1
|
Cao M, Wang R, Xu X, Hou X, Wang W, Zhang X, Ma C, Zhang Y, Shi D, Yang J, Ma H. Engineering of peptide assemblies for adaptable protein delivery to achieve efficient intracellular biocatalysis. J Colloid Interface Sci 2025; 683:457-467. [PMID: 39693883 DOI: 10.1016/j.jcis.2024.12.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Efficient intracellular delivery of native proteins remains a big challenge, which greatly hinders the development of protein therapy. Here, we report a generalizable peptide vector that can encapsulate and deliver various proteins to achieve efficient intracellular biocatalysis. The peptide was rationally designed to be cationic amphiphilic peptide that consist of four functional fragments, that is, a hydrophobic domain to promote molecular assembly, an enzyme-cleavable fragment to introduce stimuli-responsibility, several cationic arginine (Arg) residues to enhance cell interaction and transmembrane efficiency, and the cystine (Cys) residues with redox sensitivity to adjust the stability of the peptide/protein complexes as needed. The peptide can co-assemble with proteins to form stable complexes in aqueous solution under mild condition. The complexes enter cell mainly through caveolae- and lipid raft-mediated endocytosis, giving a delivery efficiency of up to ∼97.2 %. They can then achieve efficient lysosomal escape and disassociation to release native proteins inside cells in response to intracellular stimuli. More strikingly, the delivered protein's bioactivity can be well maintained and the two model proteins of β-galactosidase (β-Gal) and horseradish peroxidase (HRP) both showed excellent intracellular biocatalytic activity. The study develops a versatile and adjustable peptide carrier platform for protein delivery and highlights impactful structure-function relationships, providing a new chemical guide for the design and optimization of functional protein nanocarriers.
Collapse
Affiliation(s)
- Meiwen Cao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East), 66 Changjiang West Road, Qingdao 266580, China.
| | - Rui Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East), 66 Changjiang West Road, Qingdao 266580, China
| | - Xiaomin Xu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East), 66 Changjiang West Road, Qingdao 266580, China
| | - Xinyue Hou
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East), 66 Changjiang West Road, Qingdao 266580, China
| | - Wentao Wang
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China.
| | - Xiaoming Zhang
- School of Science, Optoelectronics Research Center, Minzu University of China, Beijing 100081, China
| | - Chen Ma
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East), 66 Changjiang West Road, Qingdao 266580, China
| | - Yuxuan Zhang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East), 66 Changjiang West Road, Qingdao 266580, China
| | - Daikui Shi
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East), 66 Changjiang West Road, Qingdao 266580, China
| | - Jianing Yang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East), 66 Changjiang West Road, Qingdao 266580, China
| | - Hongchao Ma
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East), 66 Changjiang West Road, Qingdao 266580, China
| |
Collapse
|
2
|
Dombrowsky CS, Happel D, Habermann J, Hofmann S, Otmi S, Cohen B, Kolmar H. A Conditionally Activated Cytosol-Penetrating Antibody for TME-Dependent Intracellular Cargo Delivery. Antibodies (Basel) 2024; 13:37. [PMID: 38804305 PMCID: PMC11130931 DOI: 10.3390/antib13020037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/29/2024] Open
Abstract
Currently, therapeutic and diagnostic applications of antibodies are primarily limited to cell surface-exposed and extracellular proteins. However, research has been conducted on cell-penetrating peptides (CPP), as well as cytosol-penetrating antibodies, to overcome these limitations. In this context, a heparin sulfate proteoglycan (HSPG)-binding antibody was serendipitously discovered, which eventually localizes to the cytosol of target cells. Functional characterization revealed that the tested antibody has beneficial cytosol-penetrating capabilities and can deliver cargo proteins (up to 70 kDa) to the cytosol. To achieve tumor-specific cell targeting and cargo delivery through conditional activation of the cell-penetrating antibody in the tumor microenvironment, a single-chain Fc fragment (scFv) and a VL domain were isolated as masking units. Several in vitro assays demonstrated that fusing the masking protein with a cleavable linker to the cell penetration antibody results in the inactivation of antibody cell binding and internalization. Removal of the mask via MMP-9 protease cleavage, a protease that is frequently overexpressed in the tumor microenvironment (TME), led to complete regeneration of binding and cytosol-penetrating capabilities. Masked and conditionally activated cytosol-penetrating antibodies have the potential to serve as a modular platform for delivering protein cargoes addressing intracellular targets in tumor cells.
Collapse
Affiliation(s)
- Carolin Sophie Dombrowsky
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
| | - Dominic Happel
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
| | - Jan Habermann
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
| | - Sarah Hofmann
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
| | - Sasi Otmi
- Inter-Lab, a Subsidiary of Merck KGaA, South Industrial Area, Yavne 8122004, Israel
| | - Benny Cohen
- Inter-Lab, a Subsidiary of Merck KGaA, South Industrial Area, Yavne 8122004, Israel
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, D-64287 Darmstadt, Germany
| |
Collapse
|
3
|
Maemoto T, Sasaki Y, Okuyama F, Kitai Y, Oritani K, Matsuda T. Potential of targeting signal-transducing adaptor protein-2 in cancer therapeutic applications. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:251-259. [PMID: 38745775 PMCID: PMC11090684 DOI: 10.37349/etat.2024.00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/15/2024] [Indexed: 05/16/2024] Open
Abstract
Adaptor proteins play essential roles in various intracellular signaling pathways. Signal-transducing adaptor protein-2 (STAP-2) is an adaptor protein that possesses pleckstrin homology (PH) and Src homology 2 (SH2) domains, as well as a YXXQ signal transducer and activator of transcription 3 (STAT3)-binding motif in its C-terminal region. STAP-2 is also a substrate of breast tumor kinase (BRK). STAP-2/BRK expression is deregulated in breast cancers and enhances STAT3-dependent cell proliferation. In prostate cancer cells, STAP-2 interacts with and stabilizes epidermal growth factor receptor (EGFR) after stimulation, resulting in the upregulation of EGFR signaling, which contributes to cancer-cell proliferation and tumor progression. Therefore, inhibition of the interaction between STAP-2 and BRK/EGFR may be a possible therapeutic strategy for these cancers. For this purpose, peptides that interfere with STAP-2/BRK/EGFR binding may have great potential. Indeed, the identified peptide inhibitor successfully suppressed the STAP-2/EGFR protein interaction, EGFR stabilization, and cancer-cell growth. Furthermore, the peptide inhibitor suppressed tumor formation in human prostate- and lung-cancer cell lines in a murine xenograft model. This review focuses on the inhibitory peptide as a promising candidate for the treatment of prostate and lung cancers.
Collapse
Affiliation(s)
- Taiga Maemoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yuto Sasaki
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Fumiya Okuyama
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yuichi Kitai
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Kenji Oritani
- Departmrnt of Hematology, International University of Health and Welfare, Narita 286-8686, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
4
|
Kawaguchi Y, Kawamura Y, Hirose H, Kiyokawa M, Hirate M, Hirata T, Higuchi Y, Futaki S. E3MPH16: An efficient endosomolytic peptide for intracellular protein delivery. J Control Release 2024; 367:877-891. [PMID: 38301930 DOI: 10.1016/j.jconrel.2024.01.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
To facilitate the introduction of proteins, such as antibodies, into cells, a variety of delivery peptides have been engineered. These peptides are typically highly cationic and somewhat hydrophobic, enabling cytosolic protein delivery at the cost of causing cell damage by rupturing membranes. This balance between delivery effectiveness and cytotoxicity presents obstacles for their real-world use. To tackle this problem, we designed a new endosome-disruptive cytosolic delivery peptide, E3MPH16, inspired by mastoparan X (MP). E3MPH16 was engineered to incorporate three Glu (E3) and 16 His (H16) residues at the N- and C-termini of MP, respectively. The negative charges of E3 substantially mitigate the cell-surface damage induced by MP. The H16 segment is known to enhance cell-surface adsorption and endocytic uptake of the associated molecules. With these modifications, E3MPH16 was successfully trapped within endosomes. The acidification of endosomes is expected to protonate the side chains of E3 and H16, enabling E3MPH16 to rupture endosomal membranes. As a result, nearly 100% of cells achieved cytosolic delivery of a model biomacromolecule, Alexa Fluor 488-labeled dextran (10 kDa), via endosomal escape by co-incubation with E3MPH16. The delivery process also suggested the involvement of macropinocytosis and caveolae-mediated endocytosis. With the assistance of E3MPH16, Cre recombinase and anti-Ras-IgG delivered into HEK293 cells and HT1080 cells enabled gene recombination and inhibited cell proliferation, respectively. The potential for in vivo application of this intracellular delivery method was further validated by topically injecting the green fluorescent protein fused with a nuclear localization signal (NLS-GFP) along with E3MPH16 into Colon-26 tumor xenografts in mice.
Collapse
Affiliation(s)
- Yoshimasa Kawaguchi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Yuki Kawamura
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Megumi Kiyokawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Momo Hirate
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tsuyoshi Hirata
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuriko Higuchi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
5
|
Targeting the Inside of Cells with Biologicals: Toxin Routes in a Therapeutic Context. BioDrugs 2023; 37:181-203. [PMID: 36729328 PMCID: PMC9893211 DOI: 10.1007/s40259-023-00580-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
Numerous toxins translocate to the cytosol in order to fulfil their function. This demonstrates the existence of routes for proteins from the extracellular space to the cytosol. Understanding these routes is relevant to multiple aspects related to therapeutic applications. These include the development of anti-toxin treatments, the potential use of toxins as shuttles for delivering macromolecular cargo to the cytosol or the use of drugs based on toxins. Compared with other strategies for delivery, such as chemicals as carriers for macromolecular delivery or physical methods like electroporation, toxin routes present paths into the cell that potentially cause less damage and can be specifically targeted. The efficiency of delivery via toxin routes is limited. However, low-delivery efficiencies can be entirely sufficient, if delivered cargoes possess an amplification effect or if very few molecules are sufficient for inducing the desired effects. This is known for example from RNA-based vaccines that have been developed during the coronavirus disease 2019 pandemic as well as for other approved RNA-based drugs, which elicited the desired effect despite their typically low delivery efficiencies. The different mechanisms by which toxins enter cells may have implications for their technological utility. We review the mechanistic principles of the translocation pathway of toxins from the extracellular space to the cytosol, the delivery efficiencies, and therapeutic strategies or applications that exploit toxin routes for intracellular delivery.
Collapse
|
6
|
Reid AR, Côté PD, McDougall JJ. Long-Term Blockade of Nociceptive Na v1.7 Channels Is Analgesic in Rat Models of Knee Arthritis. Biomolecules 2022; 12:1571. [PMID: 36358921 PMCID: PMC9687684 DOI: 10.3390/biom12111571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
The voltage gated sodium channels (Nav) 1.7, 1.8, and 1.9 are primarily located on nociceptors where they are involved in signalling neuropathic pain. This study examined the effect of Nav1.7 blockade on joint pain using either the small molecule inhibitor PF05089771 or an antibody directed towards the intracellular domain of the ion channel. Male Wistar rats were assigned to one of three experimental groups consisting of either intra-articular injection of 3 mg sodium monoiodoacetate (MIA-joint degeneration group), intra-articular injection of 100 μg lysophosphatidic acid (LPA-joint neuropathy group), or transection of the medial meniscus (MMT-posttraumatic osteoarthritis group). G-ratio calculations were performed to determine potential demyelination and immunohistochemistry was used to measure Nav1.7 expression on joint afferent cell bodies. Pain behaviour was evaluated over 3 h by von Frey hair algesiometry and hindlimb weight bearing before and after local administration of PF05089771 (0.1 mg/50 µL). Chronic pain behaviour was assessed over 28 days following peripheral treatment with a Nav1.7 antibody (Ab) in conjunction with the transmembrane carrier peptide Pep1. Demyelination and increased Nav1.7 channel expression were observed in MIA and LPA rats, but not with MMT. Acute secondary allodynia was diminished by PF05089771 while a single injection of Nav1.7 Ab-Pep1 reduced pain up to 28 days. This analgesia only occurred in MIA and LPA animals. Hindlimb incapacitance was not affected by any treatment. These data indicate that joint pain associated with neural demyelination can be alleviated somewhat by Nav1.7 channel blockade. Biologics that inactivate Nav1.7 channels have the potential to reduce arthritis pain over a protracted period of time.
Collapse
Affiliation(s)
- Allison R. Reid
- Departments of Pharmacology and Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada
| | - Patrice D. Côté
- Department of Biology, Dalhousie University, 1355 Oxford, Halifax, NS B3H 4R2, Canada
| | - Jason J. McDougall
- Departments of Pharmacology and Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
7
|
Zhao Z, Liu X, Hou M, Zhou R, Wu F, Yan J, Li W, Zheng Y, Zhong Q, Chen Y, Yin L. Endocytosis-Independent and Cancer-Selective Cytosolic Protein Delivery via Reversible Tagging with LAT1 substrate. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110560. [PMID: 35789055 DOI: 10.1002/adma.202110560] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Protein drugs targeting intracellular machineries have shown profound therapeutic potentials, but their clinical utilities are greatly hampered by the lack of efficient cytosolic delivery techniques. Existing strategies mainly rely on nanocarriers or conjugated cell-penetrating peptides (CPPs), which often have drawbacks such as materials complexity/toxicity, lack of cell specificity, and endolysosomal entrapment. Herein, a unique carrier-free approach is reported for mediating cancer-selective and endocytosis-free cytosolic protein delivery. Proteins are sequentially modified with 4-nitrophenyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) benzyl carbonate as the H2 O2 -responsive domain and 3,4-dihydroxy-l-phenylalanine as the substrate of l-type amino acid transporter 1 (LAT1). Thus, the pro-protein can be directly transported into tumor cells by overexpressed LAT1 on cell membranes, bypassing endocytosis and endolysosomal entrapment. In the cytosol, overproduced H2 O2 restores the protein structure and activity. Using this technique, versatile proteins are delivered into tumor cells with robust efficiency, including toxins, enzymes, CRISPR-Cas9 ribonucleoprotein, and antibodies. Furthermore, intravenously injected pro-protein of saporin shows potent anticancer efficacy in 4T1-tumor-bearing mice, without provoking systemic toxicity. Such a facile and versatile pro-protein platform may benefit the development of protein pharmaceuticals.
Collapse
Affiliation(s)
- Ziyin Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Xun Liu
- Department of Thoracic Surgery, Suzhou Key Laboratory of Thoracic Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Mengying Hou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Renxiang Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Fan Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Jing Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Wei Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Yujia Zheng
- Department of Thoracic Surgery, Suzhou Key Laboratory of Thoracic Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Qinmeng Zhong
- College of Chemistry, Chemical Engineering and Materials Science, Suzhou, 215123, China
| | - Yongbing Chen
- Department of Thoracic Surgery, Suzhou Key Laboratory of Thoracic Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Lichen Yin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
8
|
Ch'ng ACW, Schepergerdes L, Choong YS, Hust M, Lim TS. Antimicrobial antibodies by phage display: Identification of antibody-based inhibitor against mycobacterium tuberculosis isocitrate lyase. Mol Immunol 2022; 150:47-57. [PMID: 35987135 DOI: 10.1016/j.molimm.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/23/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
The increasing incidence reports of antibiotic resistance highlights the need for alternative approaches to deal with bacterial infections. This brought about the idea of utilizing monoclonal antibodies as an alternative antibacterial treatment. Majority of the studies are focused on developing antibodies to bacterial surface antigens, with little emphasis on antibodies that inhibit the growth mechanisms of a bacteria host. Isocitrate lyase (ICL) is an important enzyme for the growth and survival of Mycobacterium tuberculosis (MTB) during latent infection as a result of its involvement in the mycobacterial glyoxylate and methylisocitrate cycles. It is postulated that the inhibition of ICL can disrupt the life cycle of MTB. To this extent, we utilized antibody phage display to identify a single chain fragment variable (scFv) antibody against the recombinant ICL protein from MTB. The soluble a-ICL-C6 scFv clone exhibited good binding characteristics with high specificity against ICL. More importantly, the clone exhibited in vitro inhibitory effect with an enzymatic assay resulting in a decrease of ICL enzymatic activity. In silico analysis showed that the scFv-ICL interactions are driven by 23 hydrogen bonds and 13 salt bridges that might disrupt the formation of ICL subunits for the tertiary structure or the formation of active site β domain. However, further validation is necessary to confirm if the isolated clone is indeed a good inhibitor against ICL for application against MTB.
Collapse
Affiliation(s)
- Angela Chiew Wen Ch'ng
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Lena Schepergerdes
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, 38106 Braunschweig
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, 38106 Braunschweig
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
9
|
Yélamos J. Current innovative engineered antibodies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 369:1-43. [PMID: 35777861 DOI: 10.1016/bs.ircmb.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antibody engineering has developed very intensively since the invention of the hybridoma technology in 1975, and it now can generate therapeutic agents with high specificity and reduced adverse effects. Indeed, antibodies have become one of the most innovative therapeutic agents in recent years, with some landing in the top 10 bestselling pharmaceutical drugs. New antibodies are being approved every year, in different formats and for treating various illnesses, including cancer, autoimmune inflammatory diseases, metabolic diseases and infectious diseases. In this review, I summarize current progress in innovative engineered antibodies. Overall, this progress has led to the approval by regulatory authorities of more than 100 antibody-based molecules, with many others at various stages of clinical development, indicating the high growth potential of the field.
Collapse
Affiliation(s)
- José Yélamos
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Unidad Asociada IIBB-CSIC, Barcelona, Spain; Immunology Unit, Department of Pathology, Hospital del Mar, Barcelona, Spain.
| |
Collapse
|
10
|
Wang R, Wu Y, Zhu Y, Yao S, Zhu Y. ANKRD22 is a novel therapeutic target for gastric mucosal injury. Pharmacotherapy 2022; 147:112649. [PMID: 35051858 DOI: 10.1016/j.biopha.2022.112649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/28/2022]
|
11
|
Coiled coil exposure and histidine tags drive function of an intracellular protein drug carrier. J Control Release 2021; 339:248-258. [PMID: 34563592 DOI: 10.1016/j.jconrel.2021.09.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 01/05/2023]
Abstract
In recent years, protein engineering efforts have yielded a diverse set of binding proteins that hold promise for various therapeutic applications. Despite this, their inability to reach intracellular targets limits their applications to cell surface or soluble targets. To address this challenge, we previously reported a protein carrier that binds antibodies and delivers them to therapeutic targets inside cancer cells. This carrier, known as the Hex carrier, is comprised of a self-assembling coiled coil hexamer at the core, with each alpha helix fused to a linker, an antibody binding domain, and a six Histidine-tag (His-tag). In this work, we designed different versions of the carrier to determine the role of each building block in cytosolic protein delivery. We found that increasing exposure of the Hex coiled coil on the carriers, through molecular design or removing antibodies, increased internalization, pointing to a role of the coiled coil in promoting endocytosis. We observed a clear increase in endosomal disruption events when His-tags were present on the carrier relative to when they were removed, due to an endosomal buffering effect. Finally, we found that the antibody binding domains of the Hex carrier could be replaced with monomeric ultra-stable GFP for intracellular delivery and endosomal escape. Our results demonstrate that the Hex coiled coil, in conjunction with His-tags, could be a generalizable vehicle for delivering small and large proteins to intracellular targets. This work also highlights new biological applications for oligomeric coiled coils and shows the direct and quantifiable impact of histidine residues on endosomal disruption. These findings could inform the design of future drug delivery vehicles in applications beyond intracellular protein delivery.
Collapse
|
12
|
Wei S, Zhou S, Huang W, Zan X, Geng W. Efficient Delivery of Antibodies Intracellularly by Co-Assembly with Hexahistidine-Metal Assemblies (HmA). Int J Nanomedicine 2021; 16:7449-7461. [PMID: 34785893 PMCID: PMC8579864 DOI: 10.2147/ijn.s332279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/27/2021] [Indexed: 12/02/2022] Open
Abstract
PURPOSE There has been a substantial global market for antibodies, which are based on extracellular targets. Binding intracellular targets by antibodies will bring new chances in antibody therapeutics and a huge market increase. We aim to evaluate the efficiency of a novel delivery system of His6-metal assembly (HmA) in delivering intracellular antibodies and biofunctions of delivered antibodies. METHODS In this study, the physicochemical properties of HmA@Antibodies generated through co-assembling with antibodies and HmA were well characterized by dynamic light scatter. The cytotoxicity of HmA@Antibodies was investigated by Cell Counting Kit-8 (CCK-8). The endocytic kinetics and lysosome escape process of HmA@Antibodies were studied by flow cytometry and fluorescent staining imaging, respectively. Compared to the commercialized positive control, the intracellular delivery efficiency by HmA@Antibodies and biofunctions of delivered antibodies were evaluated by fluorescent imaging and CCK-8. RESULTS Various antibodies (IgG, anti-β-tubulin and anti-NPC) could co-assemble with HmA under a gentle condition, producing nano-sized (~150 nm) and positively charged (~+30 eV) HmA@Antibodies particles with narrow size distribution (PDI ~ 0.15). HmA displayed very low cytotoxicity to divers cells (DCs, HeLa, HCECs, and HRPE) even after 96 h for the feeding concentration ≤100 μg mL-1, and fast escape from endosomes. In the case of delivery IgG, the delivery efficiency into alive cells of HmA was better than a commercial protein delivery reagent (PULSin). For cases of the anti-β-tubulin and anti-NPC, HmA showed comparable delivery efficiency to their positive controls, but HmA with ability to deliver these antibodies into alive cells was still superior to positive controls delivering antibodies into dead cells through punching holes. CONCLUSION Our results indicate that this strategy is a feasible way to deliver various antibodies intracellularly while preserving their functions, which has great potential in various applications and treating many refractory diseases by intracellular antibody delivery.
Collapse
Affiliation(s)
- Shaoyin Wei
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, People’s Republic of China
| | - Sijie Zhou
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, People’s Republic of China
| | - Wenjuan Huang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, People’s Republic of China
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang Province, People’s Republic of China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, People’s Republic of China
- Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, Zhejiang Province, People’s Republic of China
| | - Wujun Geng
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, People’s Republic of China
| |
Collapse
|
13
|
Marschall ALJ. Targeting the Inside of Cells with Biologicals: Chemicals as a Delivery Strategy. BioDrugs 2021; 35:643-671. [PMID: 34705260 PMCID: PMC8548996 DOI: 10.1007/s40259-021-00500-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 12/17/2022]
Abstract
Delivering macromolecules into the cytosol or nucleus is possible in vitro for DNA, RNA and proteins, but translation for clinical use has been limited. Therapeutic delivery of macromolecules into cells requires overcoming substantially higher barriers compared to the use of small molecule drugs or proteins in the extracellular space. Breakthroughs like DNA delivery for approved gene therapies and RNA delivery for silencing of genes (patisiran, ONPATTRO®, Alnylam Pharmaceuticals, Cambridge, MA, USA) or for vaccination such as the RNA-based coronavirus disease 2019 (COVID-19) vaccines demonstrated the feasibility of using macromolecules inside cells for therapy. Chemical carriers are part of the reason why these novel RNA-based therapeutics possess sufficient efficacy for their clinical application. A clear advantage of synthetic chemicals as carriers for macromolecule delivery is their favourable properties with respect to production and storage compared to more bioinspired vehicles like viral vectors or more complex drugs like cellular therapies. If biologicals can be applied to intracellular targets, the druggable space is substantially broadened by circumventing the limited utility of small molecules for blocking protein–protein interactions and the limitation of protein-based drugs to the extracellular space. An in depth understanding of the macromolecular cargo types, carrier types and the cell biology of delivery is crucial for optimal application and further development of biologicals inside cells. Basic mechanistic principles of the molecular and cell biological aspects of cytosolic/nuclear delivery of macromolecules, with particular consideration of protein delivery, are reviewed here. The efficiency of macromolecule delivery and applications in research and therapy are highlighted.
Collapse
Affiliation(s)
- Andrea L J Marschall
- Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Brunswick, Germany.
| |
Collapse
|
14
|
Sokullu E, Gauthier MS, Coulombe B. Discovery of Antivirals Using Phage Display. Viruses 2021; 13:v13061120. [PMID: 34200959 PMCID: PMC8230593 DOI: 10.3390/v13061120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
The latest coronavirus disease outbreak, COVID-19, has brought attention to viral infections which have posed serious health threats to humankind throughout history. The rapid global spread of COVID-19 is attributed to the increased human mobility of today's world, yet the threat of viral infections to global public health is expected to increase continuously in part due to increasing human-animal interface. Development of antiviral agents is crucial to combat both existing and novel viral infections. Recently, there is a growing interest in peptide/protein-based drug molecules. Antibodies are becoming especially predominant in the drug market. Indeed, in a remarkably short period, four antibody therapeutics were authorized for emergency use in COVID-19 treatment in the US, Russia, and India as of November 2020. Phage display has been one of the most widely used screening methods for peptide/antibody drug discovery. Several phage display-derived biologics are already in the market, and the expiration of intellectual property rights of phage-display antibody discovery platforms suggests an increment in antibody drugs in the near future. This review summarizes the most common phage display libraries used in antiviral discovery, highlights the approaches employed to enhance the antiviral potency of selected peptides/antibody fragments, and finally provides a discussion about the present status of the developed antivirals in clinic.
Collapse
Affiliation(s)
- Esen Sokullu
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada;
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Correspondence: (E.S.); (B.C.)
| | - Marie-Soleil Gauthier
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada;
| | - Benoit Coulombe
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada;
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Correspondence: (E.S.); (B.C.)
| |
Collapse
|
15
|
Li B, Xie S, Xia A, Suo T, Huang H, Zhang X, Chen Y, Zhou X. Recent advance in the sensing of biomarker transcription factors. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Jedlitzke B, Mootz HD. Photocaged Nanobodies Delivered into Cells for Light Activation of Biological Processes. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Benedikt Jedlitzke
- Institute of Biochemistry Department of Chemistry and Pharmacy University of Muenster Correns-Str. 36 48149 Münster Germany
| | - Henning D. Mootz
- Institute of Biochemistry Department of Chemistry and Pharmacy University of Muenster Correns-Str. 36 48149 Münster Germany
| |
Collapse
|
17
|
Lv W, Champion JA. Demonstration of intracellular trafficking, cytosolic bioavailability, and target manipulation of an antibody delivery platform. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 32:102315. [PMID: 33065253 DOI: 10.1016/j.nano.2020.102315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
Intracellular antibody delivery into live cells has significant implications for research and therapeutic applications. However, many delivery systems lack potency due to low uptake and/or endosomal entrapment and understanding of intracellular delivery processes is lacking. Herein, we studied the cellular uptake, intracellular trafficking and targeting of antibodies using our previously developed Hex antibody nanocarrier. We demonstrated Hex-antibodies were internalized through multiple endocytic routes into lysosomes and provide evidence of endo/lysosomal disruption and Hex-antibody release to the cytosol. Cytosolic antibodies retained their bioactivity for at least 24 h. Functional effect of Hex delivered anti-STAT3 antibodies was evidenced by inhibition of nuclear translocation of cytosolic transcription factor STAT3. This study has generated understanding of key steps in the Hex intracellular antibody delivery system and will facilitate the development of effective cytosolic antibody delivery and applications in both the therapeutic and research domains.
Collapse
Affiliation(s)
- Wei Lv
- School of Chemical & Biomolecular Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Julie A Champion
- School of Chemical & Biomolecular Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States.
| |
Collapse
|
18
|
Niamsuphap S, Fercher C, Kumble S, Huda P, Mahler SM, Howard CB. Targeting the undruggable: emerging technologies in antibody delivery against intracellular targets. Expert Opin Drug Deliv 2020; 17:1189-1211. [DOI: 10.1080/17425247.2020.1781088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Suchada Niamsuphap
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, Australia
| | - Christian Fercher
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, Australia
- ARC Centre of Excellence in Convergent BioNano Science and Technology, AIBN, University of Queensland, Brisbane, Australia
| | - Sumukh Kumble
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, Australia
| | - Pie Huda
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, Australia
- Centre for Advanced Imaging (CAI), University of Queensland, Brisbane, Australia
| | - Stephen M Mahler
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, Australia
| | - Christopher B Howard
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, Australia
- Centre for Personalised Nanomedicine, AIBN, University of Queensland, Brisbane, Australia
| |
Collapse
|
19
|
Zhang C, Ötjengerdes RM, Roewe J, Mejias R, Marschall ALJ. Applying Antibodies Inside Cells: Principles and Recent Advances in Neurobiology, Virology and Oncology. BioDrugs 2020; 34:435-462. [PMID: 32301049 PMCID: PMC7391400 DOI: 10.1007/s40259-020-00419-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To interfere with cell function, many scientists rely on methods that target DNA or RNA due to the ease with which they can be applied. Proteins are usually the final executors of function but are targeted only indirectly by these methods. Recent advances in targeted degradation of proteins based on proteolysis-targeting chimaeras (PROTACs), ubiquibodies, deGradFP (degrade Green Fluorescent Protein) and other approaches have demonstrated the potential of interfering directly at the protein level for research and therapy. Proteins can be targeted directly and very specifically by antibodies, but using antibodies inside cells has so far been considered to be challenging. However, it is possible to deliver antibodies or other proteins into the cytosol using standard laboratory equipment. Physical methods such as electroporation have been demonstrated to be efficient and validated thoroughly over time. The expression of intracellular antibodies (intrabodies) inside cells is another way to interfere with intracellular targets at the protein level. Methodological strategies to target the inside of cells with antibodies, including delivered antibodies and expressed antibodies, as well as applications in the research areas of neurobiology, viral infections and oncology, are reviewed here. Antibodies have already been used to interfere with a wide range of intracellular targets. Disease-related targets included proteins associated with neurodegenerative diseases such as Parkinson's disease (α-synuclein), Alzheimer's disease (amyloid-β) or Huntington's disease (mutant huntingtin [mHtt]). The applications of intrabodies in the context of viral infections include targeting proteins associated with HIV (e.g. HIV1-TAT, Rev, Vif, gp41, gp120, gp160) and different oncoviruses such as human papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV) and Epstein-Barr virus, and they have been used to interfere with various targets related to different processes in cancer, including oncogenic pathways, proliferation, cell cycle, apoptosis, metastasis, angiogenesis or neo-antigens (e.g. p53, human epidermal growth factor receptor-2 [HER2], signal transducer and activator of transcription 3 [STAT3], RAS-related RHO-GTPase B (RHOB), cortactin, vascular endothelial growth factor receptor 2 [VEGFR2], Ras, Bcr-Abl). Interfering at the protein level allows questions to be addressed that may remain unanswered using alternative methods. This review addresses why direct targeting of proteins allows unique insights, what is currently feasible in vitro, and how this relates to potential therapeutic applications.
Collapse
Affiliation(s)
- Congcong Zhang
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rina M Ötjengerdes
- Hannover Medical School (MHH), Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Julian Roewe
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain TumorImmunology (D170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rebeca Mejias
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Andrea L J Marschall
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics, Brunswick, Germany.
| |
Collapse
|
20
|
Kunishige R, Kano F, Murata M. The cell resealing technique for manipulating, visualizing, and elucidating molecular functions in living cells. Biochim Biophys Acta Gen Subj 2020; 1864:129329. [DOI: 10.1016/j.bbagen.2019.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/05/2019] [Accepted: 03/20/2019] [Indexed: 12/19/2022]
|
21
|
Zhou X, Hao R, Chen C, Su Z, Zhao L, Luo Z, Xie W. Rapid Delivery of Nanobodies/V HHs into Living Cells via Expressing In Vitro-Transcribed mRNA. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:401-408. [PMID: 32128345 PMCID: PMC7044678 DOI: 10.1016/j.omtm.2020.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/17/2020] [Indexed: 11/09/2022]
Abstract
Intracellular antigen labeling and manipulation by antibodies have been long-thought goals in the field of cell research and therapy. However, a central limitation for this application is that antibodies are not able to penetrate into the cytosol of living cells. Taking advantages of small sizes and unique structures of the single-domain antibodies, here, we presented a novel approach to rapidly deliver the nanobody/variable domain of heavy chain of heavy-chain antibody (VHH) into living cells via introducing its coding mRNA, which was generated by in vitro transcription. We demonstrated that actin-green fluorescent proteins (GFP) and Golgi-GFP can be recognized by the anti-GFP nanobody/VHH, vimentin can be recognized by the anti-vimentin nanobody/VHH, and histone deacetylase 6 (HDAC6) can be recognized by the anti-HDAC6 nanobody/VHH, respectively. We found that the anti-GFP nanobody expressed via in vitro-transcribed (IVT) mRNA can be detected in 3 h and degraded in 48 h after transfection, whereas the nanobody expressed via plasmid DNA, was not detected until 24 h after transfection. As a result, it is effective in delivering the nanobody through expressing the nanobody/VHH in living cells from its coding mRNA.
Collapse
Affiliation(s)
- Xuechen Zhou
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Rui Hao
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Chen Chen
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Zhipeng Su
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Linhong Zhao
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Zhuojuan Luo
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| |
Collapse
|
22
|
Mathieu E, Bernard AS, Ching HYV, Somogyi A, Medjoubi K, Fores JR, Bertrand HC, Vincent A, Trépout S, Guerquin-Kern JL, Scheitler A, Ivanović-Burmazović I, Seksik P, Delsuc N, Policar C. Anti-inflammatory activity of superoxide dismutase mimics functionalized with cell-penetrating peptides. Dalton Trans 2020; 49:2323-2330. [DOI: 10.1039/c9dt04619d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A superoxide dismutase mimic was functionalized with three peptides: -R9, -RRWWRRWRR or -Fx-r-Fx-K (MPP). They were studied in intestinal epithelial cells in an inorganic cellular chemistry approach: quantification, distribution and bio-activity.
Collapse
|
23
|
Behring S, Hänsch R, Helmsing S, Schirrmann T, Schubert M. Screening for scFv-fragments that are stable and active in the cytosol. Hum Antibodies 2020; 28:149-157. [PMID: 32116242 DOI: 10.3233/hab-200402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Intrabodies are antibodies that are not secreted but bind to their antigens inside the cell producing them. Intrabodies targeting antigens in the endoplasmatic reticulum were successfully used in vitro and in vivo. However, many target antigens interesting for research or therapy are located in the reducing environment of the cytosol, where correct folding and formation of disulfide bonds cannot be ensured. The majority of different scFv fragments, when expressed in the cytosol of the cell, do not fold correctly, are not stable or cannot bind their antigen. Such scFv antibodies are therefore not suited as intrabodies.In this study, we evaluated fast and simple screening methods to identify scFv fragments that are stable and functional in the cytosol. We analyzed various phage display derived human scFv antibodies recognizing extracellular signal-regulated kinase 2 (Erk2) for stability and antigen binding under reducing and non-reducing conditions. Further, we developed an assay allowing to measure the interaction of the scFv intrabodies with their antigen in the cytosol of in living cells, by using a Split-Luciferase (Split-Luc) assay. ScFv fragments showing antigen binding in the cytosol could successfully be identified.
Collapse
Affiliation(s)
- Stefanie Behring
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics, Braunschweig, Germany
| | - Robert Hänsch
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics, Braunschweig, Germany
- Technische Universität Braunschweig, Institute of Plant Biology, Braunschweig, Germany
| | - Saskia Helmsing
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics, Braunschweig, Germany
| | - Thomas Schirrmann
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics, Braunschweig, Germany
- Yumab GmbH, Braunschweig, Germany
| | - Maren Schubert
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics, Braunschweig, Germany
| |
Collapse
|
24
|
Backlund CM, Hango CR, Minter LM, Tew GN. Protein and Antibody Delivery into Difficult-to-Transfect Cells by Polymeric Peptide Mimics. ACS APPLIED BIO MATERIALS 2019; 3:180-185. [DOI: 10.1021/acsabm.9b00876] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Coralie M. Backlund
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Christopher R. Hango
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Lisa M. Minter
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, Untied States
| | - Gregory N. Tew
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, Untied States
| |
Collapse
|
25
|
Abstract
Antibodies can be developed to directly inhibit almost any protein, but their inability to enter the cytosol limits inhibitory antibodies to membrane-associated or extracellular targets. Developing a cytosolic antibody delivery system would offer unique opportunities to directly inhibit and study intracellular protein function. Here we demonstrate that IgG antibodies that are conjugated with anionic polypeptides (ApPs) can be complexed with cationic lipids originally designed for nucleic acid delivery through electrostatic interactions, enabling close to 90% cytosolic delivery efficiency with only 500 nM IgG. The ApP is fused to a small photoreactive antibody-binding domain (pAbBD) that can be site-specifically photocrosslinked to nearly all off-the-shelf IgGs, enabling easy exchange of cargo IgGs. We show that cytosolically delivered IgGs can inhibit the drug efflux pump multidrug resistance-associated protein 1 (MRP1) and the transcription factor NFκB. This work establishes an approach for using existing antibody collections to modulate intracellular protein function.
Collapse
|
26
|
Matić S, Noris E, Contin R, Marian D, Thompson JR. Engineering partial resistance to cucumber mosaic virus in tobacco using intrabodies specific for the viral polymerase. PHYTOCHEMISTRY 2019; 162:99-108. [PMID: 30877900 DOI: 10.1016/j.phytochem.2019.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
A single-chain variable antibody fragment (scFv) library tested against the non-structural NSP5 protein of human rotavirus A was screened by a yeast two-hybrid system against three proteins derived from the RNA-dependent RNA polymerase (RdRp) of cucumber mosaic virus (CMV), with the aim of blocking their function and preventing viral infection once expressed in planta. The constructs tested were (i) '2a' consisting of the full-length 2a gene (839 amino acids, aa), (ii) 'Motifs' covering the conserved RdRp motifs (IV-VII) (132 aa) and (iii) 'GDD' located within the conserved RdRp motif VI (GDD, 22 aa). In yeast two-hybrid (Y2H) selection assays the '2a' and 'Motifs' constructs interacted with 96 and 25 library constructs, respectively, while the 'GDD' construct caused transactivation. Y2H-interacting scFvs were analyzed in vivo for their interaction with the 2a and Motifs proteins in a mammalian transient expression system. Eighteen tobacco lines stably transformed with four selected scFvs were produced and screened for resistance against two different CMV isolates. Different levels of resistance and rate of recovery were observed with CMV of both groups I and II, particularly in lines expressing intrabodies against the full-length 2a protein. This work describes for the first time the use of intrabodies against the RdRp of CMV to obtain plants that reduce infection of a pandemic virus, showing that the selected scFvs can modulate virus infection and induce premature recovery in tobacco plants.
Collapse
Affiliation(s)
- Slavica Matić
- Plant Virology Group, ICGEB Biosafety Outstation, Ca'Tron di Roncade (TV), Italy; Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Turin (TO), Italy
| | - Emanuela Noris
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Turin (TO), Italy
| | - Roberta Contin
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste (TS), Italy
| | - Daniele Marian
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Turin (TO), Italy
| | - Jeremy R Thompson
- Plant Virology Group, ICGEB Biosafety Outstation, Ca'Tron di Roncade (TV), Italy; Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, USA.
| |
Collapse
|
27
|
Singh K, Ejaz W, Dutta K, Thayumanavan S. Antibody Delivery for Intracellular Targets: Emergent Therapeutic Potential. Bioconjug Chem 2019; 30:1028-1041. [PMID: 30830750 PMCID: PMC6470022 DOI: 10.1021/acs.bioconjchem.9b00025] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Proteins have sparked fast growing interest as biological therapeutic agents for several diseases. Antibodies, in particular, carry an enormous potential as drugs owing to their remarkable target specificity and low immunogenicity. Although the market has numerous antibodies directed toward extracellular targets, their use in targeting therapeutically important intracellular targets is limited by their inability to cross cellular membrane. Realizing the potential for antibody therapy in disease treatment, progress has been made in the development of methods to deliver antibodies intracellularly. In this review, we address various platforms for delivery of antibodies and their merits and drawbacks.
Collapse
|
28
|
Moldovan Loomis C, Dutzar B, Ojala EW, Hendrix L, Karasek C, Scalley-Kim M, Mulligan J, Fan P, Billgren J, Rubin V, Boshaw H, Kwon G, Marzolf S, Stewart E, Jurchen D, Pederson SM, Perrino McCulloch L, Baker B, Cady RK, Latham JA, Allison D, Garcia-Martinez LF. Pharmacologic Characterization of ALD1910, a Potent Humanized Monoclonal Antibody against the Pituitary Adenylate Cyclase-Activating Peptide. J Pharmacol Exp Ther 2019; 369:26-36. [PMID: 30643015 DOI: 10.1124/jpet.118.253443] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/27/2018] [Indexed: 01/10/2023] Open
Abstract
Migraine is a debilitating disease that affects almost 15% of the population worldwide and is the first cause of disability in people under 50 years of age, yet its etiology and pathophysiology remain incompletely understood. Recently, small molecules and therapeutic antibodies that block the calcitonin gene-related peptide (CGRP) signaling pathway have reduced migraine occurrence and aborted acute attacks of migraine in clinical trials and provided prevention in patients with episodic and chronic migraine. Heterogeneity is present within each diagnosis and patient's response to treatment, suggesting migraine as a final common pathway potentially activated by multiple mechanisms, e.g., not all migraine attacks respond to or are prevented by anti-CGRP pharmacological interventions. Consequently, other unique mechanisms central to migraine pathogenesis may present new targets for drug development. Pituitary adenylate cyclase-activating peptide (PACAP) is an attractive novel target for treatment of migraines. We generated a specific, high-affinity, neutralizing monoclonal antibody (ALD1910) with reactivity to both PACAP38 and PACAP27. In vitro, ALD1910 effectively antagonizes PACAP38 signaling through the pituitary adenylate cyclase-activating peptide type I receptor, vasoactive intestinal peptide receptor 1, and vasoactive intestinal peptide receptor 2. ALD1910 recognizes a nonlinear epitope within PACAP and blocks its binding to the cell surface. To test ALD1910 antagonistic properties directed against endogenous PACAP, we developed an umbellulone-induced rat model of neurogenic vasodilation and parasympathetic lacrimation. In vivo, this model demonstrates that the antagonistic activity of ALD1910 is dose-dependent, retaining efficacy at doses as low as 0.3 mg/kg. These results indicate that ALD1910 represents a potential therapeutic antibody to address PACAP-mediated migraine.
Collapse
Affiliation(s)
| | | | | | - Lee Hendrix
- Alder BioPharmaceuticals, Inc., Bothell, Washington
| | | | | | | | - Pei Fan
- Alder BioPharmaceuticals, Inc., Bothell, Washington
| | | | | | - Heidi Boshaw
- Alder BioPharmaceuticals, Inc., Bothell, Washington
| | - Gayle Kwon
- Alder BioPharmaceuticals, Inc., Bothell, Washington
| | - Sam Marzolf
- Alder BioPharmaceuticals, Inc., Bothell, Washington
| | | | | | | | | | - Brian Baker
- Alder BioPharmaceuticals, Inc., Bothell, Washington
| | - Roger K Cady
- Alder BioPharmaceuticals, Inc., Bothell, Washington
| | | | - Dan Allison
- Alder BioPharmaceuticals, Inc., Bothell, Washington
| | | |
Collapse
|
29
|
Chen SH, Chao A, Tsai CL, Sue SC, Lin CY, Lee YZ, Hung YL, Chao AS, Cheng AJ, Wang HS, Wang TH. Utilization of HEPES for Enhancing Protein Transfection into Mammalian Cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 13:99-111. [PMID: 30740472 PMCID: PMC6357789 DOI: 10.1016/j.omtm.2018.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/13/2018] [Indexed: 01/12/2023]
Abstract
The delivery of active proteins into cells (protein transfection) for biological purposes offers considerable potential for clinical applications. Herein we demonstrate that, with a readily available, inexpensive organic agent, the 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) method can be used for simple and efficient protein transfection. By mixing proteins with a pure HEPES solution before they are applied to live cells, proteins with various molecular weights (including antibodies, recombinant proteins, and peptides) were successfully delivered into the cytoplasm of different cell types. The protein transfection efficiency of the HEPES method was not inferior to that of commercially available systems that are both more expensive and time consuming. Studies using endocytotic inhibitors and endosomal markers have revealed that cells internalize HEPES-protein mixtures through endocytosis. Results that HEPES-protein mixtures exhibited a low diffusion coefficient suggest that HEPES might neutralize the charges of proteins and, thus, facilitate their cellular internalization. Upon internalization, the cytosolic antibodies caused the degradation of targeted proteins in TRIM21-expressing cells. In summary, the HEPES method is efficient for protein transfection and has potential for myriad clinical applications.
Collapse
Affiliation(s)
- Shun-Hua Chen
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan.,Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center and Chang Gung University, Taoyuan, Taiwan
| | - Angel Chao
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center and Chang Gung University, Taoyuan, Taiwan.,Gynecologic Cancer Research Center, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan, Taiwan
| | - Chia-Lung Tsai
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan, Taiwan
| | - Shih-Che Sue
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Chiao-Yun Lin
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan, Taiwan
| | - Yi-Zong Lee
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Lin Hung
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - An-Shine Chao
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center and Chang Gung University, Taoyuan, Taiwan
| | - Ann-Joy Cheng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Shih Wang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center and Chang Gung University, Taoyuan, Taiwan
| | - Tzu-Hao Wang
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan.,Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center and Chang Gung University, Taoyuan, Taiwan.,Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan, Taiwan
| |
Collapse
|
30
|
Cyclic Peptides: Promising Scaffolds for Biopharmaceuticals. Genes (Basel) 2018; 9:genes9110557. [PMID: 30453533 PMCID: PMC6267108 DOI: 10.3390/genes9110557] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 12/31/2022] Open
Abstract
To date, small molecules and macromolecules, including antibodies, have been the most pursued substances in drug screening and development efforts. Despite numerous favorable features as a drug, these molecules still have limitations and are not complementary in many regards. Recently, peptide-based chemical structures that lie between these two categories in terms of both structural and functional properties have gained increasing attention as potential alternatives. In particular, peptides in a circular form provide a promising scaffold for the development of a novel drug class owing to their adjustable and expandable ability to bind a wide range of target molecules. In this review, we discuss recent progress in methodologies for peptide cyclization and screening and use of bioactive cyclic peptides in various applications.
Collapse
|
31
|
Du S, Liew SS, Li L, Yao SQ. Bypassing Endocytosis: Direct Cytosolic Delivery of Proteins. J Am Chem Soc 2018; 140:15986-15996. [DOI: 10.1021/jacs.8b06584] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shubo Du
- Department of Chemistry, National University of Singapore, 117543, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117456, Singapore
| | - Si Si Liew
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, P.R. China
| | - Shao Q. Yao
- Department of Chemistry, National University of Singapore, 117543, Singapore
| |
Collapse
|
32
|
Park H, Kim M, Seo Y, Ham Y, Cho MY, Kwon MH. Cytosolic Internalization of Anti-DNA Antibodies by Human Monocytes Induces Production of Pro-inflammatory Cytokines Independently of the Tripartite Motif-Containing 21 (TRIM21)-Mediated Pathway. Front Immunol 2018; 9:2019. [PMID: 30233598 PMCID: PMC6131520 DOI: 10.3389/fimmu.2018.02019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/16/2018] [Indexed: 01/05/2023] Open
Abstract
Anti-DNA autoantibodies are a hallmark of systemic lupus erythematosus (SLE). A subset of anti-DNA IgG autoantibodies is cell-internalizable; thus they can enter living cells in the form of free IgG. However, the contribution made by the Fc region of internalized free-form IgG to the cytokine response has not been studied, despite the recent discovery of tripartite motif-containing 21 (TRIM21), a cytosolic Fc receptor involved in immune signaling. This study used an internalizable IgG anti-DNA antibody (3D8) to examine the cytokine responses of human monocytes to the Fc region of cytosolic free IgG. Internalization of 3D8 IgG and a 3D8 single-chain variable fragment-Fc (scFv-Fc) induced production of IL-8 and TNF-α via activation of NF-κB. By contrast, a 3D8 scFv (comprising variable domains alone) did not. This suggests Fc-dependent cytokine signaling. A 3D8 IgG-N434D mutant that is not recognized by TRIM21 induced greater production of cytokines than 3D8 IgG. Moreover the amounts of cytokines induced by 3D8 IgG in TRIM21-knockdown THP-1 cells were higher than those in control cells, indicating that cytokine signaling is not mediated by TRIM21. The results suggest the existence of a novel Fc-dependent signaling pathway that is activated upon internalization of IgG antibodies by human monocytes.
Collapse
Affiliation(s)
- Hyunjoon Park
- Department of Biomedical Sciences, Graduate School, Ajou University, Yeongtong-gu, Suwon, South Korea.,Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
| | - Minjae Kim
- Department of Biomedical Sciences, Graduate School, Ajou University, Yeongtong-gu, Suwon, South Korea.,Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
| | - Youngsil Seo
- Department of Biomedical Sciences, Graduate School, Ajou University, Yeongtong-gu, Suwon, South Korea.,Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
| | - Yeonkyoung Ham
- Department of Biomedical Sciences, Graduate School, Ajou University, Yeongtong-gu, Suwon, South Korea.,Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
| | - Mi-Young Cho
- Department of Biomedical Sciences, Graduate School, Ajou University, Yeongtong-gu, Suwon, South Korea.,Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
| | - Myung-Hee Kwon
- Department of Biomedical Sciences, Graduate School, Ajou University, Yeongtong-gu, Suwon, South Korea.,Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
| |
Collapse
|
33
|
Khalili S, Rasaee MJ, Bamdad T, Mard-Soltani M, Asadi Ghalehni M, Jahangiri A, Pouriayevali MH, Aghasadeghi MR, Malaei F. A Novel Molecular Design for a Hybrid Phage-DNA Construct Against DKK1. Mol Biotechnol 2018; 60:833-842. [DOI: 10.1007/s12033-018-0115-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 434] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
35
|
Ulasov AV, Khramtsov YV, Lupanova TN, Tsvetkova AD, Rosenkranz AA, Slastnikova TA, Georgiev GP, Sobolev AS. MNT Optimization for Intracellular Delivery of Antibody Fragments. DOKL BIOCHEM BIOPHYS 2018; 479:62-65. [PMID: 29779097 DOI: 10.1134/s1607672918020023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Indexed: 12/27/2022]
Abstract
We studied the possibility of optimizing modular nanotransporters (MNTs) for the intracellular delivery of antibody fragments into the nuclei of cells of a specified type. Basic MNT with a reduced size retaining the desired functions was obtained, and the principal possibility of obtaining an MNT carrying an antibody fragment by microbiological synthesis was shown.
Collapse
Affiliation(s)
- A V Ulasov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Y V Khramtsov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - T N Lupanova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - A D Tsvetkova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.,Faculty of Biology, Moscow State University, Moscow, 119992, Russia
| | - A A Rosenkranz
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.,Faculty of Biology, Moscow State University, Moscow, 119992, Russia
| | - T A Slastnikova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - G P Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - A S Sobolev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia. .,Faculty of Biology, Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
36
|
Chakrabortty S, Sison M, Wu Y, Ladenburger A, Pramanik G, Biskupek J, Extermann J, Kaiser U, Lasser T, Weil T. NIR-emitting and photo-thermal active nanogold as mitochondria-specific probes. Biomater Sci 2018; 5:966-971. [PMID: 28282092 DOI: 10.1039/c6bm00951d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report a bioinspired multifunctional albumin derived polypeptide coating comprising grafted poly(ethylene oxide) chains, multiple copies of the HIV TAT derived peptide enabling cellular uptake as well as mitochondria targeting triphenyl-phosphonium (TPP) groups. Exploring these polypeptide copolymers for passivating gold nanoparticles (Au NPs) yielded (i) NIR-emitting markers in confocal microscopy and (ii) photo-thermal active probes in optical coherence microscopy. We demonstrate the great potential of such multifunctional protein-derived biopolymer coatings for efficiently directing Au NP into cells and to subcellular targets to ultimately probe important cellular processes such as mitochondria dynamics and vitality inside living cells.
Collapse
Affiliation(s)
- Sabyasachi Chakrabortty
- Institute of Organic Chemistry III, Ulm University, Albert-Einstein-Allee 11, D-89081, Ulm, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
A peptide tag-specific nanobody enables high-quality labeling for dSTORM imaging. Nat Commun 2018; 9:930. [PMID: 29500346 PMCID: PMC5834503 DOI: 10.1038/s41467-018-03191-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/26/2018] [Indexed: 11/08/2022] Open
Abstract
Dense fluorophore labeling without compromising the biological target is crucial for genuine super-resolution microscopy. Here we introduce a broadly applicable labeling strategy for fixed and living cells utilizing a short peptide tag-specific nanobody (BC2-tag/bivBC2-Nb). BC2-tagging of ectopically introduced or endogenous proteins does not interfere with the examined structures and bivBC2-Nb staining results in a close-grained fluorophore labeling with minimal linkage errors. This allowed us to perform high-quality dSTORM imaging of various targets in mammalian and yeast cells. We expect that this versatile strategy will render many more demanding cellular targets amenable to dSTORM imaging.
Collapse
|
38
|
Chiper M, Niederreither K, Zuber G. Transduction Methods for Cytosolic Delivery of Proteins and Bioconjugates into Living Cells. Adv Healthc Mater 2018; 7:e1701040. [PMID: 29205903 DOI: 10.1002/adhm.201701040] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/13/2017] [Indexed: 01/05/2023]
Abstract
The human organism and its constituting cells rely on interplay between multiple proteins exerting specific functions. Progress in molecular biotechnologies has facilitated the production of recombinant proteins. When administrated to patients, recombinant proteins can provide important healthcare benefits. To date, most therapeutic proteins must act from the extracellular environment, with their targets being secreted modulators or extracellular receptors. This is because proteins cannot passively diffuse across the plasma membrane into the cytosol. To expand the scope of action of proteins for cytosolic targets (representing more than 40% of the genome) effective methods assisting protein cytosolic entry are being developed. To date, direct protein delivery is extremely tedious and inefficient in cultured cells, even more so in animal models of pathology. Novel techniques are changing this limitation, as recently developed in vitro methods can robustly convey large amount of proteins into cell cultures. Moreover, advances in protein formulation or protein conjugates are slowly, but surely demonstrating efficiency for targeted cytosolic entry of functional protein in vivo in tumor xenograft models. In this review, various methods and recently developed techniques for protein transport into cells are summarized. They are put into perspective to address the challenges encountered during delivery.
Collapse
Affiliation(s)
- Manuela Chiper
- Molecular and Pharmaceutical Engineering of Biologics CNRS—Université de Strasbourg UMR 7242 Boulevard Sebastien Brant F‐67412 Illkirch France
- Faculté de Pharmacie—Université de Strasbourg 74 Route du Rhin F‐67400 Illkirch France
| | - Karen Niederreither
- Developmental Biology and Stem Cells Department Institute of Genetics and Molecular and Cellular Biology (IGBMC) F‐67412 Illkirch France
- Faculté de Chirurgie Dentaire Université de Strasbourg CNRS UMR 7104, INSERM U 964 F‐67000 Strasbourg France
| | - Guy Zuber
- Molecular and Pharmaceutical Engineering of Biologics CNRS—Université de Strasbourg UMR 7242 Boulevard Sebastien Brant F‐67412 Illkirch France
| |
Collapse
|
39
|
Schumacher D, Helma J, Schneider AFL, Leonhardt H, Hackenberger CPR. Nanobodies: Chemical Functionalization Strategies and Intracellular Applications. Angew Chem Int Ed Engl 2018; 57:2314-2333. [PMID: 28913971 PMCID: PMC5838514 DOI: 10.1002/anie.201708459] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Indexed: 01/12/2023]
Abstract
Nanobodies can be seen as next-generation tools for the recognition and modulation of antigens that are inaccessible to conventional antibodies. Due to their compact structure and high stability, nanobodies see frequent usage in basic research, and their chemical functionalization opens the way towards promising diagnostic and therapeutic applications. In this Review, central aspects of nanobody functionalization are presented, together with selected applications. While early conjugation strategies relied on the random modification of natural amino acids, more recent studies have focused on the site-specific attachment of functional moieties. Such techniques include chemoenzymatic approaches, expressed protein ligation, and amber suppression in combination with bioorthogonal modification strategies. Recent applications range from sophisticated imaging and mass spectrometry to the delivery of nanobodies into living cells for the visualization and manipulation of intracellular antigens.
Collapse
Affiliation(s)
- Dominik Schumacher
- Chemical Biology, Leibniz-Forschungsinstitut für Molekulare, Pharmakologie and Department of ChemistryHumboldt-Universität zu BerlinBerlinGermany
- Department of Biology IILudwig Maximilians Universität München und Center for Integrated Protein Science MunichMartinsriedGermany
| | - Jonas Helma
- Department of Biology IILudwig Maximilians Universität München und Center for Integrated Protein Science MunichMartinsriedGermany
| | - Anselm F. L. Schneider
- Chemical Biology, Leibniz-Forschungsinstitut für Molekulare, Pharmakologie and Department of ChemistryHumboldt-Universität zu BerlinBerlinGermany
| | - Heinrich Leonhardt
- Department of Biology IILudwig Maximilians Universität München und Center for Integrated Protein Science MunichMartinsriedGermany
| | | |
Collapse
|
40
|
Conic S, Desplancq D, Ferrand A, Fischer V, Heyer V, Reina San Martin B, Pontabry J, Oulad-Abdelghani M, Babu N K, Wright GD, Molina N, Weiss E, Tora L. Imaging of native transcription factors and histone phosphorylation at high resolution in live cells. J Cell Biol 2018; 217:1537-1552. [PMID: 29440513 PMCID: PMC5881509 DOI: 10.1083/jcb.201709153] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/15/2017] [Accepted: 01/18/2018] [Indexed: 01/16/2023] Open
Abstract
Conic et al. introduce a versatile antibody-based imaging approach to track endogenous nuclear factors in living cells. It allows efficient intracellular delivery of any fluorescent dye–conjugated antibody, or Fab fragment, into a variety of cell types. The dynamics of nuclear targets or posttranslational modifications can be monitored with high precision using confocal and super-resolution microscopy. Fluorescent labeling of endogenous proteins for live-cell imaging without exogenous expression of tagged proteins or genetic manipulations has not been routinely possible. We describe a simple versatile antibody-based imaging approach (VANIMA) for the precise localization and tracking of endogenous nuclear factors. Our protocol can be implemented in every laboratory allowing the efficient and nonharmful delivery of organic dye-conjugated antibodies, or antibody fragments, into different metazoan cell types. Live-cell imaging permits following the labeled probes bound to their endogenous targets. By using conventional and super-resolution imaging we show dynamic changes in the distribution of several nuclear transcription factors (i.e., RNA polymerase II or TAF10), and specific phosphorylated histones (γH2AX), upon distinct biological stimuli at the nanometer scale. Hence, considering the large panel of available antibodies and the simplicity of their implementation, VANIMA can be used to uncover novel biological information based on the dynamic behavior of transcription factors or posttranslational modifications in the nucleus of single live cells.
Collapse
Affiliation(s)
- Sascha Conic
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | | | - Alexia Ferrand
- Imaging Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Veronique Fischer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Vincent Heyer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Bernardo Reina San Martin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Julien Pontabry
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institute of Epigenetics and Stem Cells, München, Germany
| | - Mustapha Oulad-Abdelghani
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Kishore Babu N
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Nacho Molina
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Etienne Weiss
- Institut de Recherche de l'ESBS, UMR 7242, Illkirch, France
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France.,School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
41
|
Amornwachirabodee K, Tantimekin N, Pan-In P, Palaga T, Pienpinijtham P, Pipattanaboon C, Sukmanee T, Ritprajak P, Charoenpat P, Pitaksajjakul P, Ramasoota P, Wanichwecharungruang S. Oxidized Carbon Black: Preparation, Characterization and Application in Antibody Delivery across Cell Membrane. Sci Rep 2018; 8:2489. [PMID: 29410523 PMCID: PMC5802750 DOI: 10.1038/s41598-018-20650-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/19/2018] [Indexed: 11/09/2022] Open
Abstract
Modulating biomolecular networks in cells with peptides and proteins has become a promising therapeutic strategy and effective biological tools. A simple and effective reagent that can bring functional proteins into cells can increase efficacy and allow more investigations. Here we show that the relatively non-toxic and non-immunogenic oxidized carbon black particles (OCBs) prepared from commercially available carbon black can deliver a 300 kDa protein directly into cells, without an involvement of a cellular endocytosis. Experiments with cell-sized liposomes indicate that OCBs directly interact with phospholipids and induce membrane leakages. Delivery of human monoclonal antibodies (HuMAbs, 150 kDa) with specific affinity towards dengue viruses (DENV) into DENV-infected Vero cells by OCBs results in HuMAbs distribution all over cells' interior and effective viral neutralization. An ability of OCBs to deliver big functional/therapeutic proteins into cells should open doors for more protein drug investigations and new levels of antibody therapies and biological studies.
Collapse
Affiliation(s)
- Kittima Amornwachirabodee
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nattapol Tantimekin
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Porntip Pan-In
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Nanotec-Chulalongkorn University Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Prompong Pienpinijtham
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chonlatip Pipattanaboon
- Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Thanyada Sukmanee
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Patcharee Ritprajak
- Department of Microbiology, and RU in Oral Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Promchat Charoenpat
- Department of Microbiology, and RU in Oral Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pannamthip Pitaksajjakul
- Center of Excellence for Antibody Research, and Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Pongrama Ramasoota
- Center of Excellence for Antibody Research, and Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Supason Wanichwecharungruang
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand. .,Center of Excellence in Materials and Bio-Interfaces, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
42
|
Che Nordin MA, Teow SY. Review of Current Cell-Penetrating Antibody Developments for HIV-1 Therapy. Molecules 2018; 23:molecules23020335. [PMID: 29415435 PMCID: PMC6017373 DOI: 10.3390/molecules23020335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/06/2018] [Accepted: 01/08/2018] [Indexed: 12/22/2022] Open
Abstract
The discovery of highly active antiretroviral therapy (HAART) in 1996 has significantly reduced the global mortality and morbidity caused by the acquired immunodeficiency syndrome (AIDS). However, the therapeutic strategy of HAART that targets multiple viral proteins may render off-target toxicity and more importantly results in drug-resistant escape mutants. These have been the main challenges for HAART and refinement of this therapeutic strategy is urgently needed. Antibody-mediated treatments are emerging therapeutic modalities for various diseases. Most therapeutic antibodies have been approved by Food and Drug Administration (FDA) mainly for targeting cancers. Previous studies have also demonstrated the promising effect of therapeutic antibodies against HIV-1, but there are several limitations in this therapy, particularly when the viral targets are intracellular proteins. The conventional antibodies do not cross the cell membrane, hence, the pathogenic intracellular proteins cannot be targeted with this classical therapeutic approach. Over the years, the advancement of antibody engineering has permitted the therapeutic antibodies to comprehensively target both extra- and intra-cellular proteins in various infections and diseases. This review aims to update on the current progress in the development of antibody-based treatment against intracellular targets in HIV-1 infection. We also attempt to highlight the challenges and limitations in the development of antibody-based therapeutic modalities against HIV-1.
Collapse
Affiliation(s)
- Muhamad Alif Che Nordin
- Kulliyyah of Medicine and Health Sciences (KMHS), Kolej Universiti INSANIAH, 09300 Kuala Ketil, Kedah, Malaysia.
| | - Sin-Yeang Teow
- Sunway Institute for Healthcare Development (SIHD), School of Healthcare and Medical Sciences (SHMS), Sunway University, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
43
|
Schumacher D, Helma J, Schneider AFL, Leonhardt H, Hackenberger CPR. Nanobodys: Strategien zur chemischen Funktionalisierung und intrazelluläre Anwendungen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201708459] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dominik Schumacher
- Chemische Biologie, Leibniz-Forschungsinstitut für Molekulare Pharmakologie; Institut für Chemie; Humboldt-Universität zu Berlin; Berlin Deutschland
- Department Biologie II; Ludwig Maximilians Universität München und Center for Integrated Protein Science Munich; Martinsried Deutschland
| | - Jonas Helma
- Department Biologie II; Ludwig Maximilians Universität München und Center for Integrated Protein Science Munich; Martinsried Deutschland
| | - Anselm F. L. Schneider
- Chemische Biologie, Leibniz-Forschungsinstitut für Molekulare Pharmakologie; Institut für Chemie; Humboldt-Universität zu Berlin; Berlin Deutschland
| | - Heinrich Leonhardt
- Department Biologie II; Ludwig Maximilians Universität München und Center for Integrated Protein Science Munich; Martinsried Deutschland
| | - Christian P. R. Hackenberger
- Chemische Biologie, Leibniz-Forschungsinstitut für Molekulare Pharmakologie; Institut für Chemie; Humboldt-Universität zu Berlin; Berlin Deutschland
| |
Collapse
|
44
|
Anne A, Chovin A, Demaille C, Michon T. Redox-Immunofunctionalized Potyvirus Nanoparticles for High-Resolution Imaging by AFM-SECM Correlative Microscopy. Methods Mol Biol 2018; 1776:455-470. [PMID: 29869260 DOI: 10.1007/978-1-4939-7808-3_30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present in this chapter a new experimental approach allowing the high resolution imaging of immune complexes on virus particles. Combined atomic force-electrochemical microscopy (AFM-SECM) is used to image the presence of ferrocene functionalized specific antibodies on the surface of potyvirus particles. For this purpose, potyviruses, flexuous filamentous phytoviruses with a high aspect ratio, have been chosen. This technique allows analysis of the distribution of antibody labeling over the virus population. But, more importantly, it opens up the imaging of immune complexes decorating a single viral particle. Finally, its high resolution allows the characterization in situ of the ultrastructure of a single immune complex on the particle.
Collapse
Affiliation(s)
- Agnès Anne
- Laboratory of Molecular Electrochemistry, CNRS-Université Paris Diderot, Paris, France.
| | - Arnaud Chovin
- Laboratory of Molecular Electrochemistry, CNRS-Université Paris Diderot, Paris, France
| | - Christophe Demaille
- Laboratory of Molecular Electrochemistry, CNRS-Université Paris Diderot, Paris, France.
| | - Thierry Michon
- Fruit Biology and Pathology, INRA-Université Bordeaux, Villenave d'Ornon, France.
| |
Collapse
|
45
|
Zhang JF, Xiong HL, Cao JL, Wang SJ, Guo XR, Lin BY, Zhang Y, Zhao JH, Wang YB, Zhang TY, Yuan Q, Zhang J, Xia NS. A cell-penetrating whole molecule antibody targeting intracellular HBx suppresses hepatitis B virus via TRIM21-dependent pathway. Am J Cancer Res 2018; 8:549-562. [PMID: 29290826 PMCID: PMC5743566 DOI: 10.7150/thno.20047] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/27/2017] [Indexed: 12/11/2022] Open
Abstract
Rationale: Monoclonal antibodies (mAbs) mostly targeting extracellular or cell surface molecules have been widely used in the treatment of various diseases. However, mAbs cannot pass through the cell membrane as efficiently as small compounds, thus limiting their use against intracellular targets. Methods to shuttle antibodies into living cells may largely expand research and application in areas based on mAbs. Hepatitis B virus X protein (HBx) is an important intracellular multi-functional viral protein in the life cycle of hepatitis B virus (HBV). HBx plays essential roles in virus infection and replication and is strongly associated with HBV-related carcinogenesis. Methods: In this study, we developed a cell-penetrating whole molecule antibody targeting HBx (9D11-Tat) by the fusion of a cell penetrating peptide (CPP) on the C-terminus of the heavy chain of a potent mAb specific to HBx (9D11). The anti-HBV effect and mechanism of 9D11-Tat were investigated in cell and mouse models mimicking chronic HBV infection. Results: Our results demonstrated that the recombinant 9D11-Tat antibody could efficiently internalize into living cells and significantly suppress viral transcription, replication, and protein production both in vitro and in vivo. Further analyses suggested the internalized 9D11-Tat antibody could greatly reduce intracellular HBx via Fc binding receptor TRIM21-mediated protein degradation. This process simultaneously stimulated the activations of NF-κB, AP-1, and IFN-β, which promoted an antiviral state of the host cell. Conclusion: In summary, our study offers a new approach to target intracellular pathogenesis-related protein by engineered cell-penetrating mAb expanding their potential for therapeutic applications. Moreover, the 9D11-Tat antibody may provide a novel therapeutic agent against human chronic HBV infection.
Collapse
|
46
|
Ulasov AV, Rosenkranz AA, Sobolev AS. Transcription factors: Time to deliver. J Control Release 2017; 269:24-35. [PMID: 29113792 DOI: 10.1016/j.jconrel.2017.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 12/17/2022]
Abstract
Transcription factors (TFs) are at the center of the broad regulatory network orchestrating gene expression programs that elicit different biological responses. For a long time, TFs have been considered as potent drug targets due to their implications in the pathogenesis of a variety of diseases. At the same time, TFs, located at convergence points of cellular regulatory pathways, are powerful tools providing opportunities both for cell type change and for managing the state of cells. This task formulation requires the TF modulation problem to come to the fore. We review several ways to manage TF activity (small molecules, transfection, nanocarriers, protein-based approaches), analyzing their limitations and the possibilities to overcome them. Delivery of TFs could revolutionize the biomedical field. Whether this forecast comes true will depend on the ability to develop convenient technologies for targeted delivery of TFs.
Collapse
Affiliation(s)
- Alexey V Ulasov
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Andrey A Rosenkranz
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; Faculty of Biology, Moscow State University, 1-12 Leninskiye Gory St., 119234 Moscow, Russia
| | - Alexander S Sobolev
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; Faculty of Biology, Moscow State University, 1-12 Leninskiye Gory St., 119234 Moscow, Russia.
| |
Collapse
|
47
|
Darling TL, Sherwood LJ, Hayhurst A. Intracellular Crosslinking of Filoviral Nucleoproteins with Xintrabodies Restricts Viral Packaging. Front Immunol 2017; 8:1197. [PMID: 29021793 PMCID: PMC5623874 DOI: 10.3389/fimmu.2017.01197] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/11/2017] [Indexed: 12/24/2022] Open
Abstract
Viruses assemble large macromolecular repeat structures that become part of the infectious particles or virions. Ribonucleocapsids (RNCs) of negative strand RNA viruses are a prime example where repetition of nucleoprotein (NP) along the genome creates a core polymeric helical scaffold that accommodates other nucleocapsid proteins including viral polymerase. The RNCs are transported through the cytosol for packaging into virions through association with viral matrix proteins at cell membranes. We hypothesized that RNC would be ideal targets for crosslinkers engineered to promote aberrant protein–protein interactions, thereby blocking their orderly transport and packaging. Previously, we had generated single-domain antibodies (sdAbs) against Filoviruses that have all targeted highly conserved C-terminal regions of NP known to be repetitively exposed along the length of the RNCs of Marburgvirus (MARV) and Ebolavirus (EBOV). Our crosslinker design consisted of dimeric sdAb expressed intracellularly, which we call Xintrabodies (X- for crosslinking). Electron microscopy of purified NP polymers incubated with purified sdAb constructs showed NP aggregation occurred in a genus-specific manner with dimeric and not monomeric sdAb. A virus-like particle (VLP) assay was used for initial evaluation where we found that dimeric sdAb inhibited NP incorporation into VP40-based VLPs whereas monomeric sdAb did not. Inhibition of NP packaging was genus specific. Confocal microscopy revealed dimeric sdAb was diffuse when expressed alone but focused on pools of NP when the two were coexpressed, while monomeric sdAb showed ambivalent partition. Infection of stable Vero cell lines expressing dimeric sdAb specific for either MARV or EBOV NP resulted in smaller plaques and reduced progeny of cognate virus relative to wild-type Vero cells. Though the impact was marginal at later time-points, the collective data suggest that viral replication can be reduced by crosslinking intracellular NP using relatively small amounts of dimeric sdAb to restrict NP packaging. The stoichiometry and ease of application of the approach would likely benefit from transitioning away from intracellular expression of crosslinking sdAb to exogenous delivery of antibody. By retuning sdAb specificity, the approach of crosslinking highly conserved regions of assembly critical proteins may well be applicable to inhibiting replication processes of a broad spectrum of viruses.
Collapse
Affiliation(s)
- Tamarand Lee Darling
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, United States.,Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Laura Jo Sherwood
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Andrew Hayhurst
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
48
|
Yuan P, Zhang H, Qian L, Mao X, Du S, Yu C, Peng B, Yao SQ. Intracellular Delivery of Functional Native Antibodies under Hypoxic Conditions by Using a Biodegradable Silica Nanoquencher. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705578] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Peiyan Yuan
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Hailong Zhang
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Linghui Qian
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Xin Mao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Shubo Du
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Changmin Yu
- College of Materials Science & Engineering South China University of Technology 510640 Guangzhou China
| | - Bo Peng
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Shao Q. Yao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
49
|
Yuan P, Zhang H, Qian L, Mao X, Du S, Yu C, Peng B, Yao SQ. Intracellular Delivery of Functional Native Antibodies under Hypoxic Conditions by Using a Biodegradable Silica Nanoquencher. Angew Chem Int Ed Engl 2017; 56:12481-12485. [DOI: 10.1002/anie.201705578] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/24/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Peiyan Yuan
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Hailong Zhang
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Linghui Qian
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Xin Mao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Shubo Du
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Changmin Yu
- College of Materials Science & Engineering South China University of Technology 510640 Guangzhou China
| | - Bo Peng
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Shao Q. Yao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
50
|
Sehnert B, Burkhardt H, Finzel S, Dübel S, Voll RE. The sneaking ligand approach for cell type-specific modulation of intracellular signalling pathways. Clin Immunol 2017; 186:14-20. [PMID: 28867254 DOI: 10.1016/j.clim.2017.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 11/30/2022]
Abstract
Small molecules interfering with intracellular signalling pathways are used in the treatment of multiple diseases including RA. However, small molecules usually affect signalling in most cell types, not only in those which need to be targeted. This general inhibition of signalling pathways causes often adverse effects, which could be avoided by cell type-specific inhibitors. For cell-type specific modulation of signal transduction, we developed the sneaking ligand fusion proteins (SLFPs). SLFPs contain three domains: (1) the binding domain mediating cell type-specific targeting and endocytosis; (2) the endosomal release sequence releasing the effector domain into the cytoplasm; (3) the effector domain modulating signalling. Using our SLFP NF-kappaB inhibitor termed SLC1 we demonstrated that cell-type-specific modulation of intracellular signalling pathways is feasible, that endothelial NF-kappaB activation is critical for arthritis and peritonitis and that SLFPs help to identify disease-relevant pathways in defined cell types. Hence, SLFPs may improve risk-benefit ratios of therapeutic interventions.
Collapse
Affiliation(s)
- Bettina Sehnert
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Harald Burkhardt
- Division of Rheumatology, Department of Internal Medicine II, Fraunhofer IME-Project-Group Translational Medicine and Pharmacology, Johann Wolfgang Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Stephanie Finzel
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefan Dübel
- Institute of Biochemistry, Biotechnology and Bioinformatics, Technical University Braunschweig, Braunschweig, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|