Gy. Median follow-up was 122 months, and during that time, 59 patients died. One-, 2-, 5-, and 10-year overall survival was 78%, 48%, 30% and 17%, respectively. Patients with radical (R0) resection and temozolomide-based chemotherapy had better overall survival. Progression-free survival was better in patients after R0 resection and radical radiotherapy. The best outcome in HGG patients was observed in patients after R0 resection with immediate postoperative temozolomide-based chemotherapy and radical radiotherapy.
Collapse
|
6
|
Guerra-García P, Marshall LV, Cockle JV, Ramachandran PV, Saran FH, Jones C, Carceller F. Challenging the indiscriminate use of temozolomide in pediatric high-grade gliomas: A review of past, current, and emerging therapies. Pediatr Blood Cancer 2020; 67:e28011. [PMID: 31617673 DOI: 10.1002/pbc.28011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/31/2019] [Accepted: 09/11/2019] [Indexed: 01/26/2023]
Abstract
Pediatric high-grade gliomas (pHGG) constitute 8% to 12% of primary brain tumors in childhood. The most widely utilized treatment encompasses surgical resection followed by focal radiotherapy and temozolomide. However, experiences over past decades have not demonstrated improved outcomes. pHGG have been classified into different molecular subgroups defined by mutations in histone 3, IDH gene, MAPK pathway, and others, thereby providing a rationale for various targeted therapies. Additionally, immunotherapy and drug repurposing have also become attractive adjunctive treatments. This review focuses on past, present, and emerging treatments for pHGG integrating molecular research with the mainstream pediatric drug development in Europe and the United States to sketch a way forward in the development of novel therapeutic approaches. The implementation of randomized clinical trials with adaptive designs, underpinned by a robust biological rationale, and harnessing collaboration between the pharmaceutical industry, academia, regulators and patients/parents organizations will be essential to improve the outcomes for these children.
Collapse
Affiliation(s)
- Pilar Guerra-García
- Children and Young People's Unit, The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom.,Paediatric Oncology Department, 12 de Octubre University Hospital, Madrid, Spain
| | - Lynley V Marshall
- Children and Young People's Unit, The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom.,Division of Clinical Studies, Institute of Cancer Research, London, United Kingdom
| | - Julia V Cockle
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | | | - Frank H Saran
- Department of Radiation Oncology, The Royal Marsden NHS Foundation Trust, London, United Kingdom.,Department of Radiation Oncology, Auckland District Health Board, Auckland, New Zealand
| | - Chris Jones
- Division of Molecular Pathology, Institute of Cancer Research, London, United Kingdom
| | - Fernando Carceller
- Children and Young People's Unit, The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom.,Division of Clinical Studies, Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
7
|
|
8
|
Zhu J, Xin Y, Liu X, Wang Y, Liu Y. Nimotuzumab enhances the sensitivity of non-small cell lung cancer cells to tumor necrosis factor-α by inhibiting the nuclear factor-кB signaling pathway. Exp Ther Med 2018; 15:3345-3351. [PMID: 29545853 PMCID: PMC5841043 DOI: 10.3892/etm.2018.5856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/06/2017] [Indexed: 01/06/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for ~85% of lung cancer cases worldwide. Current guidelines recommend the use of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors for patients with NSCLC. The EGF/EGFR signaling pathway has been demonstrated to activate nuclear factor (NF)-κB, which may inhibit tumor necrosis factor (TNF)-α induced cell apoptosis. The aim of the present study was to investigate whether inhibiting the EGF/EGFR signaling pathway sensitizes NSCLC cell lines to TNF-α-induced apoptosis. The resistance of NSCLC cell lines to TNF-α was evaluated by cell viability assay. The effect of nimotuzumab (Ni) on NSCLC cell sensitivity to TNF-α, as well as the role of NF-κB in mediating resistance to TNF-α-induced apoptosis, was explored by western blot analysis, cell viability assay, apoptosis assay and an NF-κB DNA binding assay. It was demonstrated that EGFR protein expression was markedly higher in the H292 and H1975 cell lines compared with H460 and H1299 cell lines. H292 and H1975 also exhibited significantly increased TNF-α resistance compared with H460 and H1299 cells. Low dose Ni treatment slightly reduced the viability of H292 and H1975 cells; however, combined treatment with low dose Ni and TNF-α significantly inhibited H292 and H1299 cell viability compared with H460 and H1299 cells by inducing cell apoptosis. NF-κB protein expression and activity were also inhibited by the combination treatment. TNF-α treatment alone induced apoptosis in NF-κB deficient H292 and H1975 cells, similar to the effect of combination treatment in wild type H292 and H1975 cells. The results of the present study suggest that Ni sensitizes NSCLC cell lines to TNF-α-induced cell death by inhibiting NF-κB protein expression and activation, indicating a novel mechanism by which Ni suppresses the development of NSCLC.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Thoracic Oncology, Cancer Hospital of Jilin Province, Changchun, Jilin 130012, P.R. China
| | - Ying Xin
- Department of Thoracic Oncology, Cancer Hospital of Jilin Province, Changchun, Jilin 130012, P.R. China
| | - Xiaoliang Liu
- Department of Blood Cancer, The First Affiliated Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ying Wang
- Department of Thoracic Oncology, Cancer Hospital of Jilin Province, Changchun, Jilin 130012, P.R. China
| | - Ying Liu
- Department of Thoracic Oncology, Cancer Hospital of Jilin Province, Changchun, Jilin 130012, P.R. China
| |
Collapse
|
9
|
Garrido G, Rabasa A, Garrido C, Chao L, Garrido F, García-Lora ÁM, Sánchez-Ramírez B. Upregulation of HLA Class I Expression on Tumor Cells by the Anti-EGFR Antibody Nimotuzumab. Front Pharmacol 2017; 8:595. [PMID: 29056908 PMCID: PMC5635422 DOI: 10.3389/fphar.2017.00595] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/17/2017] [Indexed: 12/21/2022] Open
Abstract
Defining how epidermal growth factor receptor (EGFR)-targeting therapies influence the immune response is essential to increase their clinical efficacy. A growing emphasis is being placed on immune regulator genes that govern tumor – T cell interactions. Previous studies showed an increase in HLA class I cell surface expression in tumor cell lines treated with anti-EGFR agents. In particular, earlier studies of the anti-EGFR blocking antibody cetuximab, have suggested that increased tumor expression of HLA class I is associated with positive clinical response. We investigated the effect of another commercially available anti-EGFR antibody nimotuzumab on HLA class I expression in tumor cell lines. We observed, for the first time, that nimotuzumab increases HLA class I expression and its effect is associated with a coordinated increase in mRNA levels of the principal antigen processing and presentation components. Moreover, using 7A7 (a specific surrogate antibody against murine EGFR), we obtained results suggesting the importance of the increased MHC-I expression induced by EGFR-targeted therapies display higher in antitumor immune response. 7A7 therapy induced upregulation of tumor MHC-I expression in vivo and tumors treated with this antibody display higher susceptibility to CD8+ T cells-mediated lysis. Our results represent the first evidence suggesting the importance of the adaptive immunity in nimotuzumab-mediated antitumor activity. More experiments should be conducted in order to elucidate the relevance of this mechanism in cancer patients. This novel immune-related antitumor mechanism mediated by nimotuzumab opens new perspectives for its combination with various immunotherapeutic agents and cancer vaccines.
Collapse
Affiliation(s)
- Greta Garrido
- Tumor Immunology Direction, Molecular Immunology Institute, Center of Molecular Immunology, Havana, Cuba
| | - Ailem Rabasa
- Tumor Immunology Direction, Molecular Immunology Institute, Center of Molecular Immunology, Havana, Cuba
| | - Cristina Garrido
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, Granada, Spain.,Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| | - Lisset Chao
- Tumor Immunology Direction, Molecular Immunology Institute, Center of Molecular Immunology, Havana, Cuba
| | - Federico Garrido
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, Granada, Spain.,Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| | - Ángel M García-Lora
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Belinda Sánchez-Ramírez
- Tumor Immunology Direction, Molecular Immunology Institute, Center of Molecular Immunology, Havana, Cuba
| |
Collapse
|
10
|
Juratli TA, Qin N, Cahill DP, Filbin MG. Molecular pathogenesis and therapeutic implications in pediatric high-grade gliomas. Pharmacol Ther 2017; 182:70-79. [PMID: 28830841 DOI: 10.1016/j.pharmthera.2017.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
High-grade gliomas (HGG) are the most common malignant brain tumors in the pediatric population and account for a large subset of all pediatric central nervous system neoplasms. The management of pediatric HGG continues to be challenging, with poor outcome in many cases despite aggressive treatments. Consequently, parallel research efforts have been focused on identifying the underlying genetic and biological basis of pediatric HGG in order to more clearly define prognostic subgroups for treatment stratification as well as identify new treatment targets. These cutting-edge advances have revolutionized pediatric neuro-oncology and have revealed novel oncogenic vulnerabilities that are being therapeutically leveraged. Promising treatments - including pathway-targeting small molecules as well as epigenetic therapy - are being evaluated in clinical trials, and recent genomic discoveries in rare glioma subgroups have led to the identification of additional new potentially-actionable alterations. This review summarizes the current state of knowledge about the molecular characterization of pediatric HGG in correlation to the revised World Health Organization (WHO) classification, as well as provides an overview of some targeted treatment approaches in the modern clinical management of high-grade gliomas.
Collapse
Affiliation(s)
- Tareq A Juratli
- Translational Neuro-Oncology Laboratory, Department of Neurosurgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA; Department of Neurosurgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Germany.
| | - Nan Qin
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany; Division of Pediatric Neuro-Oncogenomics, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) - partner site Essen/Düsseldorf, Düsseldorf, Germany; Institute of Neuropathology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Daniel P Cahill
- Translational Neuro-Oncology Laboratory, Department of Neurosurgery, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Mariella G Filbin
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02215, USA.
| |
Collapse
|
11
|
Konar SK, Bir SC, Maiti TK, Nanda A. A systematic review of overall survival in pediatric primary glioblastoma multiforme of the spinal cord. J Neurosurg Pediatr 2017; 19:239-248. [PMID: 27813458 DOI: 10.3171/2016.8.peds1631] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE The incidence of primary spinal cord glioblastoma multiforme (GBM) in the pediatric age group is very rare. Only a few case series and case reports have been published in the literature; therefore, overall survival (OS) outcome and the as-yet poorly defined management options are not discussed in detail. The authors performed a cumulative survival analysis of all reported cases of pediatric spinal cord GBM to identify the predictive factors related to final survival outcome. METHODS A comprehensive search for relevant articles was performed on PubMed's electronic database MEDLINE for the period from 1950 to 2015 using the search words "malignant spinal cord tumor" and "spinal glioblastoma multiforme." This study was limited to patients younger than 18 years of age. Survival rates for children with various tumor locations and treatments were collected from the published articles and analyzed. RESULTS After an extensive literature search, 29 articles met the study inclusion criteria. From the detailed information in these articles, the authors found 53 children eligible for the survival analysis. The majority (45%) of the children were more than 12 years old. Thirty-four percent of the cases were between 7 and 12 years of age, and 21% were younger than 7 years. In the Kaplan-Meier survival analysis, children younger than 7 years of age had better survival (13 months) than the children older than 7 years (7-12 years: 10 months, > 12 years: 9 months; p = 0.01, log-rank test). Fifty-five percent of the children were female and 45% were male. A cervical tumor location (32%) was the most common, followed by thoracic (28.3%). Cervicothoracic (18.9%) and conus (18.8%) tumor locations shared the same percentage of cases. Cervical tumors had a worse outcome than tumors in other locations (p = 0.003, log-rank test). The most common presenting symptom was limb weakness (53%), followed by sensory disturbances (25%). Median OS was 10 months. The addition of adjuvant therapy (radiotherapy [RT] and/or chemotherapy [CT]) after surgery significantly improved OS (p = 0.01, log-rank test). Children who underwent gross-total resection and RT had better outcomes than those who underwent subtotal resection and RT (p = 0.04, log-rank test). Cerebrospinal fluid spread, hydrocephalus, brain metastasis, and spinal metastasis were not correlated with OS in primary spinal GBM. CONCLUSIONS Adjuvant therapy after surgery had a beneficial effect on overall outcome of spinal GBM in the pediatric age group. Gross-total resection followed by RT produced a better outcome than subtotal resection with RT. Further large-scale prospective study is required to establish the genetic and molecular factors related to OS in primary GBM of the spinal cord in pediatric patients.
Collapse
Affiliation(s)
- Subhas K Konar
- Department of Neurosurgery, LSU Health Shreveport, Louisiana
| | - Shyamal C Bir
- Department of Neurosurgery, LSU Health Shreveport, Louisiana
| | - Tanmoy K Maiti
- Department of Neurosurgery, LSU Health Shreveport, Louisiana
| | - Anil Nanda
- Department of Neurosurgery, LSU Health Shreveport, Louisiana
| |
Collapse
|
12
|
Wang H, Xu T, Jiang Y, Xu H, Yan Y, Fu D, Chen J. The challenges and the promise of molecular targeted therapy in malignant gliomas. Neoplasia 2015; 17:239-55. [PMID: 25810009 PMCID: PMC4372648 DOI: 10.1016/j.neo.2015.02.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/06/2015] [Indexed: 11/18/2022] Open
Abstract
Malignant gliomas are the most common malignant primary brain tumors and one of the most challenging forms of cancers to treat. Despite advances in conventional treatment, the outcome for patients remains almost universally fatal. This poor prognosis is due to therapeutic resistance and tumor recurrence after surgical removal. However, over the past decade, molecular targeted therapy has held the promise of transforming the care of malignant glioma patients. Significant progress in understanding the molecular pathology of gliomagenesis and maintenance of the malignant phenotypes will open opportunities to rationally develop new molecular targeted therapy options. Recently, therapeutic strategies have focused on targeting pro-growth signaling mediated by receptor tyrosine kinase/RAS/phosphatidylinositol 3-kinase pathway, proangiogenic pathways, and several other vital intracellular signaling networks, such as proteasome and histone deacetylase. However, several factors such as cross-talk between the altered pathways, intratumoral molecular heterogeneity, and therapeutic resistance of glioma stem cells (GSCs) have limited the activity of single agents. Efforts are ongoing to study in depth the complex molecular biology of glioma, develop novel regimens targeting GSCs, and identify biomarkers to stratify patients with the individualized molecular targeted therapy. Here, we review the molecular alterations relevant to the pathology of malignant glioma, review current advances in clinical targeted trials, and discuss the challenges, controversies, and future directions of molecular targeted therapy.
Collapse
Affiliation(s)
- Hongxiang Wang
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tao Xu
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ying Jiang
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hanchong Xu
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yong Yan
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Da Fu
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Juxiang Chen
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
13
|
Abstract
High-grade gliomas (HGG) are extremely aggressive lesions and represent the most common primary malignant brain tumors without an effective therapy. Standard treatment for HGG usually includes surgery followed by radiotherapy and chemotherapy. However, the prognosis of patients with HGG remains dismal. We review the humanized epidermal growth factor receptor (EGFR) and the major EGFR target drugs in HGG treatments, focusing on the EGFR antibody nimotuzumab as a new therapeutic strategy in HGG. We found that nimotuzumab with or without radiotherapy, chemotherapy in newly diagnosed or recurrent HGG, such as glioblastoma multiforme (GBM), anaplastic astrocytomas (AA), and diffuse intrinsic pontine glioma (DIPG), might improve the response rate or the survival time. In conclusion, nimotuzumab is a very well-tolerated drug with acceptable toxicity, and it may have promising value in the combination treatment. As a result, multiple center randomized controlled Phase III clinical trials need to be conducted to confirm the efficacy and toxicity for nimotuzumab in HGG.
Collapse
Affiliation(s)
- Qun-Ying Yang
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Cheng-Cheng Guo
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Zhong-Ping Chen
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| |
Collapse
|
14
|
Adamski J, Tabori U, Bouffet E. Advances in the Management of Paediatric High-Grade Glioma. Curr Oncol Rep 2014; 16:414. [DOI: 10.1007/s11912-014-0414-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Vanan MI, Eisenstat DD. Management of high-grade gliomas in the pediatric patient: Past, present, and future. Neurooncol Pract 2014; 1:145-157. [PMID: 26034626 DOI: 10.1093/nop/npu022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Indexed: 11/12/2022] Open
Abstract
High-grade gliomas (HGGs) constitute ∼15% of all primary brain tumors in children and adolescents. Routine histopathological diagnosis is based on tissue obtained from biopsy or, preferably, from the resected tumor itself. The majority of pediatric HGGs are clinically and biologically distinct from histologically similar adult malignant gliomas; these differences may explain the disparate responses to therapy and clinical outcomes when comparing children and adults with HGG. The recently proposed integrated genomic classification identifies 6 distinct biological subgroups of glioblastoma (GBM) throughout the age spectrum. Driver mutations in genes affecting histone H3.3 (K27M and G34R/V) coupled with mutations involving specific proteins (TP53, ATRX, DAXX, SETD2, ACVR1, FGFR1, NTRK) induce defects in chromatin remodeling and may play a central role in the genesis of many pediatric HGGs. Current clinical practice in pediatric HGGs includes surgical resection followed by radiation therapy (in children aged > 3 years) with concurrent and adjuvant chemotherapy with temozolomide. However, these multimodality treatment strategies have had a minimal impact on improving survival. Ongoing clinical trials are investigating new molecular targets, chemoradiation sensitization strategies, and immunotherapy. Future clinical trials of pediatric HGG will incorporate the distinction between GBM molecular subgroups and stratify patients using group-specific biomarkers.
Collapse
Affiliation(s)
- Magimairajan Issai Vanan
- Section of Pediatric Hematology/Oncology/BMT, CancerCare Manitoba, Departments of Pediatrics & Child Health and Biochemistry & Medical Genetics , University of Manitoba , Winnipeg, Manitoba , Canada (M.I.V.); Division of Hematology/Oncology and Palliative Care, Stollery Children's Hospital, Departments of Pediatrics, Medical Genetics and Oncology , University of Alberta , Edmonton, Alberta , Canada (D.D.E.)
| | - David D Eisenstat
- Section of Pediatric Hematology/Oncology/BMT, CancerCare Manitoba, Departments of Pediatrics & Child Health and Biochemistry & Medical Genetics , University of Manitoba , Winnipeg, Manitoba , Canada (M.I.V.); Division of Hematology/Oncology and Palliative Care, Stollery Children's Hospital, Departments of Pediatrics, Medical Genetics and Oncology , University of Alberta , Edmonton, Alberta , Canada (D.D.E.)
| |
Collapse
|
16
|
Saletta F, Wadham C, Ziegler DS, Marshall GM, Haber M, McCowage G, Norris MD, Byrne JA. Molecular profiling of childhood cancer: Biomarkers and novel therapies. BBA CLINICAL 2014; 1:59-77. [PMID: 26675306 PMCID: PMC4633945 DOI: 10.1016/j.bbacli.2014.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/16/2014] [Accepted: 06/24/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Technological advances including high-throughput sequencing have identified numerous tumor-specific genetic changes in pediatric and adolescent cancers that can be exploited as targets for novel therapies. SCOPE OF REVIEW This review provides a detailed overview of recent advances in the application of target-specific therapies for childhood cancers, either as single agents or in combination with other therapies. The review summarizes preclinical evidence on which clinical trials are based, early phase clinical trial results, and the incorporation of predictive biomarkers into clinical practice, according to cancer type. MAJOR CONCLUSIONS There is growing evidence that molecularly targeted therapies can valuably add to the arsenal available for treating childhood cancers, particularly when used in combination with other therapies. Nonetheless the introduction of molecularly targeted agents into practice remains challenging, due to the use of unselected populations in some clinical trials, inadequate methods to evaluate efficacy, and the need for improved preclinical models to both evaluate dosing and safety of combination therapies. GENERAL SIGNIFICANCE The increasing recognition of the heterogeneity of molecular causes of cancer favors the continued development of molecularly targeted agents, and their transfer to pediatric and adolescent populations.
Collapse
Key Words
- ALK, anaplastic lymphoma kinase
- ALL, acute lymphoblastic leukemia
- AML, acute myeloid leukemia
- ARMS, alveolar rhabdomyosarcoma
- AT/RT, atypical teratoid/rhabdoid tumor
- AURKA, aurora kinase A
- AURKB, aurora kinase B
- BET, bromodomain and extra terminal
- Biomarkers
- CAR, chimeric antigen receptor
- CML, chronic myeloid leukemia
- Childhood cancer
- DFMO, difluoromethylornithine
- DIPG, diffuse intrinsic pontine glioma
- EGFR, epidermal growth factor receptor
- ERMS, embryonal rhabdomyosarcoma
- HDAC, histone deacetylases
- Hsp90, heat shock protein 90
- IGF-1R, insulin-like growth factor type 1 receptor
- IGF/IGFR, insulin-like growth factor/receptor
- Molecular diagnostics
- NSCLC, non-small cell lung cancer
- ODC1, ornithine decarboxylase 1
- PARP, poly(ADP-ribose) polymerase
- PDGFRA/B, platelet derived growth factor alpha/beta
- PI3K, phosphatidylinositol 3′-kinase
- PLK1, polo-like kinase 1
- Ph +, Philadelphia chromosome-positive
- RMS, rhabdomyosarcoma
- SHH, sonic hedgehog
- SMO, smoothened
- SYK, spleen tyrosine kinase
- TOP1/TOP2, DNA topoisomerase 1/2
- TRAIL, TNF-related apoptosis-inducing ligand
- Targeted therapy
- VEGF/VEGFR, vascular endothelial growth factor/receptor
- mAb, monoclonal antibody
- mAbs, monoclonal antibodies
- mTOR, mammalian target of rapamycin
Collapse
Affiliation(s)
- Federica Saletta
- Children's Cancer Research Unit, Kids Research Institute, Westmead 2145, New South Wales, Australia
| | - Carol Wadham
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick 2031, New South Wales, Australia
| | - David S. Ziegler
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick 2031, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick 2031, New South Wales, Australia
| | - Glenn M. Marshall
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick 2031, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick 2031, New South Wales, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick 2031, New South Wales, Australia
| | - Geoffrey McCowage
- The Children's Hospital at Westmead, Westmead 2145, New South Wales, Australia
| | - Murray D. Norris
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick 2031, New South Wales, Australia
| | - Jennifer A. Byrne
- Children's Cancer Research Unit, Kids Research Institute, Westmead 2145, New South Wales, Australia
- The University of Sydney Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Westmead 2145, New South Wales, Australia
| |
Collapse
|
17
|
Diaz-Miqueli A, Martinez GS. Nimotuzumab as a radiosensitizing agent in the treatment of high grade glioma: challenges and opportunities. Onco Targets Ther 2013; 6:931-42. [PMID: 23926436 PMCID: PMC3729249 DOI: 10.2147/ott.s33532] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nimotuzumab is a humanized monoclonal antibody that binds specifically to human epidermal growth factor receptor, blocking receptor activation. Evidence of its radiosensitizing capacity has been widely evaluated. This article integrates published research findings regarding the role of nimotuzumab in the treatment of high grade glioma in combination with radiotherapy or radiochemotherapy in adult and pediatric populations. First, the mechanisms of action of nimotuzumab and its current applications in clinical trials containing both radiation and chemoradiation therapies are reviewed. Second, a comprehensive explanation of potential mechanisms driving radiosensitization by nimotuzumab in experimental settings is given. Finally, future directions of epidermal growth factor receptor targeting with nimotuzumab in combination with radiation containing regimens, based on its favorable toxicity profile, are proposed. It is hoped that this review may provide further insight into the rational design of new approaches employing nimotuzumab as a useful alternative for the therapeutic management of high grade glioma.
Collapse
|