1
|
Blauwkamp J, Ambekar SV, Hussain T, Mair GR, Beck JR, Absalon S. Nuclear pore complexes undergo Nup221 exchange during blood-stage asexual replication of Plasmodium parasites. mSphere 2024:e0075024. [PMID: 39526784 DOI: 10.1128/msphere.00750-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Plasmodium parasites, the causative agents of malaria, undergo closed mitosis without breakdown of the nuclear envelope. Unlike closed mitosis in yeast, Plasmodium berghei parasites undergo multiple rounds of asynchronous nuclear divisions in a shared cytoplasm. This results in a multinucleated organism prior to the formation of daughter cells within an infected red blood cell. During this replication process, intact nuclear pore complexes (NPCs) and their component nucleoporins play critical roles in parasite growth, facilitating selective bi-directional nucleocytoplasmic transport and genome organization. Here, we utilize ultrastructure expansion microscopy to investigate P. berghei nucleoporins at the single nucleus level throughout the 24-hour blood-stage replication cycle. Our findings reveal that these nucleoporins are distributed around the nuclei and organized in a rosette structure previously undescribed around the centriolar plaque, responsible for intranuclear microtubule nucleation during mitosis. By adapting the recombination-induced tag exchange system to P. berghei through a single plasmid tagging system, which includes the tagging plasmid as well as the Cre recombinase, we provide evidence of NPC formation dynamics, demonstrating Nup221 turnover during parasite asexual replication. Our data shed light on the distribution of NPCs and their homeostasis during the blood-stage replication of P. berghei parasites. IMPORTANCE Malaria, caused by Plasmodium species, remains a critical global health challenge, with an estimated 249 million cases and over 600,000 deaths in 2022, primarily affecting children under five. Understanding the nuclear dynamics of Plasmodium parasites, particularly during their unique mitotic processes, is crucial for developing novel therapeutic strategies. Our study leverages advanced microscopy techniques, such as ultrastructure expansion microscopy, to reveal the organization and turnover of nuclear pore complexes (NPCs) during the parasite's asexual replication. By elucidating these previously unknown aspects of NPC distribution and homeostasis, we provide valuable insights into the molecular mechanisms governing parasite mitosis. These findings deepen our understanding of parasite biology and may inform future research aimed at identifying new targets for anti-malarial drug development.
Collapse
Affiliation(s)
- James Blauwkamp
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sushma V Ambekar
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Tahir Hussain
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Gunnar R Mair
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Josh R Beck
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
2
|
Nageshan RK, Ortega R, Krogan N, Cooper JP. Fate of telomere entanglements is dictated by the timing of anaphase midregion nuclear envelope breakdown. Nat Commun 2024; 15:4707. [PMID: 38830842 PMCID: PMC11148042 DOI: 10.1038/s41467-024-48382-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
Persisting replication intermediates can confer mitotic catastrophe. Loss of the fission yeast telomere protein Taz1 (ortholog of mammalian TRF1/TRF2) causes telomeric replication fork (RF) stalling and consequently, telomere entanglements that stretch between segregating mitotic chromosomes. At ≤20 °C, these entanglements fail to resolve, resulting in lethality. Rif1, a conserved DNA replication/repair protein, hinders the resolution of telomere entanglements without affecting their formation. At mitosis, local nuclear envelope (NE) breakdown occurs in the cell's midregion. Here we demonstrate that entanglement resolution occurs in the cytoplasm following this NE breakdown. However, in response to taz1Δ telomeric entanglements, Rif1 delays midregion NE breakdown at ≤20 °C, in turn disfavoring entanglement resolution. Moreover, Rif1 overexpression in an otherwise wild-type setting causes cold-specific NE defects and lethality, which are rescued by membrane fluidization. Hence, NE properties confer the cold-specificity of taz1Δ lethality, which stems from postponement of NE breakdown. We propose that such postponement promotes clearance of simple stalled RFs, but resolution of complex entanglements (involving strand invasion between nonsister telomeres) requires rapid exposure to the cytoplasm.
Collapse
Affiliation(s)
- Rishi Kumar Nageshan
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Raquel Ortega
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Nevan Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, 94158, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Julia Promisel Cooper
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
3
|
Grazzini A, Cavanaugh AM. Fungal microtubule organizing centers are evolutionarily unstable structures. Fungal Genet Biol 2024; 172:103885. [PMID: 38485050 DOI: 10.1016/j.fgb.2024.103885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
For most Eukaryotic species the requirements of cilia formation dictate the structure of microtubule organizing centers (MTOCs). In this study we find that loss of cilia corresponds to loss of evolutionary stability for fungal MTOCs. We used iterative search algorithms to identify proteins homologous to those found in Saccharomyces cerevisiae, and Schizosaccharomyces pombe MTOCs, and calculated site-specific rates of change for those proteins that were broadly phylogenetically distributed. Our results indicate that both the protein composition of MTOCs as well as the sequence of MTOC proteins are poorly conserved throughout the fungal kingdom. To begin to reconcile this rapid evolutionary change with the rigid structure and essential function of the S. cerevisiae MTOC we further analyzed how structural interfaces among proteins influence the rates of change for specific residues within a protein. We find that a more stable protein may stabilize portions of an interacting partner where the two proteins are in contact. In summary, while the protein composition and sequences of the MTOC may be rapidly changing the proteins within the structure have a stabilizing effect on one another. Further exploration of fungal MTOCs will expand our understanding of how changes in the functional needs of a cell have affected physical structures, proteomes, and protein sequences throughout fungal evolution.
Collapse
Affiliation(s)
- Adam Grazzini
- Department of Biology, Creighton University, Omaha, Nebraska, USA
| | - Ann M Cavanaugh
- Department of Biology, Creighton University, Omaha, Nebraska, USA.
| |
Collapse
|
4
|
Amm I, Weberruss M, Hellwig A, Schwarz J, Tatarek-Nossol M, Lüchtenborg C, Kallas M, Brügger B, Hurt E, Antonin W. Distinct domains in Ndc1 mediate its interaction with the Nup84 complex and the nuclear membrane. J Cell Biol 2023; 222:e202210059. [PMID: 37154843 PMCID: PMC10165475 DOI: 10.1083/jcb.202210059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/31/2023] [Accepted: 03/17/2023] [Indexed: 05/10/2023] Open
Abstract
Nuclear pore complexes (NPCs) are embedded in the nuclear envelope and built from ∼30 different nucleoporins (Nups) in multiple copies, few are integral membrane proteins. One of these transmembrane nucleoporins, Ndc1, is thought to function in NPC assembly at the fused inner and outer nuclear membranes. Here, we show a direct interaction of Ndc1's transmembrane domain with Nup120 and Nup133, members of the pore membrane coating Y-complex. We identify an amphipathic helix in Ndc1's C-terminal domain binding highly curved liposomes. Upon overexpression, this amphipathic motif is toxic and dramatically alters the intracellular membrane organization in yeast. Ndc1's amphipathic motif functionally interacts with related motifs in the C-terminus of the nucleoporins Nup53 and Nup59, important for pore membrane binding and interconnecting NPC modules. The essential function of Ndc1 can be suppressed by deleting the amphipathic helix from Nup53. Our data indicate that nuclear membrane and presumably NPC biogenesis depends on a balanced ratio between amphipathic motifs in diverse nucleoporins.
Collapse
Affiliation(s)
- Ingo Amm
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, Heidelberg, Germany
| | - Marion Weberruss
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Andrea Hellwig
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| | - Johannes Schwarz
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, Heidelberg, Germany
| | - Marianna Tatarek-Nossol
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Christian Lüchtenborg
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, Heidelberg, Germany
| | - Martina Kallas
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, Heidelberg, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, Heidelberg, Germany
| | - Ed Hurt
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, Heidelberg, Germany
| | - Wolfram Antonin
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
5
|
Mitic K, Meyer I, Gräf R, Grafe M. Temporal Changes in Nuclear Envelope Permeability during Semi-Closed Mitosis in Dictyostelium Amoebae. Cells 2023; 12:1380. [PMID: 37408214 DOI: 10.3390/cells12101380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023] Open
Abstract
The Amoebozoan Dictyostelium discoideum exhibits a semi-closed mitosis in which the nuclear membranes remain intact but become permeabilized to allow tubulin and spindle assembly factors to access the nuclear interior. Previous work indicated that this is accomplished at least by partial disassembly of nuclear pore complexes (NPCs). Further contributions by the insertion process of the duplicating, formerly cytosolic, centrosome into the nuclear envelope and nuclear envelope fenestrations forming around the central spindle during karyokinesis were discussed. We studied the behavior of several Dictyostelium nuclear envelope, centrosomal, and nuclear pore complex (NPC) components tagged with fluorescence markers together with a nuclear permeabilization marker (NLS-TdTomato) by live-cell imaging. We could show that permeabilization of the nuclear envelope during mitosis occurs in synchrony with centrosome insertion into the nuclear envelope and partial disassembly of nuclear pore complexes. Furthermore, centrosome duplication takes place after its insertion into the nuclear envelope and after initiation of permeabilization. Restoration of nuclear envelope integrity usually occurs long after re-assembly of NPCs and cytokinesis has taken place and is accompanied by a concentration of endosomal sorting complex required for transport (ESCRT) components at both sites of nuclear envelope fenestration (centrosome and central spindle).
Collapse
Affiliation(s)
- Kristina Mitic
- Department of Cell Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Irene Meyer
- Department of Cell Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Ralph Gräf
- Department of Cell Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Marianne Grafe
- Department of Cell Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
6
|
Varberg JM, Unruh JR, Bestul AJ, Khan AA, Jaspersen SL. Quantitative analysis of nuclear pore complex organization in Schizosaccharomyces pombe. Life Sci Alliance 2022; 5:e202201423. [PMID: 35354597 PMCID: PMC8967992 DOI: 10.26508/lsa.202201423] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 01/06/2023] Open
Abstract
The number, distribution, and composition of nuclear pore complexes (NPCs) in the nuclear envelope varies between cell types and changes during cellular differentiation and in disease. To understand how NPC density and organization are controlled, we analyzed the NPC number and distribution in the fission yeast Schizosaccharomyces pombe using structured illumination microscopy. The small size of yeast nuclei, genetic features of fungi, and our robust image analysis pipeline allowed us to study NPCs in intact nuclei under multiple conditions. Our data revealed that NPC density is maintained across a wide range of nuclear sizes. Regions of reduced NPC density are observed over the nucleolus and surrounding the spindle pole body (SPB). Lem2-mediated tethering of the centromeres to the SPB is required to maintain NPC exclusion near SPBs. These findings provide a quantitative understanding of NPC number and distribution in S. pombe and show that interactions between the centromere and the nuclear envelope influences local NPC distribution.
Collapse
Affiliation(s)
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Andrew J Bestul
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Azqa A Khan
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
7
|
Hernández-Sánchez F, Peraza-Reyes L. Spatiotemporal Dynamic Regulation of Organelles During Meiotic Development, Insights From Fungi. Front Cell Dev Biol 2022; 10:886710. [PMID: 35547805 PMCID: PMC9081346 DOI: 10.3389/fcell.2022.886710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/08/2022] [Indexed: 12/02/2022] Open
Abstract
Eukaryotic cell development involves precise regulation of organelle activity and dynamics, which adapt the cell architecture and metabolism to the changing developmental requirements. Research in various fungal model organisms has disclosed that meiotic development involves precise spatiotemporal regulation of the formation and dynamics of distinct intracellular membrane compartments, including peroxisomes, mitochondria and distinct domains of the endoplasmic reticulum, comprising its peripheral domains and the nuclear envelope. This developmental regulation implicates changes in the constitution and dynamics of these organelles, which modulate their structure, abundance and distribution. Furthermore, selective degradation systems allow timely organelle removal at defined meiotic stages, and regulated interactions between membrane compartments support meiotic-regulated organelle dynamics. This dynamic organelle remodeling is implicated in conducting organelle segregation during meiotic differentiation, and defines quality control regulatory systems safeguarding the inheritance of functional membrane compartments, promoting meiotic cell rejuvenation. Moreover, organelle remodeling is important for proper activity of the cytoskeletal system conducting meiotic nucleus segregation, as well as for meiotic differentiation. The orchestrated regulation of organelle dynamics has a determinant contribution in the formation of the renewed genetically-diverse offspring of meiosis.
Collapse
|
8
|
Mauro MS, Celma G, Zimyanin V, Magaj MM, Gibson KH, Redemann S, Bahmanyar S. Ndc1 drives nuclear pore complex assembly independent of membrane biogenesis to promote nuclear formation and growth. eLife 2022; 11:75513. [PMID: 35852146 PMCID: PMC9296133 DOI: 10.7554/elife.75513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 06/15/2022] [Indexed: 01/19/2023] Open
Abstract
The nuclear envelope (NE) assembles and grows from bilayer lipids produced at the endoplasmic reticulum (ER). How ER membrane incorporation coordinates with assembly of nuclear pore complexes (NPCs) to generate a functional NE is not well understood. Here, we use the stereotypical first division of the early C. elegans embryo to test the role of the membrane-associated nucleoporin Ndc1 in coupling NPC assembly to NE formation and growth. 3D-EM tomography of reforming and expanded NEs establishes that Ndc1 determines NPC density. Loss of ndc1 results in faster turnover of the outer scaffold nucleoporin Nup160 at the NE, providing an explanation for how Ndc1 controls NPC number. NE formation fails in the absence of both Ndc1 and the inner ring component Nup53, suggesting partially redundant roles in NPC assembly. Importantly, upregulation of membrane synthesis restored the slow rate of nuclear growth resulting from loss of ndc1 but not from loss of nup53. Thus, membrane biogenesis can be decoupled from Ndc1-mediated NPC assembly to promote nuclear growth. Together, our data suggest that Ndc1 functions in parallel with Nup53 and membrane biogenesis to control NPC density and nuclear size.
Collapse
Affiliation(s)
- Michael Sean Mauro
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| | - Gunta Celma
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| | - Vitaly Zimyanin
- Center for Membrane and Cell Physiology, University of VirginiaCharlottesvilleUnited States,Department of Molecular Physiology and Biological Physics, University of Virginia, School of MedicineCharlottesvilleUnited States
| | - Magdalena M Magaj
- Center for Membrane and Cell Physiology, University of VirginiaCharlottesvilleUnited States,Department of Molecular Physiology and Biological Physics, University of Virginia, School of MedicineCharlottesvilleUnited States
| | - Kimberley H Gibson
- Center for Cellular and Molecular Imaging: Electron Microscopy, Department of Cell Biology, Yale School of MedicineNew HavenUnited States
| | - Stefanie Redemann
- Center for Membrane and Cell Physiology, University of VirginiaCharlottesvilleUnited States,Department of Molecular Physiology and Biological Physics, University of Virginia, School of MedicineCharlottesvilleUnited States,Department of Cell Biology, University of VirginiaCharlottesvilleUnited States
| | - Shirin Bahmanyar
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew HavenUnited States
| |
Collapse
|
9
|
Dey G, Baum B. Nuclear envelope remodelling during mitosis. Curr Opin Cell Biol 2021; 70:67-74. [PMID: 33421755 PMCID: PMC8129912 DOI: 10.1016/j.ceb.2020.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022]
Abstract
The defining feature of the eukaryotic cell, the nucleus, is bounded by a double envelope. This envelope and the nuclear pores within it play a critical role in separating the genome from the cytoplasm. It also presents cells with a challenge. How are cells to remodel the nuclear compartment boundary during mitosis without compromising nuclear function? In the two billion years since the emergence of the first cells with a nucleus, eukaryotes have evolved a range of strategies to do this. At one extreme, the nucleus is disassembled upon entry into mitosis and then reassembled anew in the two daughter cells. At the other, cells maintain an intact nuclear compartment boundary throughout the division process. In this review, we discuss common features of the division process that underpin remodelling mechanisms, the topological challenges involved and speculate on the selective pressures that may drive the evolution of distinct modes of division.
Collapse
Affiliation(s)
- Gautam Dey
- Cell Biology and Biophysics, European Molecular Biology Laboratory, 69117, Heidelberg, Germany.
| | - Buzz Baum
- Lab of Molecular Biology, Cambridge, CB2 0QH, United Kingdom; Lab for Molecular Cell Biology, UCL, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
10
|
High-Throughput Identification of Nuclear Envelope Protein Interactions in Schizosaccharomyces pombe Using an Arrayed Membrane Yeast-Two Hybrid Library. G3-GENES GENOMES GENETICS 2020; 10:4649-4663. [PMID: 33109728 PMCID: PMC7718735 DOI: 10.1534/g3.120.401880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The nuclear envelope (NE) contains a specialized set of integral membrane proteins that maintain nuclear shape and integrity and influence chromatin organization and gene expression. Advances in proteomics techniques and studies in model organisms have identified hundreds of proteins that localize to the NE. However, the function of many of these proteins at the NE remains unclear, in part due to a lack of understanding of the interactions that these proteins participate in at the NE membrane. To assist in the characterization of NE transmembrane protein interactions we developed an arrayed library of integral and peripheral membrane proteins from the fission yeast Schizosaccharomyces pombe for high-throughput screening using the split-ubiquitin based membrane yeast two -hybrid system. We used this approach to characterize protein interactions for three conserved proteins that localize to the inner nuclear membrane: Cut11/Ndc1, Lem2 and Ima1/Samp1/Net5. Additionally, we determined how the interaction network for Cut11 is altered in canonical temperature-sensitive cut11-ts mutants. This library and screening approach is readily applicable to characterizing the interactomes of integral membrane proteins localizing to various subcellular compartments.
Collapse
|
11
|
Geymonat M, Peng Q, Guo Z, Yu Z, Unruh JR, Jaspersen SL, Segal M. Orderly assembly underpinning built-in asymmetry in the yeast centrosome duplication cycle requires cyclin-dependent kinase. eLife 2020; 9:59222. [PMID: 32851976 PMCID: PMC7470843 DOI: 10.7554/elife.59222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
Asymmetric astral microtubule organization drives the polarized orientation of the S. cerevisiae mitotic spindle and primes the invariant inheritance of the old spindle pole body (SPB, the yeast centrosome) by the bud. This model has anticipated analogous centrosome asymmetries featured in self-renewing stem cell divisions. We previously implicated Spc72, the cytoplasmic receptor for the gamma-tubulin nucleation complex, as the most upstream determinant linking SPB age, functional asymmetry and fate. Here we used structured illumination microscopy and biochemical analysis to explore the asymmetric landscape of nucleation sites inherently built into the spindle pathway and under the control of cyclin-dependent kinase (CDK). We show that CDK enforces Spc72 asymmetric docking by phosphorylating Nud1/centriolin. Furthermore, CDK-imposed order in the construction of the new SPB promotes the correct balance of nucleation sites between the nuclear and cytoplasmic faces of the SPB. Together these contributions by CDK inherently link correct SPB morphogenesis, age and fate.
Collapse
Affiliation(s)
- Marco Geymonat
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Qiuran Peng
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Zhiang Guo
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, United States
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, United States
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, United States.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, United States
| | - Marisa Segal
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
Sosa Ponce ML, Moradi-Fard S, Zaremberg V, Cobb JA. SUNny Ways: The Role of the SUN-Domain Protein Mps3 Bridging Yeast Nuclear Organization and Lipid Homeostasis. Front Genet 2020; 11:136. [PMID: 32184804 PMCID: PMC7058695 DOI: 10.3389/fgene.2020.00136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
Mps3 is a SUN (Sad1-UNC-84) domain-containing protein that is located in the inner nuclear membrane (INM). Genetic screens with multiple Mps3 mutants have suggested that distinct regions of Mps3 function in relative isolation and underscore the broad involvement of Mps3 in multiple pathways including mitotic spindle formation, telomere maintenance, and lipid metabolism. These pathways have largely been characterized in isolation, without a holistic consideration for how key regulatory events within one pathway might impinge on other aspects of biology at the nuclear membrane. Mps3 is uniquely positioned to function in these multiple pathways as its N- terminus is in the nucleoplasm, where it is important for telomere anchoring at the nuclear periphery, and its C-terminus is in the lumen, where it has links with lipid metabolic processes. Emerging work suggests that the role of Mps3 in nuclear organization and lipid homeostasis are not independent, but more connected. For example, a failure in regulating Mps3 levels through the cell cycle leads to nuclear morphological abnormalities and loss of viability, suggesting a link between the N-terminal domain of Mps3 and nuclear envelope homeostasis. We will highlight work suggesting that Mps3 is pivotal factor in communicating events between the nucleus and the lipid bilayer.
Collapse
Affiliation(s)
- Maria Laura Sosa Ponce
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, Calgary, AB, Canada.,Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Sarah Moradi-Fard
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, Calgary, AB, Canada
| | - Vanina Zaremberg
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Jennifer A Cobb
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, Calgary, AB, Canada
| |
Collapse
|
13
|
Konuk HB, Ergüden B. Spindle pole body duplication defective yeast cells are more prone to membrane damage. Mycologia 2019; 111:895-903. [PMID: 31596181 DOI: 10.1080/00275514.2019.1659091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Hatice Büşra Konuk
- Department of Bioengineering, Gebze Technical University, Gebze 41400, Kocaeli, Turkey
| | - Bengü Ergüden
- Department of Bioengineering, Gebze Technical University, Gebze 41400, Kocaeli, Turkey
| |
Collapse
|
14
|
Howell RSM, Csikász-Nagy A, Thorpe PH. Synthetic Physical Interactions with the Yeast Centrosome. G3 (BETHESDA, MD.) 2019; 9:2183-2194. [PMID: 31076383 PMCID: PMC6643875 DOI: 10.1534/g3.119.400117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/02/2019] [Indexed: 12/30/2022]
Abstract
The yeast centrosome or Spindle Pole Body (SPB) is an organelle situated in the nuclear membrane, where it nucleates spindle microtubules and acts as a signaling hub. Various studies have explored the effects of forcing individual proteins to interact with the yeast SPB, however no systematic study has been performed. We used synthetic physical interactions to detect proteins that inhibit growth when forced to associate with the SPB. We found the SPB to be especially sensitive to relocalization, necessitating a novel data analysis approach. This novel analysis of SPI screening data shows that regions of the cell are locally more sensitive to forced relocalization than previously thought. Furthermore, we found a set of associations that result in elevated SPB number and, in some cases, multi-polar spindles. Since hyper-proliferation of centrosomes is a hallmark of cancer cells, these associations point the way for the use of yeast models in the study of spindle formation and chromosome segregation in cancer.
Collapse
Affiliation(s)
- Rowan S M Howell
- The Francis Crick Institute, London, NW1 1AT UK
- Randall Division of Cell and Molecular Biophysics, King's College, London, SE1 1UL UK
| | - Attila Csikász-Nagy
- Randall Division of Cell and Molecular Biophysics, King's College, London, SE1 1UL UK
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, 1083 Hungary
| | - Peter H Thorpe
- School of Biological and Chemical Sciences, Queen Mary University, London, E1 4NS UK
| |
Collapse
|
15
|
Chalfant M, Barber KW, Borah S, Thaller D, Lusk CP. Expression of TorsinA in a heterologous yeast system reveals interactions with lumenal domains of LINC and nuclear pore complex components. Mol Biol Cell 2019; 30:530-541. [PMID: 30625036 PMCID: PMC6589686 DOI: 10.1091/mbc.e18-09-0585] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
DYT1 dystonia is caused by an in-frame deletion of a glutamic acid codon in the gene encoding the AAA+ ATPase TorsinA (TorA). TorA localizes within the lumen of the nuclear envelope/endoplasmic reticulum and binds to a membrane-spanning cofactor, lamina associated polypeptide 1 (LAP1) or lumenal domain like LAP1 (LULL1), to form an ATPase; the substrate(s) of TorA remains ill-defined. Here we use budding yeast, which lack Torsins, to interrogate TorA function. We show that TorA accumulates at nuclear envelope-embedded spindle pole bodies (SPBs) in a way that requires its oligomerization and the SUN (Sad1 and UNc-84)-domain protein, Mps3. We further show that TorA physically interacts with human SUN1/2 within this system, supporting the physiological relevance of these interactions. Consistent with the idea that TorA acts on a SPB substrate, its binding to SPBs is modulated by the ATPase-stimulating activity of LAP1. TorA and TorA-ΔE reduce the fitness of cells expressing mps3 alleles, whereas TorA alone inhibits growth of cells lacking Pom152, a component of the nuclear pore complex. This genetic specificity is mirrored biochemically as TorA, but not TorA-ΔE, binds Pom152. Thus, TorA–nucleoporin interactions might be abrogated by TorA-ΔE, suggesting new experimental avenues to interrogate the molecular basis behind nuclear envelope herniations seen in mammalian cells lacking TorA function.
Collapse
Affiliation(s)
| | - Karl W. Barber
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT 06520
- Systems Biology Institute, Yale University, West Haven, CT 06477
| | - Sapan Borah
- Department of Cell Biology, Yale University, New Haven, CT 06520
| | - David Thaller
- Department of Cell Biology, Yale University, New Haven, CT 06520
| | - C. Patrick Lusk
- Department of Cell Biology, Yale University, New Haven, CT 06520
| |
Collapse
|
16
|
Comparative Biology of Centrosomal Structures in Eukaryotes. Cells 2018; 7:cells7110202. [PMID: 30413081 PMCID: PMC6262633 DOI: 10.3390/cells7110202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/06/2018] [Indexed: 12/15/2022] Open
Abstract
The centrosome is not only the largest and most sophisticated protein complex within a eukaryotic cell, in the light of evolution, it is also one of its most ancient organelles. This special issue of "Cells" features representatives of three main, structurally divergent centrosome types, i.e., centriole-containing centrosomes, yeast spindle pole bodies (SPBs), and amoebozoan nucleus-associated bodies (NABs). Here, I discuss their evolution and their key-functions in microtubule organization, mitosis, and cytokinesis. Furthermore, I provide a brief history of centrosome research and highlight recently emerged topics, such as the role of centrioles in ciliogenesis, the relationship of centrosomes and centriolar satellites, the integration of centrosomal structures into the nuclear envelope and the involvement of centrosomal components in non-centrosomal microtubule organization.
Collapse
|
17
|
Identification of the Novel Nup188-brr7 Allele in a Screen for Cold-Sensitive mRNA Export Mutants in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2018; 8:2991-3003. [PMID: 30021831 PMCID: PMC6118305 DOI: 10.1534/g3.118.200447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The maturation and export of mRNA from the nucleus through the nuclear pore complex is critical for maintaining an appropriate proteome in all eukaryotic cells. Here we summarize a previously unpublished screen in S. cerevisiae that utilized an established dT50 in situ hybridization assay to identify cold-sensitive mutants that accumulated bulk poly A RNA in the nucleus. The screen identified seven mutants in six complementation groups, including the brr6-1 strain that we described previously. In addition to brr6-1, we identified novel alleles of the key transport gene GLE1 and NUP188, a component of the Nic96 nucleoporin complex. Notably, we show that the nup188-brr7 allele causes defects in select protein import pathways as well as mRNA export. Given recent structural and functional evidence linking the Nic96 complex to transport components, this mutant may be particularly useful to the transport community.
Collapse
|
18
|
Duplication and Nuclear Envelope Insertion of the Yeast Microtubule Organizing Centre, the Spindle Pole Body. Cells 2018; 7:cells7050042. [PMID: 29748517 PMCID: PMC5981266 DOI: 10.3390/cells7050042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 11/16/2022] Open
Abstract
The main microtubule organizing centre in the unicellular model organisms Saccharomyces cerevisiae and Schizosaccharomyces pompe is the spindle pole body (SPB). The SPB is a multilayer structure, which duplicates exactly once per cell cycle. Unlike higher eukaryotic cells, both yeast model organisms undergo mitosis without breakdown of the nuclear envelope (NE), a so-called closed mitosis. Therefore, in order to simultaneously nucleate nuclear and cytoplasmic MTs, it is vital to embed the SPB into the NE at least during mitosis, similarly to the nuclear pore complex (NPC). This review aims to embrace the current knowledge of the SPB duplication cycle with special emphasis on the critical step of the insertion of the new SPB into the NE.
Collapse
|
19
|
Zhang W, Neuner A, Rüthnick D, Sachsenheimer T, Lüchtenborg C, Brügger B, Schiebel E. Brr6 and Brl1 locate to nuclear pore complex assembly sites to promote their biogenesis. J Cell Biol 2018; 217:877-894. [PMID: 29439116 PMCID: PMC5839787 DOI: 10.1083/jcb.201706024] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 11/21/2017] [Accepted: 01/10/2018] [Indexed: 12/30/2022] Open
Abstract
The conserved paralogous Brr6 and Brl1 promote NPC biogenesis in an unclear manner. Here, Zhang et al. show that both transmembrane proteins transiently associate with NPC assembly intermediates and directly promote NPC biogenesis. The paralogous Brr6 and Brl1 are conserved integral membrane proteins of the nuclear envelope (NE) with an unclear role in nuclear pore complex (NPC) biogenesis. Here, we analyzed double-degron mutants of Brr6/Brl1 to understand this function. Depletion of Brr6 and Brl1 caused defects in NPC biogenesis, whereas the already assembled NPCs remained unaffected. This NPC biogenesis defect was not accompanied by a change in lipid composition. However, Brl1 interacted with Ndc1 and Nup188 by immunoprecipitation, and with transmembrane and outer and inner ring NPC components by split yellow fluorescent protein analysis, indicating a direct role in NPC biogenesis. Consistently, we found that Brr6 and Brl1 associated with a subpopulation of NPCs and emerging NPC assembly sites. Moreover, BRL1 overexpression affected NE morphology without a change in lipid composition and completely suppressed the nuclear pore biogenesis defect of nup116Δ and gle2Δ cells. We propose that Brr6 and Brl1 transiently associate with NPC assembly sites where they promote NPC biogenesis.
Collapse
Affiliation(s)
- Wanlu Zhang
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Annett Neuner
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Diana Rüthnick
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | | | | | - Britta Brügger
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| |
Collapse
|
20
|
Cavanaugh AM, Jaspersen SL. Big Lessons from Little Yeast: Budding and Fission Yeast Centrosome Structure, Duplication, and Function. Annu Rev Genet 2017; 51:361-383. [PMID: 28934593 DOI: 10.1146/annurev-genet-120116-024733] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Centrosomes are a functionally conserved feature of eukaryotic cells that play an important role in cell division. The conserved γ-tubulin complex organizes spindle and astral microtubules, which, in turn, separate replicated chromosomes accurately into daughter cells. Like DNA, centrosomes are duplicated once each cell cycle. Although in some cell types it is possible for cell division to occur in the absence of centrosomes, these divisions typically result in defects in chromosome number and stability. In single-celled organisms such as fungi, centrosomes [known as spindle pole bodies (SPBs)] are essential for cell division. SPBs also must be inserted into the membrane because fungi undergo a closed mitosis in which the nuclear envelope (NE) remains intact. This poorly understood process involves events similar or identical to those needed for de novo nuclear pore complex assembly. Here, we review how analysis of fungal SPBs has advanced our understanding of centrosomes and NE events.
Collapse
Affiliation(s)
- Ann M Cavanaugh
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA;
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; .,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
21
|
Kupke T, Malsam J, Schiebel E. A ternary membrane protein complex anchors the spindle pole body in the nuclear envelope in budding yeast. J Biol Chem 2017; 292:8447-8458. [PMID: 28356353 DOI: 10.1074/jbc.m117.780601] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/28/2017] [Indexed: 11/06/2022] Open
Abstract
In budding yeast (Saccharomyces cerevisiae) the multilayered spindle pole body (SPB) is embedded in the nuclear envelope (NE) at fusion sites of the inner and outer nuclear membrane. The SPB is built from 18 different proteins, including the three integral membrane proteins Mps3, Ndc1, and Mps2. These membrane proteins play an essential role in the insertion of the new SPB into the NE. How the huge core structure of the SPB is anchored in the NE has not been investigated thoroughly until now. The present model suggests that the NE protein Mps2 interacts via Bbp1 with Spc29, one of the coiled-coil proteins forming the central plaque of the SPB. To test this model, we purified and reconstituted the Mps2-Bbp1 complex from yeast and incorporated the complex into liposomes. We also demonstrated that Mps2-Bbp1 directly interacts with Mps3 and Ndc1. We then purified Spc29 and reconstituted the ternary Mps2-Bbp1-Spc29 complex, proving that Bbp1 can simultaneously interact with Mps2 and Spc29 and in this way link the central plaque of the SPB to the nuclear envelope. Interestingly, Bbp1 induced oligomerization of Spc29, which may represent an early step in SPB duplication. Together, this analysis provides important insights into the interaction network that inserts the new SPB into the NE and indicates that the Mps2-Bbp1 complex is the central unit of the SPB membrane anchor.
Collapse
Affiliation(s)
- Thomas Kupke
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Jörg Malsam
- Biochemie-Zentrum der Universität Heidelberg (BZH), Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany.
| |
Collapse
|
22
|
Fernández-Álvarez A, Cooper JP. Chromosomes Orchestrate Their Own Liberation: Nuclear Envelope Disassembly. Trends Cell Biol 2016; 27:255-265. [PMID: 28024902 DOI: 10.1016/j.tcb.2016.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 12/13/2022]
Abstract
The mammalian nuclear division cycle is coordinated with nuclear envelope breakdown (NEBD), in which the entire nuclear envelope (NE) is dissolved to allow chromosomes to access their segregation vehicle, the spindle. In other eukaryotes, complete NEBD is replaced by localized disassembly or remodeling of the NE. Although the molecular mechanisms controlling NE disassembly are incompletely understood, coordinated cycles of modification of specific NE components drive breakdown. Here, we review the current state of knowledge regarding NE disassembly and argue for a role of chromosome-NE contacts in triggering initiation of NE disassembly and thereby, cell division.
Collapse
Affiliation(s)
- Alfonso Fernández-Álvarez
- Telomere Biology Section, Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Julia Promisel Cooper
- Telomere Biology Section, Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
23
|
Fernández-Álvarez A, Bez C, O'Toole ET, Morphew M, Cooper JP. Mitotic Nuclear Envelope Breakdown and Spindle Nucleation Are Controlled by Interphase Contacts between Centromeres and the Nuclear Envelope. Dev Cell 2016; 39:544-559. [PMID: 27889481 DOI: 10.1016/j.devcel.2016.10.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/02/2016] [Accepted: 10/26/2016] [Indexed: 10/20/2022]
Abstract
Faithful genome propagation requires coordination between nuclear envelope (NE) breakdown, spindle formation, and chromosomal events. The conserved linker of nucleoskeleton and cytoskeleton (LINC) complex connects fission yeast centromeres and the centrosome, across the NE, during interphase. During meiosis, LINC connects the centrosome with telomeres rather than centromeres. We previously showed that loss of telomere-LINC contacts compromises meiotic spindle formation. Here, we define the precise events regulated by telomere-LINC contacts and address the analogous possibility that centromeres regulate mitotic spindle formation. We develop conditionally inactivated LINC complexes in which the conserved SUN-domain protein Sad1 remains stable but severs interphase centromere-LINC contacts. Strikingly, the loss of such contacts abolishes spindle formation. We pinpoint the defect to a failure in the partial NE breakdown required for centrosome insertion into the NE, a step analogous to mammalian NE breakdown. Thus, interphase chromosome-LINC contacts constitute a cell-cycle control device linking nucleoplasmic and cytoplasmic events.
Collapse
Affiliation(s)
- Alfonso Fernández-Álvarez
- Telomere Biology Section, LBMB, National Cancer Institute, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA; Telomere Biology Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.
| | - Cécile Bez
- Telomere Biology Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Eileen T O'Toole
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Mary Morphew
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Julia Promisel Cooper
- Telomere Biology Section, LBMB, National Cancer Institute, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA; Telomere Biology Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.
| |
Collapse
|
24
|
Makarova M, Oliferenko S. Mixing and matching nuclear envelope remodeling and spindle assembly strategies in the evolution of mitosis. Curr Opin Cell Biol 2016; 41:43-50. [PMID: 27062548 PMCID: PMC7100904 DOI: 10.1016/j.ceb.2016.03.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/20/2016] [Accepted: 03/23/2016] [Indexed: 12/11/2022]
Abstract
In eukaryotes, cellular genome is enclosed inside a membrane-bound organelle called the nucleus. The nucleus compartmentalizes genome replication, repair and expression, keeping these activities separated from protein synthesis and other metabolic processes. Each proliferative division, the duplicated chromosomes must be equipartitioned between the daughter cells and this requires precise coordination between assembly of the microtubule-based mitotic spindle and nuclear remodeling. Here we review a surprising variety of strategies used by modern eukaryotes to manage these processes and discuss possible mechanisms that might have led to the emergence of this diversity in evolution.
Collapse
Affiliation(s)
- Maria Makarova
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Snezhana Oliferenko
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK.
| |
Collapse
|
25
|
Abstract
The yeast spindle pole body (SPB) is the functional equivalent of the mammalian centrosome. Centrosomes and SPBs duplicate exactly once per cell cycle by mechanisms that use the mother structure as a platform for the assembly of the daughter. The conserved Sfi1 and centrin proteins are essential components of the SPB duplication process. Sfi1 is an elongated molecule that has, in its center, 20 to 23 binding sites for the Ca(2+)-binding protein centrin. In the yeastSaccharomyces cerevisiae, all Sfi1 N termini are in contact with the mother SPB whereas the free C termini are distal to it. During S phase and early mitosis, cyclin-dependent kinase 1 (Cdk1) phosphorylation of mainly serine residues in the Sfi1 C termini blocks the initiation of SPB duplication ("off" state). Upon anaphase onset, the phosphatase Cdc14 dephosphorylates Sfi1 ("on" state) to promote antiparallel and shifted incorporation of cytoplasmic Sfi1 molecules into the half-bridge layer, which thereby elongates into the bridge. The Sfi1 C termini of the two Sfi1 layers localize in the bridge center, whereas the N termini of the newly assembled Sfi1 molecules are distal to the mother SPB. These free Sfi1 N termini then assemble the new SPB in G1phase. Recruitment of Sfi1 molecules into the anaphase SPB and bridge formation were also observed inSchizosaccharomyces pombe, suggesting that the Sfi1 bridge cycle is conserved between the two organisms. Thus, restricting SPB duplication to one event per cell cycle requires only an oscillation between Cdk1 kinase and Cdc14 phosphatase activities. This clockwork regulates the "on"/"off" state of the Sfi1-centrin receiver.
Collapse
|
26
|
Meseroll RA, Cohen-Fix O. The Malleable Nature of the Budding Yeast Nuclear Envelope: Flares, Fusion, and Fenestrations. J Cell Physiol 2016; 231:2353-60. [PMID: 26909870 DOI: 10.1002/jcp.25355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 02/19/2016] [Indexed: 11/10/2022]
Abstract
In eukaryotes, the nuclear envelope (NE) physically separates nuclear components and activities from rest of the cell. The NE also provides rigidity to the nucleus and contributes to chromosome organization. At the same time, the NE is highly dynamic; it must change shape and rearrange its components during development and throughout the cell cycle, and its morphology can be altered in response to mutation and disease. Here we focus on the NE of budding yeast, Saccharomyces cerevisiae, which has several unique features: it remains intact throughout the cell cycle, expands symmetrically during interphase, elongates during mitosis and, expands asymmetrically during mitotic delay. Moreover, its NE is safely breached during mating and when large structures, such as nuclear pore complexes and the spindle pole body, are embedded into its double membrane. The budding yeast NE lacks lamins and yet the nucleus is capable of maintaining a spherical shape throughout interphase. Despite these eccentricities, studies of the budding yeast NE have uncovered interesting, and likely conserved, processes that contribute to NE dynamics. In particular, we discuss the processes that drive and enable NE expansion and the dramatic changes in the NE that lead to extensions and fenestrations. J. Cell. Physiol. 231: 2353-2360, 2016. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Rebecca A Meseroll
- The Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Orna Cohen-Fix
- The Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
27
|
Abstract
The nuclear envelope segregates the nucleoplasm from the cytoplasm and is a key feature of eukaryotic cells. Nuclear envelope architecture is comprised of two concentric membrane shells which fuse at multiple sites and yet maintain a uniform separation of 30-50 nm over the rest of the membrane. Studies have revealed the roles for numerous nuclear proteins in forming and maintaining the architecture of the nuclear envelope. However, there is a lack of consensus on the fundamental forces and physical mechanisms that establish the geometry. The objective of this review is to discuss recent findings in the context of membrane mechanics in an effort to define open questions and possible answers.
Collapse
Affiliation(s)
- Mehdi Torbati
- Department of Mechanical Engineering, University of Houston, Houston, TX
| | - Tanmay P Lele
- Department of Chemical Engineering, University of Florida, Gainesville, FL
| | - Ashutosh Agrawal
- Department of Mechanical Engineering, University of Houston, Houston, TX
| |
Collapse
|
28
|
Ghosh S, Shinogle HE, Galeva NA, Dobrowsky RT, Blagg BSJ. Endoplasmic Reticulum-resident Heat Shock Protein 90 (HSP90) Isoform Glucose-regulated Protein 94 (GRP94) Regulates Cell Polarity and Cancer Cell Migration by Affecting Intracellular Transport. J Biol Chem 2016; 291:8309-23. [PMID: 26872972 DOI: 10.1074/jbc.m115.688374] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Indexed: 01/04/2023] Open
Abstract
Heat shock protein 90 (HSP90) is a molecular chaperone that is up-regulated in cancer and is required for the folding of numerous signaling proteins. Consequently, HSP90 represents an ideal target for the development of new anti-cancer agents. The human HSP90 isoform, glucose-regulated protein 94 (GRP94), resides in the endoplasmic reticulum and regulates secretory pathways, integrins, and Toll-like receptors, which contribute to regulating immunity and metastasis. However, the cellular function of GRP94 remains underinvestigated. We report that GRP94 knockdown cells are defective in intracellular transport and, consequently, negatively impact the trafficking of F-actin toward the cellular cortex, integrin α2 and integrin αL toward the cell membrane and filopodia, and secretory vesicles containing the HSP90α-AHA1-survivin complex toward the leading edge. As a result, GRP94 knockdown cells form a multipolar spindle instead of bipolar morphology and consequently manifest a defect in cell migration and adhesion.
Collapse
Affiliation(s)
| | | | | | - Rick T Dobrowsky
- the Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas 66045
| | | |
Collapse
|
29
|
Jahed Z, Soheilypour M, Peyro M, Mofrad MRK. The LINC and NPC relationship – it's complicated! J Cell Sci 2016; 129:3219-29. [DOI: 10.1242/jcs.184184] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT
The genetic information of eukaryotic cells is enclosed within a double-layered nuclear envelope, which comprises an inner and outer nuclear membrane. Several transmembrane proteins locate to the nuclear envelope; however, only two integral protein complexes span the nuclear envelope and connect the inside of the nucleus to the cytoplasm. The nuclear pore complex (NPC) acts as a gateway for molecular exchange between the interior of the nucleus and the cytoplasm, whereas so-called LINC complexes physically link the nucleoskeleton and the cytoskeleton. In this Commentary, we will discuss recent studies that have established direct functional associations between these two complexes. The assembly of NPCs and their even distribution throughout the nuclear envelope is dependent on components of the LINC complex. Additionally, LINC complex formation is dependent on the successful localization of inner nuclear membrane components of LINC complexes and their transport through the NPC. Furthermore, the architecture of the nuclear envelope depends on both protein complexes. Finally, we will present recent evidence showing that LINC complexes can affect nucleo-cytoplasmic transport through the NPC, further highlighting the importance of understanding the associations of these essential complexes at the nuclear envelope.
Collapse
Affiliation(s)
- Zeinab Jahed
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| | - Mohammad Soheilypour
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| | - Mohaddeseh Peyro
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| | - Mohammad R. K. Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
30
|
Sec66-Dependent Regulation of Yeast Spindle-Pole Body Duplication Through Pom152. Genetics 2015; 201:1479-95. [PMID: 26510791 PMCID: PMC4676539 DOI: 10.1534/genetics.115.178012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/23/2015] [Indexed: 02/06/2023] Open
Abstract
In closed mitotic systems such as Saccharomyces cerevisiae, the nuclear envelope (NE) does not break down during mitosis, so microtubule-organizing centers such as the spindle-pole body (SPB) must be inserted into the NE to facilitate bipolar spindle formation and chromosome segregation. The mechanism of SPB insertion has been linked to NE insertion of nuclear pore complexes (NPCs) through a series of genetic and physical interactions between NPCs and SPB components. To identify new genes involved in SPB duplication and NE insertion, we carried out genome-wide screens for suppressors of deletion alleles of SPB components, including Mps3 and Mps2. In addition to the nucleoporins POM152 and POM34, we found that elimination of SEC66/SEC71/KAR7 suppressed lethality of cells lacking MPS2 or MPS3. Sec66 is a nonessential subunit of the Sec63 complex that functions together with the Sec61 complex in import of proteins into the endoplasmic reticulum (ER). Cells lacking Sec66 have reduced levels of Pom152 protein but not Pom34 or Ndc1, a shared component of the NPC and SPB. The fact that Sec66 but not other subunits of the ER translocon bypass deletion mutants in SPB genes suggests a specific role for Sec66 in the control of Pom152 levels. Based on the observation that sec66∆ does not affect the distribution of Ndc1 on the NE or Ndc1 binding to the SPB, we propose that Sec66-mediated regulation of Pom152 plays an NPC-independent role in the control of SPB duplication.
Collapse
|
31
|
Yeast Integral Membrane Proteins Apq12, Brl1, and Brr6 Form a Complex Important for Regulation of Membrane Homeostasis and Nuclear Pore Complex Biogenesis. EUKARYOTIC CELL 2015; 14:1217-27. [PMID: 26432634 DOI: 10.1128/ec.00101-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/01/2015] [Indexed: 11/20/2022]
Abstract
Proper functioning of intracellular membranes is critical for many cellular processes. A key feature of membranes is their ability to adapt to changes in environmental conditions by adjusting their composition so as to maintain constant biophysical properties, including fluidity and flexibility. Similar changes in the biophysical properties of membranes likely occur when intracellular processes, such as vesicle formation and fusion, require dramatic changes in membrane curvature. Similar modifications must also be made when nuclear pore complexes (NPCs) are constructed within the existing nuclear membrane, as occurs during interphase in all eukaryotes. Here we report on the role of the essential nuclear envelope/endoplasmic reticulum (NE/ER) protein Brl1 in regulating the membrane composition of the NE/ER. We show that Brl1 and two other proteins characterized previously-Brr6, which is closely related to Brl1, and Apq12-function together and are required for lipid homeostasis. All three transmembrane proteins are localized to the NE and can be coprecipitated. As has been shown for mutations affecting Brr6 and Apq12, mutations in Brl1 lead to defects in lipid metabolism, increased sensitivity to drugs that inhibit enzymes involved in lipid synthesis, and strong genetic interactions with mutations affecting lipid metabolism. Mutations affecting Brl1 or Brr6 or the absence of Apq12 leads to hyperfluid membranes, because mutant cells are hypersensitive to agents that increase membrane fluidity. We suggest that the defects in nuclear pore complex biogenesis and mRNA export seen in these mutants are consequences of defects in maintaining the biophysical properties of the NE.
Collapse
|
32
|
Bouhlel IB, Scheffler K, Tran PT, Paoletti A. Monitoring SPB biogenesis in fission yeast with high resolution and quantitative fluorescent microscopy. Methods Cell Biol 2015; 129:383-392. [PMID: 26175449 DOI: 10.1016/bs.mcb.2015.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Like centrosomes, yeast spindle pole bodies (SPBs) undergo a tightly controlled duplication cycle in order to restrict their number to one or two per cell and promote the assembly of a bipolar spindle at mitotic entry. This conservative duplication cycle is tightly coordinated with cell cycle progression although the mechanisms that ensure this coordination remain largely unknown. In this chapter, we describe simple high resolution microscopy- and quantitative light microscopy-based methods that allow to monitor SPB biogenesis in fission yeast and may be useful to study the molecular pathways controlling the successive phases of the duplication cycle.
Collapse
Affiliation(s)
- Imène B Bouhlel
- Centre de Recherche, Institut Curie, Paris, France; CNRS-UMR144, Paris, France
| | - Kathleen Scheffler
- Centre de Recherche, Institut Curie, Paris, France; CNRS-UMR144, Paris, France
| | - Phong T Tran
- Centre de Recherche, Institut Curie, Paris, France; CNRS-UMR144, Paris, France
| | - Anne Paoletti
- Centre de Recherche, Institut Curie, Paris, France; CNRS-UMR144, Paris, France
| |
Collapse
|
33
|
Abstract
The endosomal sorting complexes required for transport (ESCRT) are best known for their role in sorting ubiquitylated membrane proteins into endosomes. The most ancient component of the ESCRT machinery is ESCRT-III, which is capable of oligomerizing into a helical filament that drives the invagination and scission of membranes aided by the AAA ATPase, Vps4, in several additional subcellular contexts. Our recent study broadens the work of ESCRT-III by identifying its role in a quality control pathway at the nuclear envelope (NE) that ensures the normal biogenesis of nuclear pore complexes (NPCs). Here, we will elaborate on how we envision this mechanism to progress and incorporate ESCRT-III into an emerging model of nuclear pore formation. Moreover, we speculate there are additional roles for the ESCRT-III machinery at the NE that broadly function to ensure its integrity and the maintenance of the nuclear compartment.
Collapse
Key Words
- ERAD, ER-Associated Degradation
- ESCRT, Endosomal Sorting Complexes Required for Transport
- INM, Inner Nuclear Membrane
- LEM, Lap2, Emerin, MAN1
- MVB, Multivesicular Body
- NE, Nuclear Envelope
- NLS, Nuclear Localization Signal
- NPC, Nuclear Pore Complex
- ONM, Outer Nuclear Membrane
- SINC, Storage of Improperly assembled Nuclear pore Complexes
- endosomal sorting complex required for transport
- membrane curvature
- nuclear envelope
- nuclear pore complex
- quality control
Collapse
|
34
|
Ecologically Driven Competence for Exogenous DNA Uptake in Yeast. Curr Microbiol 2015; 70:883-93. [DOI: 10.1007/s00284-015-0808-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 02/20/2015] [Indexed: 01/03/2023]
|
35
|
Bouhlel IB, Ohta M, Mayeux A, Bordes N, Dingli F, Boulanger J, Velve Casquillas G, Loew D, Tran PT, Sato M, Paoletti A. Cell cycle control of spindle pole body duplication and splitting by Sfi1 and Cdc31 in fission yeast. J Cell Sci 2015; 128:1481-93. [PMID: 25736294 DOI: 10.1242/jcs.159657] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 02/23/2015] [Indexed: 02/02/2023] Open
Abstract
Spindle pole biogenesis and segregation are tightly coordinated to produce a bipolar mitotic spindle. In yeasts, the spindle pole body (SPB) half-bridge composed of Sfi1 and Cdc31 duplicates to promote the biogenesis of a second SPB. Sfi1 accumulates at the half-bridge in two phases in Schizosaccharomyces pombe, from anaphase to early septation and throughout G2 phase. We found that the function of Sfi1-Cdc31 in SPB duplication is accomplished before septation ends and G2 accumulation starts. Thus, Sfi1 early accumulation at mitotic exit might correspond to half-bridge duplication. We further show that Cdc31 phosphorylation on serine 15 in a Cdk1 (encoded by cdc2) consensus site is required for the dissociation of a significant pool of Sfi1 from the bridge and timely segregation of SPBs at mitotic onset. This suggests that the Cdc31 N-terminus modulates the stability of Sfi1-Cdc31 arrays in fission yeast, and impacts on the timing of establishment of spindle bipolarity.
Collapse
Affiliation(s)
- Imène B Bouhlel
- Institut Curie, Centre de Recherche F-75248 Paris, France CNRS UMR144 F-75248 Paris, France
| | | | - Adeline Mayeux
- Institut Curie, Centre de Recherche F-75248 Paris, France CNRS UMR144 F-75248 Paris, France
| | - Nicole Bordes
- Institut Curie, Centre de Recherche F-75248 Paris, France CNRS UMR144 F-75248 Paris, France
| | - Florent Dingli
- Institut Curie, Centre de Recherche F-75248 Paris, France
| | - Jérôme Boulanger
- Institut Curie, Centre de Recherche F-75248 Paris, France CNRS UMR144 F-75248 Paris, France
| | | | - Damarys Loew
- Institut Curie, Centre de Recherche F-75248 Paris, France
| | - Phong T Tran
- Institut Curie, Centre de Recherche F-75248 Paris, France CNRS UMR144 F-75248 Paris, France
| | | | - Anne Paoletti
- Institut Curie, Centre de Recherche F-75248 Paris, France CNRS UMR144 F-75248 Paris, France
| |
Collapse
|
36
|
Pathways and Mechanisms of Yeast Competence: A New Frontier of Yeast Genetics. Fungal Biol 2015. [DOI: 10.1007/978-3-319-10142-2_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Denoth-Lippuner A, Krzyzanowski MK, Stober C, Barral Y. Role of SAGA in the asymmetric segregation of DNA circles during yeast ageing. eLife 2014; 3. [PMID: 25402830 PMCID: PMC4232608 DOI: 10.7554/elife.03790] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/14/2014] [Indexed: 12/18/2022] Open
Abstract
In eukaryotes, intra-chromosomal recombination generates DNA circles, but little is known about how cells react to them. In yeast, partitioning of such circles to the mother cell at mitosis ensures their loss from the population but promotes replicative ageing. Nevertheless, the mechanisms of partitioning are debated. In this study, we show that the SAGA complex mediates the interaction of non-chromosomal DNA circles with nuclear pore complexes (NPCs) and thereby promotes their confinement in the mother cell. Reciprocally, this causes retention and accumulation of NPCs, which affects the organization of ageing nuclei. Thus, SAGA prevents the spreading of DNA circles by linking them to NPCs, but unavoidably causes accumulation of circles and NPCs in the mother cell, and thereby promotes ageing. Together, our data provide a unifying model for the asymmetric segregation of DNA circles and how age affects nuclear organization. DOI:http://dx.doi.org/10.7554/eLife.03790.001 Budding yeast is a microorganism that has been widely studied to understand how it and many other organisms, including animals, age over time. This yeast is so named because it proliferates by ‘budding’ daughter cells out of the surface of a mother cell. For each daughter cell that buds, the mother cell loses some fitness and eventually dies after a certain number of budding events. This process is called ‘replicative ageing’, and it also resembles the way that stem cells age. In contrast, the newly formed daughters essentially have their age ‘reset to zero’ and grow until they turn into mother cells themselves. Several molecules or factors have been linked to replicative ageing. These are retained in the mother cell during budding, rather than being passed on to the daughters. Non-chromosomal DNA circles, for example, are rings of DNA that detach from chromosomes during DNA repair and that accumulate inside the ageing mother cell over time. How the mother cells retain these circles of DNA is an on-going topic of debate. Similar to plants and animals, chromosomes in yeast cells are confined in a membrane-bound structure known as the cell nucleus. The nuclear membrane is perforated by channels called nuclear pore complexes that ensure the transport of molecules into, and out of, the nucleus. Now, Denoth-Lippuner et al. establish that for the non-chromosomal DNA circles to be efficiently confined in the mother cell, the DNA circles must be anchored to the nuclear pore complexes. Denoth-Lippuner et al. next asked how the DNA circles were anchored to these complexes; and found that another complex of proteins known as SAGA is involved. When components of the SAGA complex were deleted in budding yeast cells, non-chromosomal DNA circles spread into the daughters as well. On the other hand, artificially anchoring these DNA circles to the nuclear pore complex alleviated the need for the SAGA complex, in order to retain these molecules in the mother cell. Denoth-Lippuner et al. also show that SAGA-dependent attachment of the DNA circles to the nuclear pore complexes causes these complexes to remain in the mother cell. As a consequence, these nuclear pore complexes accumulate in the mother cells as they age. The number of nuclear pore complexes in the daughter cells, however, remained fairly constant. Together these data raise the question of whether the effects of DNA circles on the number and activity of the nuclear pores might account for their contribution to ageing, perhaps by affecting the workings of the nucleus. DOI:http://dx.doi.org/10.7554/eLife.03790.002
Collapse
Affiliation(s)
| | | | - Catherine Stober
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Yves Barral
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
38
|
Zhang D, Oliferenko S. Tts1, the fission yeast homologue of the TMEM33 family, functions in NE remodeling during mitosis. Mol Biol Cell 2014; 25:2970-83. [PMID: 25103238 PMCID: PMC4230586 DOI: 10.1091/mbc.e13-12-0729] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The evolutionarily conserved eukaryotic TMEM33-family protein Tts1 functions in promoting mitotic spindle pole body–nuclear envelope insertion and modulating mitotic nuclear pore complex distribution in Schizosaccharomyces pombe. The structural features of Tts1 important for its function in distinct aspects of membrane remodeling are identified. The fission yeast Schizosaccharomyces pombe undergoes “closed” mitosis in which the nuclear envelope (NE) stays intact throughout chromosome segregation. Here we show that Tts1, the fission yeast TMEM33 protein that was previously implicated in organizing the peripheral endoplasmic reticulum (ER), also functions in remodeling the NE during mitosis. Tts1 promotes insertion of spindle pole bodies (SPBs) in the NE at the onset of mitosis and modulates distribution of the nuclear pore complexes (NPCs) during mitotic NE expansion. Structural features that drive partitioning of Tts1 to the high-curvature ER domains are crucial for both aspects of its function. An amphipathic helix located at the C-terminus of Tts1 is important for ER shaping and modulating the mitotic NPC distribution. Of interest, the evolutionarily conserved residues at the luminal interface of the third transmembrane region function specifically in promoting SPB-NE insertion. Our data illuminate cellular requirements for remodeling the NE during “closed” nuclear division and provide insight into the structure and functions of the eukaryotic TMEM33 family.
Collapse
Affiliation(s)
- Dan Zhang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604
| | - Snezhana Oliferenko
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604 Department of Biological Sciences, National University of Singapore, Singapore 117604
| |
Collapse
|
39
|
Field MC, Koreny L, Rout MP. Enriching the pore: splendid complexity from humble origins. Traffic 2014; 15:141-56. [PMID: 24279500 DOI: 10.1111/tra.12141] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/22/2013] [Accepted: 11/26/2013] [Indexed: 01/18/2023]
Abstract
The nucleus is the defining intracellular organelle of eukaryotic cells and represents a major structural innovation that differentiates the eukaryotic and prokaryotic cellular form. The presence of a nuclear envelope (NE) encapsulating the nucleus necessitates a mechanism for interchange between the contents of the nuclear interior and the cytoplasm, which is mediated via the nuclear pore complex (NPC), a large protein assembly residing in nuclear pores in the NE. Recent advances have begun to map the structure and functions of the NPC in multiple organisms, and to allow reconstruction of some of the evolutionary events that underpin the modern NPC form, highlighting common and differential NPC features across the eukaryotes. Here we discuss some of these advances and the questions being pursued, consider how the evolution of the NPC has been constrained, and finally propose a model for how the NPC evolved.
Collapse
Affiliation(s)
- Mark C Field
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland
| | | | | |
Collapse
|
40
|
Floch AG, Palancade B, Doye V. Fifty years of nuclear pores and nucleocytoplasmic transport studies: multiple tools revealing complex rules. Methods Cell Biol 2014; 122:1-40. [PMID: 24857723 DOI: 10.1016/b978-0-12-417160-2.00001-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nuclear pore complexes (NPCs) are multiprotein assemblies embedded within the nuclear envelope and involved in the control of the bidirectional transport of proteins and ribonucleoparticles between the nucleus and the cytoplasm. Since their discovery more than 50 years ago, NPCs and nucleocytoplasmic transport have been the focus of intense research. Here, we review how the use of a multiplicity of structural, biochemical, genetic, and cell biology approaches have permitted the deciphering of the main features of this macromolecular complex, its mode of assembly as well as the rules governing nucleocytoplasmic exchanges. We first present the current knowledge of the ultrastructure of NPCs, which reveals that they are modular and repetitive assemblies of subunits referred to as nucleoporins, associated into stable subcomplexes and composed of a limited set of protein domains, including phenylalanine-glycine (FG) repeats and membrane-interacting domains. The outcome of investigations on nucleocytoplasmic trafficking will then be detailed, showing how it involves a limited number of molecular factors and common mechanisms, namely (i) indirect association of cargos with nuclear pores through receptors in the donor compartment, (ii) progression within the channel through dynamic hydrophobic interactions with FG-Nups, and (iii) NTPase-driven remodeling of transport complexes in the target compartment. Finally, we also discuss the outcome of more recent studies, which indicate that NPCs and the transport machinery are dynamic and versatile devices, whose biogenesis is tightly coordinated with the cell cycle, and which carry nonconventional duties, in particular, in mitosis, gene expression, and genetic stability.
Collapse
Affiliation(s)
- Aurélie G Floch
- Institut Jacques Monod, CNRS, UMR 7592, Univ. Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France; Ecole Doctorale Gènes Génomes Cellules, Université Paris Sud-11, Orsay, France
| | - Benoit Palancade
- Institut Jacques Monod, CNRS, UMR 7592, Univ. Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Valérie Doye
- Institut Jacques Monod, CNRS, UMR 7592, Univ. Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| |
Collapse
|
41
|
Rothballer A, Kutay U. The diverse functional LINCs of the nuclear envelope to the cytoskeleton and chromatin. Chromosoma 2013; 122:415-29. [PMID: 23736899 PMCID: PMC3777164 DOI: 10.1007/s00412-013-0417-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 11/30/2022]
Abstract
The nuclear envelope (NE) is connected to the different types of cytoskeletal elements by linker of nucleoskeleton and cytoskeleton (LINC) complexes. LINC complexes exist from yeast to humans, and have preserved their general architecture throughout evolution. They are composed of SUN and KASH domain proteins of the inner and the outer nuclear membrane, respectively. These SUN–KASH bridges are used for the transmission of forces across the NE and support diverse biological processes. Here, we review the function of SUN and KASH domain proteins in various unicellular and multicellular species. Specifically, we discuss their influence on nuclear morphology and cytoskeletal organization. Further, emphasis is given on the role of LINC complexes in nuclear anchorage and migration as well as in genome organization.
Collapse
Affiliation(s)
- Andrea Rothballer
- Department of Biology, Institute of Biochemistry, ETH Zurich, Schafmattstrasse 18, 8093 Zurich, Switzerland
| | - Ulrike Kutay
- Department of Biology, Institute of Biochemistry, ETH Zurich, Schafmattstrasse 18, 8093 Zurich, Switzerland
| |
Collapse
|
42
|
Poring over pores: nuclear pore complex insertion into the nuclear envelope. Trends Biochem Sci 2013; 38:292-301. [DOI: 10.1016/j.tibs.2013.04.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 03/29/2013] [Accepted: 04/02/2013] [Indexed: 11/18/2022]
|
43
|
Yeast competence for exogenous DNA uptake: towards understanding its genetic component. Antonie van Leeuwenhoek 2013; 103:1181-207. [DOI: 10.1007/s10482-013-9905-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/14/2013] [Indexed: 12/20/2022]
|
44
|
Schmidt M, Dekker FJ, Maarsingh H. Exchange protein directly activated by cAMP (epac): a multidomain cAMP mediator in the regulation of diverse biological functions. Pharmacol Rev 2013; 65:670-709. [PMID: 23447132 DOI: 10.1124/pr.110.003707] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Since the discovery nearly 60 years ago, cAMP is envisioned as one of the most universal and versatile second messengers. The tremendous feature of cAMP to tightly control highly diverse physiologic processes, including calcium homeostasis, metabolism, secretion, muscle contraction, cell fate, and gene transcription, is reflected by the award of five Nobel prizes. The discovery of Epac (exchange protein directly activated by cAMP) has ignited a new surge of cAMP-related research and has depicted novel cAMP properties independent of protein kinase A and cyclic nucleotide-gated channels. The multidomain architecture of Epac determines its activity state and allows cell-type specific protein-protein and protein-lipid interactions that control fine-tuning of pivotal biologic responses through the "old" second messenger cAMP. Compartmentalization of cAMP in space and time, maintained by A-kinase anchoring proteins, phosphodiesterases, and β-arrestins, contributes to the Epac signalosome of small GTPases, phospholipases, mitogen- and lipid-activated kinases, and transcription factors. These novel cAMP sensors seem to implement certain unexpected signaling properties of cAMP and thereby to permit delicate adaptations of biologic responses. Agonists and antagonists selective for Epac are developed and will support further studies on the biologic net outcome of the activation of Epac. This will increase our current knowledge on the pathophysiology of devastating diseases, such as diabetes, cognitive impairment, renal and heart failure, (pulmonary) hypertension, asthma, and chronic obstructive pulmonary disease. Further insights into the cAMP dynamics executed by the Epac signalosome will help to optimize the pharmacological treatment of these diseases.
Collapse
Affiliation(s)
- Martina Schmidt
- Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands.
| | | | | |
Collapse
|
45
|
Rothballer A, Schwartz TU, Kutay U. LINCing complex functions at the nuclear envelope: what the molecular architecture of the LINC complex can reveal about its function. Nucleus 2013; 4:29-36. [PMID: 23324460 PMCID: PMC3585024 DOI: 10.4161/nucl.23387] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Linker of nucleoskeleton and cytoskeleton (LINC) complexes span the double membrane of the nuclear envelope (NE) and physically connect nuclear structures to cytoskeletal elements. LINC complexes are envisioned as force transducers in the NE, which facilitate processes like nuclear anchorage and migration, or chromosome movements. The complexes are built from members of two evolutionary conserved families of transmembrane (TM) proteins, the SUN (Sad1/UNC-84) domain proteins in the inner nuclear membrane (INM) and the KASH (Klarsicht/ANC-1/SYNE homology) domain proteins in the outer nuclear membrane (ONM). In the lumen of the NE, the SUN and KASH domains engage in an intimate assembly to jointly form a NE bridge. Detailed insights into the molecular architecture and atomic structure of LINC complexes have recently revealed the molecular basis of nucleo-cytoskeletal coupling. They bear important implications for LINC complex function and suggest new potential and as yet unexplored roles, which the complexes may play in the cell.
Collapse
|
46
|
Abstract
The emergence of eukaryotes around two billion years ago provided new challenges for the chromosome segregation machineries: the physical separation of multiple large and linear chromosomes from the microtubule-organizing centres by the nuclear envelope. In this review, we set out the diverse solutions that eukaryotic cells use to solve this problem, and show how stepping away from ‘mainstream’ mitosis can teach us much about the mechanisms and mechanics that can drive chromosome segregation. We discuss the evidence for a close functional and physical relationship between membranes, nuclear pores and kinetochores in generating the forces necessary for chromosome segregation during mitosis.
Collapse
Affiliation(s)
- Hauke Drechsler
- Centre for Mechanochemical Cell Biology, Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | | |
Collapse
|
47
|
Genetic analysis of Mps3 SUN domain mutants in Saccharomyces cerevisiae reveals an interaction with the SUN-like protein Slp1. G3-GENES GENOMES GENETICS 2012; 2:1703-18. [PMID: 23275891 PMCID: PMC3516490 DOI: 10.1534/g3.112.004614] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 10/26/2012] [Indexed: 01/16/2023]
Abstract
In virtually all eukaryotic cells, protein bridges formed by the conserved inner nuclear membrane SUN (for Sad1-UNC-84) domain-containing proteins and their outer nuclear membrane binding partners span the nuclear envelope (NE) to connect the nucleoplasm and cytoplasm. These linkages are important for chromosome movements within the nucleus during meiotic prophase and are essential for nuclear migration and centrosome attachment to the NE. In Saccharomyces cerevisiae, MPS3 encodes the sole SUN protein. Deletion of MPS3 or the conserved SUN domain is lethal in three different genetic backgrounds. Mutations in the SUN domain result in defects in duplication of the spindle pole body, the yeast centrosome-equivalent organelle. A genome-wide screen for mutants that exhibited synthetic fitness defects in combination with mps3 SUN domain mutants yielded a large number of hits in components of the spindle apparatus and the spindle checkpoint. Mutants in lipid metabolic processes and membrane organization also exacerbated the growth defects of mps3 SUN domain mutants, pointing to a role for Mps3 in nuclear membrane organization. Deletion of SLP1 or YER140W/EMP65 (for ER membrane protein of 65 kDa) aggravated growth of mps3 SUN domain mutants. Slp1 and Emp65 form an ER-membrane associated protein complex that is not required directly for spindle pole body duplication or spindle assembly. Rather, Slp1 is involved in Mps3 localization to the NE.
Collapse
|
48
|
Zhang D, Oliferenko S. Remodeling the nuclear membrane during closed mitosis. Curr Opin Cell Biol 2012; 25:142-8. [PMID: 23040820 DOI: 10.1016/j.ceb.2012.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 09/06/2012] [Accepted: 09/10/2012] [Indexed: 11/28/2022]
Abstract
The mitotic spindle assembly and chromosome segregation in eukaryotes must be coordinated with the nuclear envelope (NE) remodeling. In a so-called 'open' mitosis the envelope of the mother nucleus is dismantled allowing the cytoplasmic spindle microtubules to capture the chromosomes. Alternatively, cells undergoing 'closed' mitosis assemble the intranuclear spindle and divide the nucleus without ever losing the nucleocytoplasmic compartmentalization. Here we focus on the mechanisms underlying mitotic NE dynamics in unicellular eukaryotes undergoing a closed nuclear division, paying specific attention to the emerging roles of the lipid biosynthesis machinery in this process. We argue that lessons learned in these organisms may be generally relevant to understanding the NE remodeling and the evolution of mitotic mechanisms throughout the eukaryotic domain.
Collapse
Affiliation(s)
- Dan Zhang
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore
| | | |
Collapse
|