1
|
Ramos AD, Liang YY, Surova O, Bacanu S, Gerault MA, Mandal T, Ceder S, Langebäck A, Österroos A, Ward GA, Bergh J, Wiman KG, Lehmann S, Prabhu N, Lööf S, Nordlund P. Proteome-wide CETSA reveals diverse apoptosis-inducing mechanisms converging on an initial apoptosis effector stage at the nuclear periphery. Cell Rep 2024; 43:114784. [PMID: 39365699 DOI: 10.1016/j.celrep.2024.114784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/24/2024] [Accepted: 09/06/2024] [Indexed: 10/06/2024] Open
Abstract
Cellular phenotypes of apoptosis, as well as the activation of apoptosis caspase cascades, are well described. However, sequences and locations of early biochemical effector events after apoptosis initiation are still only partly understood. Here, we use integrated modulation of protein interaction states-cellular thermal shift assay (IMPRINTS-CETSA) to dissect the cellular biochemistry of early stages of apoptosis at the systems level. Using 5 families of cancer drugs and a new CETSA-based method to monitor the cleavage of caspase targets, we discover the initial biochemistry of the effector stage of apoptosis for all the studied drugs being focused on the peripheral nuclear region rather than the cytosol. Despite very different candidate apoptosis-inducing mechanisms of the drug families, as revealed by the CETSA data, they converge into related biochemical modulations in the peripheral nuclear region. This implies a higher control of the localization of the caspase cascades than previously anticipated and highlights the nuclear periphery as a critical vulnerability for cancer therapies.
Collapse
Affiliation(s)
| | - Ying Yu Liang
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden; Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Olga Surova
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Smaranda Bacanu
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Marc-Antoine Gerault
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Tamoghna Mandal
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sophia Ceder
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Anette Langebäck
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Albin Österroos
- Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - George A Ward
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, UK
| | - Jonas Bergh
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Klas G Wiman
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sören Lehmann
- Department of Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden; Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Nayana Prabhu
- Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Sara Lööf
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Pär Nordlund
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden; Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore.
| |
Collapse
|
2
|
Sandoval A, Garrido E, Camacho J, Magaña JJ, Cisneros B. Altered expression and localization of nuclear envelope proteins in a prostate cancer cell system. Mol Biol Rep 2024; 51:898. [PMID: 39115711 PMCID: PMC11310284 DOI: 10.1007/s11033-024-09836-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/31/2024] [Indexed: 08/11/2024]
Abstract
BACKGROUND The nuclear envelope (NE), which is composed of the outer and inner nuclear membranes, the nuclear pore complex and the nuclear lamina, regulates a plethora of cellular processes, including those that restrict cancer development (genomic stability, cell cycle regulation, and cell migration). Thus, impaired NE is functionally related to tumorigenesis, and monitoring of NE alterations is used to diagnose cancer. However, the chronology of NE changes occurring during cancer evolution and the connection between them remained to be precisely defined, due to the lack of appropriate cell models. METHODS The expression and subcellular localization of NE proteins (lamins A/C and B1 and the inner nuclear membrane proteins emerin and β-dystroglycan [β-DG]) during prostate cancer progression were analyzed, using confocal microscopy and western blot assays, and a prostate cancer cell system comprising RWPE-1 epithelial prostate cells and several prostate cancer cell lines with different invasiveness. RESULTS Deformed nuclei and the mislocalization and low expression of lamin A/C, lamin B1, and emerin became more prominent as the invasiveness of the prostate cancer lines increased. Suppression of lamin A/C expression was an early event during prostate cancer evolution, while a more extensive deregulation of NE proteins, including β-DG, occurred in metastatic prostate cells. CONCLUSIONS The RWPE-1 cell line-based system was found to be suitable for the correlation of NE impairment with prostate cancer invasiveness and determination of the chronology of NE alterations during prostate carcinogenesis. Further study of this cell system would help to identify biomarkers for prostate cancer prognosis and diagnosis.
Collapse
Affiliation(s)
- Ariana Sandoval
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México, 07360, México
| | - Efrain Garrido
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México, 07360, México
| | - Javier Camacho
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Ciudad de México, 07360, México
| | - Jonathan Javier Magaña
- Laboratorio de Medicina Genómica, Departamento de Genética (CENIAQ), Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Ciudad de México, 14389, México
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, 14380, México
| | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México, 07360, México.
| |
Collapse
|
3
|
Xu Y, Wang X, Yuan W, Zhang L, Chen W, Hu K. Identification of BANF1 as a novel prognostic biomarker in gastric cancer and validation via in-vitro and in-vivo experiments. Aging (Albany NY) 2024; 16:1808-1828. [PMID: 38261746 PMCID: PMC10866416 DOI: 10.18632/aging.205461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024]
Abstract
Gastric cancer (GC) is a widespread malignancy characterized by a notably high incidence rate and an unfavorable prognosis. We conducted a meticulous analysis of GC high-throughput sequencing data downloaded from the Gene Expression Omnibus (GEO) repository to pinpoint distinctive genes associated with GC. Our investigation successfully identified three signature genes implicated in GC, with a specific focus on the barrier to autointegration factor 1 (BANF1), which exhibits elevated expression across various cancer types, including GC. Bioinformatic analysis has highlighted BANF1 as a prognostic indicator for patients with GC, with direct implications for immune cell infiltration. To gain a more comprehensive understanding of the significance of BANF1 in GC, we performed a series of in vitro experiments to confirm its high expression in GC tissues and cellular components. Intriguingly, the induction of BANF1 knockdown resulted in a marked attenuation of proliferation, migratory capacity, and invasive potential in GC cells. Moreover, our in vivo experiments using nude mouse models revealed a notable impediment in tumor growth following BANF1 knockdown. These insights underscore the feasibility of BANF1 as a novel therapeutic target for GC.
Collapse
Affiliation(s)
- Yuanmin Xu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xu Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Weiwei Yuan
- Department of General Surgery, Anhui Public Health Clinical Center, Hefei 230022, China
| | - Ling Zhang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230022, China
| | - Wei Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Kongwang Hu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Department of General Surgery, Fuyang Affiliated Hospital of Anhui Medical University, Fuyang 236000, China
| |
Collapse
|
4
|
Rose M, Burgess JT, O’Byrne K, Richard DJ, Bolderson E. The role of inner nuclear membrane proteins in tumourigenesis and as potential targets for cancer therapy. Cancer Metastasis Rev 2022; 41:953-963. [PMID: 36205821 PMCID: PMC9758098 DOI: 10.1007/s10555-022-10065-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/18/2022] [Indexed: 01/25/2023]
Abstract
Despite significant advances in our understanding of tumourigenesis and cancer therapeutics, cancer continues to account for 30% of worldwide deaths. Therefore, there remains an unmet need for the development of cancer therapies to improve patient quality of life and survival outcomes. The inner nuclear membrane has an essential role in cell division, cell signalling, transcription, cell cycle progression, chromosome tethering, cell migration and mitosis. Furthermore, expression of several inner nuclear membrane proteins has been shown to be frequently altered in tumour cells, resulting in the dysregulation of cellular pathways to promote tumourigenesis. However, to date, minimal research has been conducted to investigate how targeting these dysregulated and variably expressed proteins may provide a novel avenue for cancer therapies. In this review, we present an overview of the involvement of the inner nuclear membrane proteins within the hallmarks of cancer and how they may be exploited as potent anti-cancer therapeutics.
Collapse
Affiliation(s)
- Maddison Rose
- grid.1024.70000000089150953Cancer & Ageing Research Program (CARP), Centre for Genomics and Personalised Health (CGPH), School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD Australia
| | - Joshua T. Burgess
- grid.1024.70000000089150953Cancer & Ageing Research Program (CARP), Centre for Genomics and Personalised Health (CGPH), School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD Australia
| | - Kenneth O’Byrne
- grid.1024.70000000089150953Cancer & Ageing Research Program (CARP), Centre for Genomics and Personalised Health (CGPH), School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD Australia ,grid.412744.00000 0004 0380 2017Princess Alexandra Hospital, Ipswich Road, Woolloongabba, Brisbane, QLD 4102 Australia
| | - Derek J. Richard
- grid.1024.70000000089150953Cancer & Ageing Research Program (CARP), Centre for Genomics and Personalised Health (CGPH), School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD Australia
| | - Emma Bolderson
- grid.1024.70000000089150953Cancer & Ageing Research Program (CARP), Centre for Genomics and Personalised Health (CGPH), School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD Australia
| |
Collapse
|
5
|
Bailly C, Vergoten G. Interaction of obtusilactone B and related butanolide lactones with the barrier-to-autointegration factor 1 (BAF1). A computational study. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100059. [PMID: 34909681 PMCID: PMC8663951 DOI: 10.1016/j.crphar.2021.100059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/08/2021] [Accepted: 09/20/2021] [Indexed: 11/06/2022] Open
Abstract
The barrier-to-autointegration factor 1 (BAF1) protein is a DNA-binding protein implicated in nuclear envelop repair and reformation after mitosis. This nuclear protein is frequently overexpressed in cancer cells and plays a role in the occurrence and development of different tumors. It is a potential therapeutic target for gastric cancer, breast cancer and other malignancies. For this reason, BAF1 inhibitors are searched. The butanolide lactone obtusilactone B (Ob-B) has been found to inhibit VRK1-dependent phosphorylation of BAF1, upon direct binding to the nuclear protein. Taking advantage of the known crystallographic structure of BAF1, we have elaborated molecular models of Ob-B bound to BAF1 to delimit the binding site and binding configuration. The long endoolefinic alkyl side chain of Ob-B extends into a small groove on the protein surface, and the adjacent exomethylene-γ-lactone moiety occupies a pocket comprising to the Ser-4 phosphorylation site of BAF1. Twenty butanolide lactones structurally close to ObB were screened for BAF1 binding. Several natural products with BAF1-binding capacity potentially superior to Ob-B were identified, including mahubanolide, kotomolide B, epilitsenolide D2, and a few other known anticancer plant natural products. Our study provides new ideas to guide the discovery and design of BAF1 inhibitors. Obtusilactone B (Ob-B) is an anticancer inhibitor of VRK1-mediated BAF1 phosphorylation. Molecular models of Ob-B bound to BAF1 have been constructed and the binding site determined. Screening of 20 butanolide lactones led to the identification of new potential BAF1 binders. Mahubanolide, kotomolide B and epilitsenolide D2 emerge as potential BAF1 inhibitors.
Collapse
Affiliation(s)
| | - Gérard Vergoten
- University of Lille, Inserm, INFINITE - U1286, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, 3 rue du Professeur Laguesse, BP-83, F-59006, Lille, France
| |
Collapse
|
6
|
|
7
|
Burla R, La Torre M, Maccaroni K, Verni F, Giunta S, Saggio I. Interplay of the nuclear envelope with chromatin in physiology and pathology. Nucleus 2020; 11:205-218. [PMID: 32835589 PMCID: PMC7529417 DOI: 10.1080/19491034.2020.1806661] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022] Open
Abstract
The nuclear envelope compartmentalizes chromatin in eukaryotic cells. The main nuclear envelope components are lamins that associate with a panoply of factors, including the LEM domain proteins. The nuclear envelope of mammalian cells opens up during cell division. It is reassembled and associated with chromatin at the end of mitosis when telomeres tether to the nuclear periphery. Lamins, LEM domain proteins, and DNA binding factors, as BAF, contribute to the reorganization of chromatin. In this context, an emerging role is that of the ESCRT complex, a machinery operating in multiple membrane assembly pathways, including nuclear envelope reformation. Research in this area is unraveling how, mechanistically, ESCRTs link to nuclear envelope associated factors as LEM domain proteins. Importantly, ESCRTs work also during interphase for repairing nuclear envelope ruptures. Altogether the advances in this field are giving new clues for the interpretation of diseases implicating nuclear envelope fragility, as laminopathies and cancer. ABBREVIATIONS na, not analyzed; ko, knockout; kd, knockdown; NE, nuclear envelope; LEM, LAP2-emerin-MAN1 (LEM)-domain containing proteins; LINC, linker of nucleoskeleton and cytoskeleton complexes; Cyt, cytoplasm; Chr, chromatin; MB, midbody; End, endosomes; Tel, telomeres; INM, inner nuclear membrane; NP, nucleoplasm; NPC, Nuclear Pore Complex; ER, Endoplasmic Reticulum; SPB, spindle pole body.
Collapse
Affiliation(s)
- Romina Burla
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
- CNR Institute of Molecular Biology and Pathology, Italy
| | - Mattia La Torre
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Klizia Maccaroni
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Fiammetta Verni
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Simona Giunta
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
- Rockefeller University, New York, NY, USA
| | - Isabella Saggio
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
- CNR Institute of Molecular Biology and Pathology, Italy
- Institute of Structural Biology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
8
|
Yu Z, Li Q, An Y, Chen X, Liu Z, Li Z, Gao J, Aung LHH, Li P. Role of apoptosis repressor with caspase recruitment domain (ARC) in cancer. Oncol Lett 2019; 18:5691-5698. [PMID: 31788041 PMCID: PMC6865693 DOI: 10.3892/ol.2019.10981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/11/2019] [Indexed: 11/06/2022] Open
Abstract
Apoptosis repressor with caspase recruitment domain (ARC) is a potent inhibitor of apoptosis. Under physiological conditions, ARC is abundantly expressed in terminally differentiated cells, including cardiomyocytes, skeletal muscles and neurons. ARC serves a key role in determining cell fate, and abnormal ARC expression has been demonstrated to be associated with abnormal cell growth. Previous studies have revealed that ARC was upregulated in several different types of solid tumor, where it suppressed tumor cell apoptosis. Furthermore, the increased expression levels of ARC in cancer cells contributed to the development of therapeutic resistance and adverse clinical outcomes in patients with leukemia. However, the exact role of ARC, as well as the underlying molecular mechanisms involved, remain poorly understood. The present review summarizes the characteristics of ARC and its cytoprotective role under different conditions and describes the potential ARC as a new target for cancer therapy.
Collapse
Affiliation(s)
- Zhongjie Yu
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China.,School of Basic Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Qi Li
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Yi An
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xiatian Chen
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Ziqian Liu
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Zhe Li
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Jinning Gao
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Lynn Htet Htet Aung
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Peifeng Li
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
9
|
Nandi A, Ghosh C, Basu S. Polymer conjugated graphene-oxide nanoparticles impair nuclear DNA and Topoisomerase I in cancer. NANOSCALE ADVANCES 2019; 1:4965-4971. [PMID: 36133106 PMCID: PMC9417292 DOI: 10.1039/c9na00617f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/24/2019] [Indexed: 05/11/2023]
Abstract
Cancer chemotherapy had been dominated by the use of small molecule DNA damaging drugs. Eventually, the emergence of DNA damage repair machinery in cancer cells has led to combination therapy with the DNA topology controlling enzyme, topoisomerase I inhibitor along with DNA impairing agents. However, integrating multiple drugs having diverse water solubility and hence bio-distribution effectively for cancer treatment remains a significant challenge, which can be addressed by using suitable nano-scale materials. Herein, we have chemically conjugated graphene oxide (GO) with biocompatible and hydrophilic polymers [polyethylene glycol (PEG) and ethylene-diamine modified poly-isobutylene-maleic anhydride (PMA-ED)], which can encompass highly hydrophobic topoisomerase I inhibitor, SN38. Interestingly, these sheet structured GO-polymer-SN38 composites self-assembled into spherical nanoparticles in water after complexing with a hydrophilic DNA damaging drug, cisplatin. These nanoparticles showed much improved colloidal stability in water compared to their drug-loaded non-polymeric counterpart. These SN38 and cisplatin laden GO-polymer nanoparticles were taken up by HeLa cancer cells through clathrin-dependent endocytosis to home into lysosomes within 6 h, as confirmed by confocal microscopy. A combination of gel electrophoresis, flow cytometry, and fluorescence microscopy showed that these nanoparticles damaged nuclear DNA and induced topoisomerase I inhibition leading to apoptosis and finally improved HeLa cell death. These self-assembled GO-polymer nanoparticles can be used for strategic impairment of multiple cellular targets involving hydrophobic and hydrophilic drugs for effective combination therapy.
Collapse
Affiliation(s)
- Aditi Nandi
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Chandramouli Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Sudipta Basu
- Discipline of Chemistry, Indian Institute of Technology (IIT)-Gandhinagar Palaj Gandhinagar Gujarat 382355 India
| |
Collapse
|
10
|
Yu Z, Li Q, An Y, Chen X, Liu Z, Li Z, Gao J, Aung LHH, Li P. Role of apoptosis repressor with caspase recruitment domain (ARC) in cancer. Oncol Lett 2019. [PMID: 31788041 DOI: 10.3892/ol.2019.10981/abstract] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Apoptosis repressor with caspase recruitment domain (ARC) is a potent inhibitor of apoptosis. Under physiological conditions, ARC is abundantly expressed in terminally differentiated cells, including cardiomyocytes, skeletal muscles and neurons. ARC serves a key role in determining cell fate, and abnormal ARC expression has been demonstrated to be associated with abnormal cell growth. Previous studies have revealed that ARC was upregulated in several different types of solid tumor, where it suppressed tumor cell apoptosis. Furthermore, the increased expression levels of ARC in cancer cells contributed to the development of therapeutic resistance and adverse clinical outcomes in patients with leukemia. However, the exact role of ARC, as well as the underlying molecular mechanisms involved, remain poorly understood. The present review summarizes the characteristics of ARC and its cytoprotective role under different conditions and describes the potential ARC as a new target for cancer therapy.
Collapse
Affiliation(s)
- Zhongjie Yu
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Qi Li
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Yi An
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xiatian Chen
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Ziqian Liu
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Zhe Li
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Jinning Gao
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Lynn Htet Htet Aung
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Peifeng Li
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
11
|
Shukla E, Chauhan R. Host-HIV-1 Interactome: A Quest for Novel Therapeutic Intervention. Cells 2019; 8:cells8101155. [PMID: 31569640 PMCID: PMC6830350 DOI: 10.3390/cells8101155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
The complex nature and structure of the human immunodeficiency virus has rendered the cure for HIV infections elusive. The advances in antiretroviral treatment regimes and the development of highly advanced anti-retroviral therapy, which primarily targets the HIV enzymes, have dramatically changed the face of the HIV epidemic worldwide. Despite this remarkable progress, patients treated with these drugs often witness inadequate efficacy, compound toxicity and non-HIV complications. Considering the limited inventory of druggable HIV proteins and their susceptibility to develop drug resistance, recent attempts are focussed on targeting HIV-host interactomes that are essential for viral reproduction. Noticeably, unlike other viruses, HIV subverts the host nuclear pore complex to enter into and exit through the nucleus. Emerging evidence suggests a crucial role of interactions between HIV-1 proteins and host nucleoporins that underlie the import of the pre-integration complex into the nucleus and export of viral RNAs into the cytoplasm during viral replication. Nevertheless, the interaction of HIV-1 with nucleoporins has been poorly described and the role of nucleoporins during nucleocytoplasmic transport of HIV-1 still remains unclear. In this review, we highlight the advances and challenges in developing a more effective antiviral arsenal by exploring critical host-HIV interactions with a special focus on nuclear pore complex (NPC) and nucleoporins.
Collapse
Affiliation(s)
- Ekta Shukla
- National Center for Cell Science, S.P Pune University, Pune-411007, Maharashtra, India.
| | - Radha Chauhan
- National Center for Cell Science, S.P Pune University, Pune-411007, Maharashtra, India.
| |
Collapse
|
12
|
Ahn JH, Cho MG, Sohn S, Lee JH. Inhibition of PP2A activity by H 2O 2 during mitosis disrupts nuclear envelope reassembly and alters nuclear shape. Exp Mol Med 2019; 51:1-18. [PMID: 31164634 PMCID: PMC6548778 DOI: 10.1038/s12276-019-0260-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 11/02/2018] [Accepted: 11/14/2018] [Indexed: 01/01/2023] Open
Abstract
Many types of cancer cells exhibit abnormal nuclear shapes induced by various molecular changes. However, whether reactive oxygen species (ROS) induce nuclear deformation has not been fully addressed. Here, we show that hydrogen peroxide (H2O2) treatment induced concentration-dependent alterations in nuclear shape that were abolished by pretreatment with the antioxidant N-acetyl-L-cysteine or by catalase overexpression. Interestingly, treatment with H2O2 induced nuclear shape alterations significantly more frequently in mitotic cells than in asynchronous cells, suggesting that H2O2 mainly affects nuclear envelope disassembly and/or reassembly processes. Because protein phosphatase 2 A (PP2A) activity is reported to be involved in nuclear envelope reassembly during mitosis, we investigated the possible involvement of PP2A. Indeed, H2O2 reduced the activity of PP2A, an effect that was mimicked by the PP1 and PP2A inhibitor okadaic acid. Moreover, overexpression of PP2A but not PP1 or PP4 partially rescued H2O2-induced alterations in nuclear shape, indicating that the decrease in PP2A activity induced by H2O2 is specifically involved in the observed nuclear shape alterations. We further show that treatment of mitotic cells with H2O2 induced the mislocalization of BAF (barrier-to-autointegration factor), a substrate of PP2A, during telophase. This effect was associated with Lamin A/C mislocalization and was rescued by PP2A overexpression. Collectively, our findings suggest that H2O2 preferentially affects mitotic cells through PP2A inhibition, which induces the subsequent mislocalization of BAF and Lamin A/C during nuclear envelope reassembly, leading to the formation of an abnormal nuclear shape. A class of harmful chemical compounds produces morphological abnormalities in the nucleus that may help promote tumor growth. Reactive oxygen species (ROS) are DNA- and protein-damaging molecules that originate both from environmental contaminants and as a byproduct of cellular metabolism or stress. Jae-Ho Lee and colleagues at Ajou University, Suwon, South Korea have now identified a mechanism by which ROS can disrupt the shape and structure of the nucleus. They show that ROS exposure reduces the ativity of an enzyme called PP2A, which is required for the targeted recruitment of proteins that rebuild the membrane envelope surrounding the nucleus after cell division. Perturbations in this envelope can potentially contribute to damage to the chromosomal DNA within the nucleus, creating conditions that can trigger or accelerate the process of tumorigenesis.
Collapse
Affiliation(s)
- Ju-Hyun Ahn
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 443-721, South Korea.,Genomic Instability Research Center, Ajou University School of Medicine, Suwon, 443-721, South Korea.,Department of Biomedical Sciences, The Graduate School of Ajou University, Suwon, 443-721, South Korea
| | - Min-Guk Cho
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 443-721, South Korea.,Genomic Instability Research Center, Ajou University School of Medicine, Suwon, 443-721, South Korea.,Department of Biomedical Sciences, The Graduate School of Ajou University, Suwon, 443-721, South Korea
| | - Seonghyang Sohn
- Department of Biomedical Sciences, The Graduate School of Ajou University, Suwon, 443-721, South Korea.,Department of Microbiology, Ajou University School of Medicine, Suwon, 443-721, South Korea
| | - Jae-Ho Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 443-721, South Korea. .,Genomic Instability Research Center, Ajou University School of Medicine, Suwon, 443-721, South Korea. .,Department of Biomedical Sciences, The Graduate School of Ajou University, Suwon, 443-721, South Korea.
| |
Collapse
|
13
|
The High Mobility Group A1 (HMGA1) Chromatin Architectural Factor Modulates Nuclear Stiffness in Breast Cancer Cells. Int J Mol Sci 2019; 20:ijms20112733. [PMID: 31167352 PMCID: PMC6600462 DOI: 10.3390/ijms20112733] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 12/28/2022] Open
Abstract
Plasticity is an essential condition for cancer cells to invade surrounding tissues. The nucleus is the most rigid cellular organelle and it undergoes substantial deformations to get through environmental constrictions. Nuclear stiffness mostly depends on the nuclear lamina and chromatin, which in turn might be affected by nuclear architectural proteins. Among these is the HMGA1 (High Mobility Group A1) protein, a factor that plays a causal role in neoplastic transformation and that is able to disentangle heterochromatic domains by H1 displacement. Here we made use of atomic force microscopy to analyze the stiffness of breast cancer cellular models in which we modulated HMGA1 expression to investigate its role in regulating nuclear plasticity. Since histone H1 is the main modulator of chromatin structure and HMGA1 is a well-established histone H1 competitor, we correlated HMGA1 expression and cellular stiffness with histone H1 expression level, post-translational modifications, and nuclear distribution. Our results showed that HMGA1 expression level correlates with nuclear stiffness, is associated to histone H1 phosphorylation status, and alters both histone H1 chromatin distribution and expression. These data suggest that HMGA1 might promote chromatin relaxation through a histone H1-mediated mechanism strongly impacting on the invasiveness of cancer cells.
Collapse
|
14
|
Nader JS, Abadie J, Deshayes S, Boissard A, Blandin S, Blanquart C, Boisgerault N, Coqueret O, Guette C, Grégoire M, Pouliquen DL. Characterization of increasing stages of invasiveness identifies stromal/cancer cell crosstalk in rat models of mesothelioma. Oncotarget 2018; 9:16311-16329. [PMID: 29662647 PMCID: PMC5893242 DOI: 10.18632/oncotarget.24632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/25/2018] [Indexed: 12/11/2022] Open
Abstract
Sarcomatoid mesothelioma (SM) is a devastating cancer associated with one of the poorest outcome. Therefore, representative preclinical models reproducing different tumor microenvironments (TME) observed in patients would open up new prospects for the identification of markers and evaluation of innovative therapies. Histological analyses of four original models of rat SM revealed their increasing infiltrative and metastatic potential were associated with differences in Ki67 index, blood-vessel density, and T-lymphocyte and macrophage infiltration. In comparison with the noninvasive tumor M5-T2, proteomic analysis demonstrated the three invasive tumors F4-T2, F5-T1 and M5-T1 shared in common a very significant increase in the abundance of the multifunctional proteins galectin-3, prohibitin and annexin A5, and a decrease in proteins involved in cell adhesion, tumor suppression, or epithelial differentiation. The increased metastatic potential of the F5-T1 tumor, relative to F4-T2, was associated with an increased macrophage vs T-cell infiltrate, changes in the levels of expression of a panel of cytokine genes, an increased content of proteins involved in chromatin organization, ribosome structure, splicing, or presenting anti-adhesive properties, and a decreased content of proteins involved in protection against oxidative stress, normoxia and intracellular trafficking. The most invasive tumor, M5-T1, was characterized by a pattern of specific phenotypic and molecular features affecting the presentation of MHC class I-mediated antigens and immune cell infiltration, or involved in the reorganization of the cytoskeleton and composition of the extracellular matrix. These four preclinical models and data represent a new resource available to the cancer research community to catalyze further investigations on invasiveness.
Collapse
Affiliation(s)
- Joëlle S. Nader
- CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France
| | - Jérôme Abadie
- CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France
- ONIRIS, Nantes, France
| | - Sophie Deshayes
- CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France
| | - Alice Boissard
- CRCINA, INSERM, Université de Nantes, Université d’Angers, Angers, France
- ICO, Angers, France
| | - Stéphanie Blandin
- Plate-Forme MicroPICell, SFR François Bonamy, Université de Nantes, France
| | | | | | - Olivier Coqueret
- CRCINA, INSERM, Université de Nantes, Université d’Angers, Angers, France
- ICO, Angers, France
| | - Catherine Guette
- CRCINA, INSERM, Université de Nantes, Université d’Angers, Angers, France
- ICO, Angers, France
| | - Marc Grégoire
- CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France
| | | |
Collapse
|
15
|
Affiliation(s)
- Tejas Dharmaraj
- Tejas Dharmaraj is in the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Katherine L Wilson
- Katherine L. Wilson is in the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
16
|
Yahav G, Hirshberg A, Salomon O, Amariglio N, Trakhtenbrot L, Fixler D. Fluorescence lifetime imaging of DAPI-stained nuclei as a novel diagnostic tool for the detection and classification of B-cell chronic lymphocytic leukemia. Cytometry A 2016; 89:644-52. [DOI: 10.1002/cyto.a.22890] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/21/2016] [Accepted: 05/18/2016] [Indexed: 01/11/2023]
Affiliation(s)
- Gilad Yahav
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials; Bar Ilan University; Ramat Gan Israel
| | - Abraham Hirshberg
- Department of Oral Pathology and Oral Medicine, Maurice and Gabriela Goldschleger School of Dental Medicine; Tel Aviv University; Tel Aviv Israel
| | - Ophira Salomon
- Thrombosis Unit, Sheba Medical Center and Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
| | | | | | - Dror Fixler
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials; Bar Ilan University; Ramat Gan Israel
| |
Collapse
|
17
|
Maherally Z, Smith JR, Ghoneim MK, Dickson L, An Q, Fillmore HL, Pilkington GJ. Silencing of CD44 in Glioma Leads to Changes in Cytoskeletal Protein Expression and Cellular Biomechanical Deformation Properties as Measured by AFM Nanoindentation. BIONANOSCIENCE 2015. [DOI: 10.1007/s12668-015-0189-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Kim SH, Ryu HG, Lee J, Shin J, Harikishore A, Jung HY, Kim YS, Lyu HN, Oh E, Baek NI, Choi KY, Yoon HS, Kim KT. Ursolic acid exerts anti-cancer activity by suppressing vaccinia-related kinase 1-mediated damage repair in lung cancer cells. Sci Rep 2015; 5:14570. [PMID: 26412148 PMCID: PMC4585938 DOI: 10.1038/srep14570] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/04/2015] [Indexed: 01/26/2023] Open
Abstract
Many mitotic kinases have been targeted for the development of anti-cancer drugs, and inhibitors of these kinases have been expected to perform well for cancer therapy. Efforts focused on selecting good targets and finding specific drugs to target are especially needed, largely due to the increased frequency of anti-cancer drugs used in the treatment of lung cancer. Vaccinia-related kinase 1 (VRK1) is a master regulator in lung adenocarcinoma and is considered a key molecule in the adaptive pathway, which mainly controls cell survival. We found that ursolic acid (UA) inhibits the catalytic activity of VRK1 via direct binding to the catalytic domain of VRK1. UA weakens surveillance mechanisms by blocking 53BP1 foci formation induced by VRK1 in lung cancer cells, and possesses synergistic anti-cancer effects with DNA damaging drugs. Taken together, UA can be a good anti-cancer agent for targeted therapy or combination therapy with DNA damaging drugs for lung cancer patients.
Collapse
Affiliation(s)
- Seong-Hoon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Hye Guk Ryu
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Juhyun Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Joon Shin
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | | | - Hoe-Youn Jung
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Ye Seul Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Ha-Na Lyu
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Eunji Oh
- The Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung-Hee University, Suwon 449-701, Republic of Korea
| | - Nam-In Baek
- The Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung-Hee University, Suwon 449-701, Republic of Korea
| | - Kwan-Yong Choi
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Ho Sup Yoon
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
- Department of Genetic Engineering, College of Life Sciences, Kyung-Hee University, Suwon 449-701, Republic of Korea
| | - Kyong-Tai Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| |
Collapse
|
19
|
Kim SH, Lyu HN, Kim YS, Jeon YH, Kim W, Kim S, Lim JK, Lee HW, Baek NI, Choi KY, Lee J, Kim KT. Brazilin Isolated from Caesalpinia sappan suppresses nuclear envelope reassembly by inhibiting barrier-to-autointegration factor phosphorylation. J Pharmacol Exp Ther 2014; 352:175-84. [PMID: 25369797 DOI: 10.1124/jpet.114.218792] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
To date, many anticancer drugs have been developed by directly or indirectly targeting microtubules, which are involved in cell division. Although this approach has yielded many anticancer drugs, these drugs produce undesirable side effects. An alternative strategy is needed, and targeting mitotic exit may be one alternative approach. Localization of phosphorylated barrier-to-autointegration factor (BAF) to the chromosomal core region is essential for nuclear envelope compartment relocalization. In this study, we isolated brazilin from Caesalpinia sappan Leguminosae and demonstrated that it inhibited BAF phosphorylation in vitro and in vivo. Moreover, we demonstrated direct binding between brazilin and BAF. The inhibition of BAF phosphorylation induced abnormal nuclear envelope reassembly and cell death, indicating that perturbation of nuclear envelope reassembly could be a novel approach to anticancer therapy. We propose that brazilin isolated from C. sappan may be a new anticancer drug candidate that induces cell death by inhibiting vaccinia-related kinase 1-mediated BAF phosphorylation.
Collapse
Affiliation(s)
- Seong-Hoon Kim
- Department of Life Sciences (S.-H.K., H.-N.L., Y.S.K., W.K., S.K., K.-T.K.), Division of Integrative Biosciences and Biotechnology (J.-K.L., K.-Y.C., K.-T.K.), Pohang University of Science and Technology, Pohang, South Korea; Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung-Hee University, Suwon, South Korea (N.-I.B.); and Department of Nuclear Medicine, Kyungpook National University School of Medicine, Daegu, South Korea (Y.H.J., H.W.L., J.L.)
| | - Ha-Na Lyu
- Department of Life Sciences (S.-H.K., H.-N.L., Y.S.K., W.K., S.K., K.-T.K.), Division of Integrative Biosciences and Biotechnology (J.-K.L., K.-Y.C., K.-T.K.), Pohang University of Science and Technology, Pohang, South Korea; Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung-Hee University, Suwon, South Korea (N.-I.B.); and Department of Nuclear Medicine, Kyungpook National University School of Medicine, Daegu, South Korea (Y.H.J., H.W.L., J.L.)
| | - Ye Seul Kim
- Department of Life Sciences (S.-H.K., H.-N.L., Y.S.K., W.K., S.K., K.-T.K.), Division of Integrative Biosciences and Biotechnology (J.-K.L., K.-Y.C., K.-T.K.), Pohang University of Science and Technology, Pohang, South Korea; Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung-Hee University, Suwon, South Korea (N.-I.B.); and Department of Nuclear Medicine, Kyungpook National University School of Medicine, Daegu, South Korea (Y.H.J., H.W.L., J.L.)
| | - Yong Hyun Jeon
- Department of Life Sciences (S.-H.K., H.-N.L., Y.S.K., W.K., S.K., K.-T.K.), Division of Integrative Biosciences and Biotechnology (J.-K.L., K.-Y.C., K.-T.K.), Pohang University of Science and Technology, Pohang, South Korea; Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung-Hee University, Suwon, South Korea (N.-I.B.); and Department of Nuclear Medicine, Kyungpook National University School of Medicine, Daegu, South Korea (Y.H.J., H.W.L., J.L.)
| | - Wanil Kim
- Department of Life Sciences (S.-H.K., H.-N.L., Y.S.K., W.K., S.K., K.-T.K.), Division of Integrative Biosciences and Biotechnology (J.-K.L., K.-Y.C., K.-T.K.), Pohang University of Science and Technology, Pohang, South Korea; Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung-Hee University, Suwon, South Korea (N.-I.B.); and Department of Nuclear Medicine, Kyungpook National University School of Medicine, Daegu, South Korea (Y.H.J., H.W.L., J.L.)
| | - Sangjune Kim
- Department of Life Sciences (S.-H.K., H.-N.L., Y.S.K., W.K., S.K., K.-T.K.), Division of Integrative Biosciences and Biotechnology (J.-K.L., K.-Y.C., K.-T.K.), Pohang University of Science and Technology, Pohang, South Korea; Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung-Hee University, Suwon, South Korea (N.-I.B.); and Department of Nuclear Medicine, Kyungpook National University School of Medicine, Daegu, South Korea (Y.H.J., H.W.L., J.L.)
| | - Jong-Kwan Lim
- Department of Life Sciences (S.-H.K., H.-N.L., Y.S.K., W.K., S.K., K.-T.K.), Division of Integrative Biosciences and Biotechnology (J.-K.L., K.-Y.C., K.-T.K.), Pohang University of Science and Technology, Pohang, South Korea; Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung-Hee University, Suwon, South Korea (N.-I.B.); and Department of Nuclear Medicine, Kyungpook National University School of Medicine, Daegu, South Korea (Y.H.J., H.W.L., J.L.)
| | - Ho Won Lee
- Department of Life Sciences (S.-H.K., H.-N.L., Y.S.K., W.K., S.K., K.-T.K.), Division of Integrative Biosciences and Biotechnology (J.-K.L., K.-Y.C., K.-T.K.), Pohang University of Science and Technology, Pohang, South Korea; Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung-Hee University, Suwon, South Korea (N.-I.B.); and Department of Nuclear Medicine, Kyungpook National University School of Medicine, Daegu, South Korea (Y.H.J., H.W.L., J.L.)
| | - Nam-In Baek
- Department of Life Sciences (S.-H.K., H.-N.L., Y.S.K., W.K., S.K., K.-T.K.), Division of Integrative Biosciences and Biotechnology (J.-K.L., K.-Y.C., K.-T.K.), Pohang University of Science and Technology, Pohang, South Korea; Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung-Hee University, Suwon, South Korea (N.-I.B.); and Department of Nuclear Medicine, Kyungpook National University School of Medicine, Daegu, South Korea (Y.H.J., H.W.L., J.L.)
| | - Kwan-Yong Choi
- Department of Life Sciences (S.-H.K., H.-N.L., Y.S.K., W.K., S.K., K.-T.K.), Division of Integrative Biosciences and Biotechnology (J.-K.L., K.-Y.C., K.-T.K.), Pohang University of Science and Technology, Pohang, South Korea; Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung-Hee University, Suwon, South Korea (N.-I.B.); and Department of Nuclear Medicine, Kyungpook National University School of Medicine, Daegu, South Korea (Y.H.J., H.W.L., J.L.)
| | - Jaetae Lee
- Department of Life Sciences (S.-H.K., H.-N.L., Y.S.K., W.K., S.K., K.-T.K.), Division of Integrative Biosciences and Biotechnology (J.-K.L., K.-Y.C., K.-T.K.), Pohang University of Science and Technology, Pohang, South Korea; Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung-Hee University, Suwon, South Korea (N.-I.B.); and Department of Nuclear Medicine, Kyungpook National University School of Medicine, Daegu, South Korea (Y.H.J., H.W.L., J.L.)
| | - Kyong-Tai Kim
- Department of Life Sciences (S.-H.K., H.-N.L., Y.S.K., W.K., S.K., K.-T.K.), Division of Integrative Biosciences and Biotechnology (J.-K.L., K.-Y.C., K.-T.K.), Pohang University of Science and Technology, Pohang, South Korea; Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung-Hee University, Suwon, South Korea (N.-I.B.); and Department of Nuclear Medicine, Kyungpook National University School of Medicine, Daegu, South Korea (Y.H.J., H.W.L., J.L.)
| |
Collapse
|