1
|
Joy J, Gervassi A, Chen L, Kirshenbaum B, Styrchak S, Ko D, McLaughlin S, Shao D, Kosmider E, Edlefsen PT, Maenza J, Collier AC, Mullins JI, Horton H, Frenkel LM. Antigen specificities and proviral integration sites differ in HIV-infected cells by timing of antiretroviral treatment initiation. J Clin Invest 2024; 134:e159569. [PMID: 38833307 PMCID: PMC11245156 DOI: 10.1172/jci159569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Abstract
Despite effective antiretroviral therapy (ART), persons living with HIV harbor reservoirs of persistently infected CD4+ cells, which constitute a barrier to cure. Initiation of ART during acute infection reduces the size of the HIV reservoir, and we hypothesized that in addition, it would favor integration of proviruses in HIV-specific CD4+ T cells, while initiation of ART during chronic HIV infection would favor relatively more proviruses in herpesvirus-specific cells. We further hypothesized that proviruses in acute ART initiators would be integrated into antiviral genes, whereas integration sites (ISs) in chronic ART initiators would favor genes associated with cell proliferation and exhaustion. We found that the HIV DNA distribution across HIV-specific versus herpesvirus-specific CD4+ T cells was as hypothesized. HIV ISs in acute ART initiators were significantly enriched in gene sets controlling lipid metabolism and HIF-1α-mediated hypoxia, both metabolic pathways active in early HIV infection. Persistence of these infected cells during prolonged ART suggests a survival advantage. ISs in chronic ART initiators were enriched in a gene set controlling EZH2 histone methylation, and methylation has been associated with diminished long terminal repeat transcription. These differences that we found in antigen specificities and IS distributions within HIV-infected cells might be leveraged in designing cure strategies tailored to the timing of ART initiation.
Collapse
Affiliation(s)
- Jaimy Joy
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Ana Gervassi
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Lennie Chen
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | | | - Sheila Styrchak
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Daisy Ko
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Sherry McLaughlin
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Danica Shao
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Ewelina Kosmider
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Paul T. Edlefsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Department of Medicine
- Department of Global Health
| | - Helen Horton
- Center for Infectious Disease Research, Seattle, Washington, USA
| | - Lisa M. Frenkel
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Medicine
- Department of Global Health
- Department of Pediatrics, and
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Stauber L, Badet T, Feurtey A, Prospero S, Croll D. Emergence and diversification of a highly invasive chestnut pathogen lineage across southeastern Europe. eLife 2021; 10:e56279. [PMID: 33666552 PMCID: PMC7935491 DOI: 10.7554/elife.56279] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 02/17/2021] [Indexed: 12/18/2022] Open
Abstract
Invasive microbial species constitute a major threat to biodiversity, agricultural production and human health. Invasions are often dominated by one or a small number of genotypes, yet the underlying factors driving invasions are poorly understood. The chestnut blight fungus Cryphonectria parasitica first decimated the North American chestnut, and a more recent outbreak threatens European chestnut stands. To unravel the chestnut blight invasion of southeastern Europe, we sequenced 230 genomes of predominantly European strains. Genotypes outside of the invasion zone showed high levels of diversity with evidence for frequent and ongoing recombination. The invasive lineage emerged from the highly diverse European genotype pool rather than a secondary introduction from Asia or North America. The expansion across southeastern Europe was mostly clonal and is dominated by a single mating type, suggesting a fitness advantage of asexual reproduction. Our findings show how an intermediary, highly diverse bridgehead population gave rise to an invasive, largely clonally expanding pathogen.
Collapse
Affiliation(s)
- Lea Stauber
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
- Laboratory of Evolutionary Genetics, Institute of Biology, University of NeuchâtelNeuchâtelSwitzerland
| | - Thomas Badet
- Laboratory of Evolutionary Genetics, Institute of Biology, University of NeuchâtelNeuchâtelSwitzerland
| | - Alice Feurtey
- Laboratory of Evolutionary Genetics, Institute of Biology, University of NeuchâtelNeuchâtelSwitzerland
- Plant Pathology, Institute of Integrative Biology, ETH ZürichZürichSwitzerland
| | - Simone Prospero
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of NeuchâtelNeuchâtelSwitzerland
| |
Collapse
|
3
|
Rogivue A, Choudhury RR, Zoller S, Joost S, Felber F, Kasser M, Parisod C, Gugerli F. Genome-wide variation in nucleotides and retrotransposons in alpine populations of Arabis alpina (Brassicaceae). Mol Ecol Resour 2019; 19:773-787. [PMID: 30636378 DOI: 10.1111/1755-0998.12991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 02/01/2023]
Abstract
Advances in high-throughput sequencing have promoted the collection of reference genomes and genome-wide diversity. However, the assessment of genomic variation among populations has hitherto mainly been surveyed through single-nucleotide polymorphisms (SNPs) and largely ignored the often major fraction of genomes represented by transposable elements (TEs). Despite accumulating evidence supporting the evolutionary significance of TEs, comprehensive surveys remain scarce. Here, we sequenced the full genomes of 304 individuals of Arabis alpina sampled from four nearby natural populations to genotype SNPs as well as polymorphic long terminal repeat retrotransposons (polymorphic TEs; i.e., presence/absence of TE insertions at specific loci). We identified 291,396 SNPs and 20,548 polymorphic TEs, comparing their contributions to genomic diversity and divergence across populations. Few SNPs were shared among populations and overall showed high population-specific variation, whereas most polymorphic TEs segregated among populations. The genomic context of these two classes of variants further highlighted candidate adaptive loci having a putative impact on functional genes. In particular, 4.96% of the SNPs were identified as nonsynonymous or affecting start/stop codons. In contrast, 43% of the polymorphic TEs were present next to Arabis genes enriched in functional categories related to the regulation of reproduction and responses to biotic as well as abiotic stresses. This unprecedented data set, mapping variation gained from SNPs and complementary polymorphic TEs within and among populations, will serve as a rich resource for addressing microevolutionary processes shaping genome variation.
Collapse
Affiliation(s)
- Aude Rogivue
- WSL Swiss Federal Research Institute, Birmensdorf, Switzerland
| | - Rimjhim R Choudhury
- University of Neuchâtel, Neuchâtel, Switzerland.,Institute of Plant Sciences, University of Berne, Bern, Switzerland
| | - Stefan Zoller
- Genetic Diversity Centre, ETH Zürich, Zürich, Switzerland
| | - Stéphane Joost
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - François Felber
- University of Neuchâtel, Neuchâtel, Switzerland.,Musée et Jardins botaniques cantonaux, Lausanne, Switzerland
| | | | | | - Felix Gugerli
- WSL Swiss Federal Research Institute, Birmensdorf, Switzerland
| |
Collapse
|
4
|
Manee MM, Jackson J, Bergman CM. Conserved Noncoding Elements Influence the Transposable Element Landscape in Drosophila. Genome Biol Evol 2018; 10:1533-1545. [PMID: 29850787 PMCID: PMC6007792 DOI: 10.1093/gbe/evy104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2018] [Indexed: 12/15/2022] Open
Abstract
Highly conserved noncoding elements (CNEs) constitute a significant proportion of the genomes of multicellular eukaryotes. The function of most CNEs remains elusive, but growing evidence indicates they are under some form of purifying selection. Noncoding regions in many species also harbor large numbers of transposable element (TE) insertions, which are typically lineage specific and depleted in exons because of their deleterious effects on gene function or expression. However, it is currently unknown whether the landscape of TE insertions in noncoding regions is random or influenced by purifying selection on CNEs. Here, we combine comparative and population genomic data in Drosophila melanogaster to show that the abundance of TE insertions in intronic and intergenic CNEs is reduced relative to random expectation, supporting the idea that selective constraints on CNEs eliminate a proportion of TE insertions in noncoding regions. However, we find no evidence for differences in the allele frequency spectra for polymorphic TE insertions in CNEs versus those in unconstrained spacer regions, suggesting that the distribution of fitness effects acting on observable TE insertions is similar across different functional compartments in noncoding DNA. Our results provide evidence that selective constraints on CNEs contribute to shaping the landscape of TE insertion in eukaryotic genomes, and provide further evidence that CNEs are indeed functionally constrained and not simply mutational cold spots.
Collapse
Affiliation(s)
- Manee M Manee
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.,National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,Center of Excellence for Genomics (CEG), King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - John Jackson
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Casey M Bergman
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.,Department of Genetics, University of Georgia, Athens, GA.,Institute of Bioinformatics, University of Georgia, Athens, GA
| |
Collapse
|
5
|
McClintock: An Integrated Pipeline for Detecting Transposable Element Insertions in Whole-Genome Shotgun Sequencing Data. G3-GENES GENOMES GENETICS 2017. [PMID: 28637810 PMCID: PMC5555480 DOI: 10.1534/g3.117.043893] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transposable element (TE) insertions are among the most challenging types of variants to detect in genomic data because of their repetitive nature and complex mechanisms of replication . Nevertheless, the recent availability of large resequencing data sets has spurred the development of many new methods to detect TE insertions in whole-genome shotgun sequences. Here we report an integrated bioinformatics pipeline for the detection of TE insertions in whole-genome shotgun data, called McClintock (https://github.com/bergmanlab/mcclintock), which automatically runs and standardizes output for multiple TE detection methods. We demonstrate the utility of McClintock by evaluating six TE detection methods using simulated and real genome data from the model microbial eukaryote, Saccharomyces cerevisiae We find substantial variation among McClintock component methods in their ability to detect nonreference TEs in the yeast genome, but show that nonreference TEs at nearly all biologically realistic locations can be detected in simulated data by combining multiple methods that use split-read and read-pair evidence. In general, our results reveal that split-read methods detect fewer nonreference TE insertions than read-pair methods, but generally have much higher positional accuracy. Analysis of a large sample of real yeast genomes reveals that most McClintock component methods can recover known aspects of TE biology in yeast such as the transpositional activity status of families, target preferences, and target site duplication structure, albeit with varying levels of accuracy. Our work provides a general framework for integrating and analyzing results from multiple TE detection methods, as well as useful guidance for researchers studying TEs in yeast resequencing data.
Collapse
|
6
|
Zhang S, Kelleher ES. Targeted identification of TE insertions in a Drosophila genome through hemi-specific PCR. Mob DNA 2017; 8:10. [PMID: 28775768 PMCID: PMC5534036 DOI: 10.1186/s13100-017-0092-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/10/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transposable elements (TEs) are major components of eukaryotic genomes and drivers of genome evolution, producing intraspecific polymorphism and interspecific differences through mobilization and non-homologous recombination. TE insertion sites are often highly variable within species, creating a need for targeted genome re-sequencing (TGS) methods to identify TE insertion sites. METHODS We present a hemi-specific PCR approach for TGS of P-elements in Drosophila genomes on the Illumina platform. We also present a computational framework for identifying new insertions from TGS reads. Finally, we describe a new method for estimating the frequency of TE insertions from WGS data, which is based precise insertion sites provided by TGS annotations. RESULTS By comparing our results to TE annotations based on whole genome re-sequencing (WGS) data for the same Drosophilamelanogaster strain, we demonstrate that TGS is powerful for identifying true insertions, even in repeat-rich heterochromatic regions. We also demonstrate that TGS offers enhanced annotation of precise insertion sites, which facilitates estimation of TE insertion frequency. CONCLUSIONS TGS by hemi-specific PCR is a powerful approach for identifying TE insertions of particular TE families in species with a high-quality reference genome, at greatly reduced cost as compared to WGS. It may therefore be ideal for population genomic studies of particular TE families. Additionally, TGS and WGS can be used as complementary approaches, with TGS annotations identifying more annotated insertions with greater precision for a target TE family, and WGS data allowing for estimates of TE insertion frequencies, and a broader picture of the location of non-target TEs across the genome.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Biology and Biochemistry, University of Houston, 3455 Cullen Blvd. Suite 342, Houston, TX 77204 USA
| | - Erin S. Kelleher
- Department of Biology and Biochemistry, University of Houston, 3455 Cullen Blvd. Suite 342, Houston, TX 77204 USA
| |
Collapse
|
7
|
Ecovoiu AA, Ghionoiu IC, Ciuca AM, Ratiu AC. Genome ARTIST: a robust, high-accuracy aligner tool for mapping transposon insertions and self-insertions. Mob DNA 2016; 7:3. [PMID: 26855675 PMCID: PMC4744444 DOI: 10.1186/s13100-016-0061-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/19/2016] [Indexed: 01/16/2023] Open
Abstract
Background A critical topic of insertional mutagenesis experiments performed on model organisms is mapping the hits of artificial transposons (ATs) at nucleotide level accuracy. Mapping errors may occur when sequencing artifacts or mutations as single nucleotide polymorphisms (SNPs) and small indels are present very close to the junction between a genomic sequence and a transposon inverted repeat (TIR). Another particular item of insertional mutagenesis is mapping of the transposon self-insertions and, to our best knowledge, there is no publicly available mapping tool designed to analyze such molecular events. Results We developed Genome ARTIST, a pairwise gapped aligner tool which works out both issues by means of an original, robust mapping strategy. Genome ARTIST is not designed to use next-generation sequencing (NGS) data but to analyze ATs insertions obtained in small to medium-scale mutagenesis experiments. Genome ARTIST employs a heuristic approach to find DNA sequence similarities and harnesses a multi-step implementation of a Smith-Waterman adapted algorithm to compute the mapping alignments. The experience is enhanced by easily customizable parameters and a user-friendly interface that describes the genomic landscape surrounding the insertion. Genome ARTIST is functional with many genomes of bacteria and eukaryotes available in Ensembl and GenBank repositories. Our tool specifically harnesses the sequence annotation data provided by FlyBase for Drosophila melanogaster (the fruit fly), which enables mapping of insertions relative to various genomic features such as natural transposons. Genome ARTIST was tested against other alignment tools using relevant query sequences derived from the D. melanogaster and Mus musculus (mouse) genomes. Real and simulated query sequences were also comparatively inquired, revealing that Genome ARTIST is a very robust solution for mapping transposon insertions. Conclusions Genome ARTIST is a stand-alone user-friendly application, designed for high-accuracy mapping of transposon insertions and self-insertions. The tool is also useful for routine aligning assessments like detection of SNPs or checking the specificity of primers and probes. Genome ARTIST is an open source software and is available for download at www.genomeartist.ro and at GitHub (https://github.com/genomeartist/genomeartist ). Electronic supplementary material The online version of this article (doi:10.1186/s13100-016-0061-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandru Al Ecovoiu
- Department of Genetics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | | | | | - Attila Cristian Ratiu
- Department of Genetics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
8
|
The use of RelocaTE and unassembled short reads to produce high-resolution snapshots of transposable element generated diversity in rice. G3-GENES GENOMES GENETICS 2013; 3:949-57. [PMID: 23576519 PMCID: PMC3689806 DOI: 10.1534/g3.112.005348] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Transposable elements (TEs) are dynamic components of genomes that often vary in copy number among members of the same species. With the advent of next-generation sequencing TE insertion-site polymorphism can be examined at an unprecedented level of detail when combined with easy-to-use bioinformatics software. Here we report a new tool, RelocaTE, that rapidly identifies specific TE insertions that are either polymorphic or shared between a reference and unassembled next-generation sequencing reads. Furthermore, a novel companion tool, CharacTErizer, exploits the depth of coverage to classify genotypes of nonreference insertions as homozygous, heterozygous or, when analyzing an active TE family, as rare somatic insertion or excision events. It does this by comparing the numbers of RelocaTE aligned reads to reads that map to the same genomic position without the TE. Although RelocaTE and CharacTErizer can be used for any TE, they were developed to analyze the very active mPing element which is undergoing massive amplification in specific strains of Oryza sativa (rice). Three individuals of one of these strains, A123, were resequenced and analyzed for mPing insertion site polymorphisms. The majority of mPing insertions found (~97%) are not present in the reference, and two siblings from a self-crossed of this strain were found to share only ~90% of their insertions. Private insertions are primarily heterozygous but include both homozygous and predicted somatic insertions. The reliability of the predicted genotypes was validated by polymerase chain reaction.
Collapse
|
9
|
Kim YJ, Lee J, Han K. Transposable Elements: No More 'Junk DNA'. Genomics Inform 2012; 10:226-33. [PMID: 23346034 PMCID: PMC3543922 DOI: 10.5808/gi.2012.10.4.226] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 11/16/2012] [Accepted: 11/17/2012] [Indexed: 01/03/2023] Open
Abstract
Since the advent of whole-genome sequencing, transposable elements (TEs), just thought to be 'junk' DNA, have been noticed because of their numerous copies in various eukaryotic genomes. Many studies about TEs have been conducted to discover their functions in their host genomes. Based on the results of those studies, it has been generally accepted that they have a function to cause genomic and genetic variations. However, their infinite functions are not fully elucidated. Through various mechanisms, including de novo TE insertions, TE insertion-mediated deletions, and recombination events, they manipulate their host genomes. In this review, we focus on Alu, L1, human endogenous retrovirus, and short interspersed element/variable number of tandem repeats/Alu (SVA) elements and discuss how they have affected primate genomes, especially the human and chimpanzee genomes, since their divergence.
Collapse
Affiliation(s)
- Yun-Ji Kim
- Department of Nanobiomedical Science, WCU Research Center, Dankook University, Cheonan 330-714, Korea
| | | | | |
Collapse
|