1
|
Tiwari V, Alam MJ, Bhatia M, Navya M, Banerjee SK. The structure and function of lamin A/C: Special focus on cardiomyopathy and therapeutic interventions. Life Sci 2024; 341:122489. [PMID: 38340979 DOI: 10.1016/j.lfs.2024.122489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/21/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Lamins are inner nuclear membrane proteins that belong to the intermediate filament family. Lamin A/C lie adjacent to the heterochromatin structure in polymer form, providing skeletal to the nucleus. Based on the localization, lamin A/C provides nuclear stability and cytoskeleton to the nucleus and modulates chromatin organization and gene expression. Besides being the structural protein making the inner nuclear membrane in polymer form, lamin A/C functions as a signalling molecule involved in gene expression as an enhancer inside the nucleus. Lamin A/C regulates various cellular pathways like autophagy and energy balance in the cytoplasm. Its expression is highly variable in differentiated tissues, higher in hard tissues like bone and muscle cells, and lower in soft tissues like the liver and brain. In muscle cells, including the heart, lamin A/C must be expressed in a balanced state. Lamin A/C mutation is linked with various diseases, such as muscular dystrophy, lipodystrophy, and cardiomyopathies. It has been observed that a good number of mutations in the LMNA gene impact cardiac activity and its function. Although several works have been published, there are still several unexplored areas left regarding the lamin A/C function and structure in the cardiovascular system and its pathological state. In this review, we focus on the structural organization, expression pattern, and function of lamin A/C, its interacting partners, and the pathophysiology associated with mutations in the lamin A/C gene, with special emphasis on cardiovascular diseases. With the recent finding on lamin A/C, we have summarized the possible therapeutic interventions to treat cardiovascular symptoms and reverse the molecular changes.
Collapse
Affiliation(s)
- Vikas Tiwari
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Md Jahangir Alam
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India; Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Madhavi Bhatia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Malladi Navya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Sanjay K Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India.
| |
Collapse
|
2
|
Worman HJ, Michaelis S. Prelamin A and ZMPSTE24 in premature and physiological aging. Nucleus 2023; 14:2270345. [PMID: 37885131 PMCID: PMC10730219 DOI: 10.1080/19491034.2023.2270345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
As human longevity increases, understanding the molecular mechanisms that drive aging becomes ever more critical to promote health and prevent age-related disorders. Premature aging disorders or progeroid syndromes can provide critical insights into aspects of physiological aging. A major cause of progeroid syndromes which result from mutations in the genes LMNA and ZMPSTE24 is disruption of the final posttranslational processing step in the production of the nuclear scaffold protein lamin A. LMNA encodes the lamin A precursor, prelamin A and ZMPSTE24 encodes the prelamin A processing enzyme, the zinc metalloprotease ZMPSTE24. Progeroid syndromes resulting from mutations in these genes include the clinically related disorders Hutchinson-Gilford progeria syndrome (HGPS), mandibuloacral dysplasia-type B, and restrictive dermopathy. These diseases have features that overlap with one another and with some aspects of physiological aging, including bone defects resembling osteoporosis and atherosclerosis (the latter primarily in HGPS). The progeroid syndromes have ignited keen interest in the relationship between defective prelamin A processing and its accumulation in normal physiological aging. In this review, we examine the hypothesis that diminished processing of prelamin A by ZMPSTE24 is a driver of physiological aging. We review features a new mouse (LmnaL648R/L648R) that produces solely unprocessed prelamin A and provides an ideal model for examining the effects of its accumulation during aging. We also discuss existing data on the accumulation of prelamin A or its variants in human physiological aging, which call out for further validation and more rigorous experimental approaches to determine if prelamin A contributes to normal aging.
Collapse
Affiliation(s)
- Howard J. Worman
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Susan Michaelis
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Xue H, Gate S, Gentry E, Losert W, Cao K. Development of an accelerated cellular model for early changes in Alzheimer's disease. Sci Rep 2023; 13:18384. [PMID: 37884611 PMCID: PMC10603068 DOI: 10.1038/s41598-023-45826-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/24/2023] [Indexed: 10/28/2023] Open
Abstract
Alzheimer's Disease (AD) is a leading cause of dementia characterized by amyloid plaques and neurofibrillary tangles, and its pathogenesis remains unclear. Current cellular models for AD often require several months to exhibit phenotypic features due to the lack of an aging environment in vitro. Lamin A is a key component of the nuclear lamina. Progerin, a truncated protein resulting from specific lamin A mutations, causes Hutchinson-Gilford Progeria Syndrome (HGPS), a disease that prematurely ages individuals. Studies have reported that lamin A expression is induced in the brains of AD patients, and overlapping cellular phenotypes have been observed between HGPS and AD cells. In this study, we investigated the effects of exogenous progerin expression on neural progenitor cells carrying familial AD mutations (FAD). Within three to four weeks of differentiation, these cells exhibited robust AD phenotypes, including increased tau phosphorylation, amyloid plaque accumulation, and an elevated Aβ42 to Aβ40 ratio. Additionally, progerin expression significantly increased AD cellular phenotypes such as cell death and cell cycle re-entry. Our results suggest that progerin expression could be used to create an accelerated model for AD development and drug screening.
Collapse
Affiliation(s)
- Huijing Xue
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Sylvester Gate
- Institute of Physical Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Emma Gentry
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Wolfgang Losert
- Institute of Physical Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Kan Cao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
4
|
Malashicheva A, Perepelina K. Diversity of Nuclear Lamin A/C Action as a Key to Tissue-Specific Regulation of Cellular Identity in Health and Disease. Front Cell Dev Biol 2021; 9:761469. [PMID: 34722546 PMCID: PMC8548693 DOI: 10.3389/fcell.2021.761469] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
A-type lamins are the main structural components of the nucleus, which are mainly localized at the nucleus periphery. First of all, A-type lamins, together with B-type lamins and proteins of the inner nuclear membrane, form a stiff structure-the nuclear lamina. Besides maintaining the nucleus cell shape, A-type lamins play a critical role in many cellular events, such as gene transcription and epigenetic regulation. Nowadays it is clear that lamins play a very important role in determining cell fate decisions. Various mutations in genes encoding A-type lamins lead to damages of different types of tissues in humans, collectively known as laminopathies, and it is clear that A-type lamins are involved in the regulation of cell differentiation and stemness. However, the mechanisms of this regulation remain unclear. In this review, we discuss how A-type lamins can execute their regulatory role in determining the differentiation status of a cell. We have summarized recent data focused on lamin A/C action mechanisms in regulation of cell differentiation and identity development of stem cells of different origin. We also discuss how this knowledge can promote further research toward a deeper understanding of the role of lamin A/C mutations in laminopathies.
Collapse
Affiliation(s)
- Anna Malashicheva
- Laboratory of Regenerative Biomedicine, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Kseniya Perepelina
- Laboratory of Regenerative Biomedicine, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
5
|
Ovsiannikova NL, Lavrushkina SV, Ivanova AV, Mazina LM, Zhironkina OA, Kireev II. Lamin A as a Determinant of Mechanical Properties of the Cell Nucleus in Health and Disease. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1288-1300. [PMID: 34903160 DOI: 10.1134/s0006297921100102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 06/14/2023]
Abstract
One of the main factors associated with worse prognosis in oncology is metastasis, which is based on the ability of tumor cells to migrate from the primary source and to form secondary tumors. The search for new strategies to control migration of metastatic cells is one of the urgent issues in biomedicine. One of the strategies to stop spread of cancer cells could be regulation of the nuclear elasticity. Nucleus, as the biggest and stiffest cellular compartment, determines mechanical properties of the cell as a whole, and, hence, could prevent cell migration through the three-dimensional extracellular matrix. Nuclear rigidity is maintained by the nuclear lamina, two-dimensional network of intermediate filaments in the inner nuclear membrane (INM). Here we present the most significant factors defining nucleus rigidity, discuss the role of nuclear envelope composition in the cell migration, as well consider possible approaches to control lamina composition in order to change plasticity of the cell nucleus and ability of the tumor cells to metastasize.
Collapse
Affiliation(s)
- Natalia L Ovsiannikova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Svetlana V Lavrushkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Anastasia V Ivanova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ludmila M Mazina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Oxana A Zhironkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Igor I Kireev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Moscow, 117198, Russia
| |
Collapse
|
6
|
Cenni V, Capanni C, Mattioli E, Schena E, Squarzoni S, Bacalini MG, Garagnani P, Salvioli S, Franceschi C, Lattanzi G. Lamin A involvement in ageing processes. Ageing Res Rev 2020; 62:101073. [PMID: 32446955 DOI: 10.1016/j.arr.2020.101073] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 03/05/2020] [Accepted: 04/11/2020] [Indexed: 12/29/2022]
Abstract
Lamin A, a main constituent of the nuclear lamina, is the major splicing product of the LMNA gene, which also encodes lamin C, lamin A delta 10 and lamin C2. Involvement of lamin A in the ageing process became clear after the discovery that a group of progeroid syndromes, currently referred to as progeroid laminopathies, are caused by mutations in LMNA gene. Progeroid laminopathies include Hutchinson-Gilford Progeria, Mandibuloacral Dysplasia, Atypical Progeria and atypical-Werner syndrome, disabling and life-threatening diseases with accelerated ageing, bone resorption, lipodystrophy, skin abnormalities and cardiovascular disorders. Defects in lamin A post-translational maturation occur in progeroid syndromes and accumulated prelamin A affects ageing-related processes, such as mTOR signaling, epigenetic modifications, stress response, inflammation, microRNA activation and mechanosignaling. In this review, we briefly describe the role of these pathways in physiological ageing and go in deep into lamin A-dependent mechanisms that accelerate the ageing process. Finally, we propose that lamin A acts as a sensor of cell intrinsic and environmental stress through transient prelamin A accumulation, which triggers stress response mechanisms. Exacerbation of lamin A sensor activity due to stably elevated prelamin A levels contributes to the onset of a permanent stress response condition, which triggers accelerated ageing.
Collapse
Affiliation(s)
- Vittoria Cenni
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Cristina Capanni
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elisabetta Mattioli
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elisa Schena
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Stefano Squarzoni
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge, University Hospital, Stockholm, Sweden
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Interdepartmental Center Alma Mater Research Institute on Global Challenges and Climate Changes, University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|
7
|
Towards delineating the chain of events that cause premature senescence in the accelerated aging syndrome Hutchinson-Gilford progeria (HGPS). Biochem Soc Trans 2020; 48:981-991. [PMID: 32539085 PMCID: PMC7329345 DOI: 10.1042/bst20190882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 11/17/2022]
Abstract
The metazoan nucleus is equipped with a meshwork of intermediate filament proteins called the A- and B-type lamins. Lamins lie beneath the inner nuclear membrane and serve as a nexus to maintain the architectural integrity of the nucleus, chromatin organization, DNA repair and replication and to regulate nucleocytoplasmic transport. Perturbations or mutations in various components of the nuclear lamina result in a large spectrum of human diseases collectively called laminopathies. One of the most well-characterized laminopathies is Hutchinson-Gilford progeria (HGPS), a rare segmental premature aging syndrome that resembles many features of normal human aging. HGPS patients exhibit alopecia, skin abnormalities, osteoporosis and succumb to cardiovascular complications in their teens. HGPS is caused by a mutation in LMNA, resulting in a mutated form of lamin A, termed progerin. Progerin expression results in a myriad of cellular phenotypes including abnormal nuclear morphology, loss of peripheral heterochromatin, transcriptional changes, DNA replication defects, DNA damage and premature cellular senescence. A key challenge is to elucidate how these different phenotypes are causally and mechanistically linked. In this mini-review, we highlight some key findings and present a model on how progerin-induced phenotypes may be temporally and mechanistically linked.
Collapse
|
8
|
Cenni V, Squarzoni S, Loi M, Mattioli E, Lattanzi G, Capanni C. Emerin Phosphorylation during the Early Phase of the Oxidative Stress Response Influences Emerin-BAF Interaction and BAF Nuclear Localization. Cells 2020; 9:cells9061415. [PMID: 32517247 PMCID: PMC7349582 DOI: 10.3390/cells9061415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023] Open
Abstract
Reactive Oxygen Species (ROS) are reactive molecules required for the maintenance of physiological functions. Oxidative stress arises when ROS production exceeds the cellular ability to eliminate such molecules. In this study, we showed that oxidative stress induces post-translational modification of the inner nuclear membrane protein emerin. In particular, emerin is phosphorylated at the early stages of the oxidative stress response, while protein phosphorylation is abolished upon recovery from stress. A finely tuned balance between emerin phosphorylation and O-GlcNAcylation seems to govern this dynamic and modulates emerin–BAF interaction and BAF nucleoplasmic localization during the oxidative stress response. Interestingly, emerin post-translational modifications, similar to those observed during the stress response, are detected in cells bearing LMNA gene mutations and are characterized by a free radical generating environment. On the other hand, under oxidative stress conditions, a delay in DNA damage repair and cell cycle progression is found in cells from Emery–Dreifuss Muscular Dystrophy type 1, which do not express emerin. These results suggest a role of the emerin–BAF protein platform in the DNA damage response aimed at counteracting the detrimental effects of elevated levels of ROS.
Collapse
Affiliation(s)
- Vittoria Cenni
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Unit of Bologna, 40136 Bologna, Italy; (V.C.); (S.S.); (M.L.); (E.M.); (G.L.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Stefano Squarzoni
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Unit of Bologna, 40136 Bologna, Italy; (V.C.); (S.S.); (M.L.); (E.M.); (G.L.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Manuela Loi
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Unit of Bologna, 40136 Bologna, Italy; (V.C.); (S.S.); (M.L.); (E.M.); (G.L.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40127 Bologna, Italy
| | - Elisabetta Mattioli
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Unit of Bologna, 40136 Bologna, Italy; (V.C.); (S.S.); (M.L.); (E.M.); (G.L.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Unit of Bologna, 40136 Bologna, Italy; (V.C.); (S.S.); (M.L.); (E.M.); (G.L.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Cristina Capanni
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Unit of Bologna, 40136 Bologna, Italy; (V.C.); (S.S.); (M.L.); (E.M.); (G.L.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Correspondence: ; Tel.: +39-051-6366856; Fax: +39-051-4689922
| |
Collapse
|
9
|
Lamin A/C Mechanotransduction in Laminopathies. Cells 2020; 9:cells9051306. [PMID: 32456328 PMCID: PMC7291067 DOI: 10.3390/cells9051306] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Mechanotransduction translates forces into biological responses and regulates cell functionalities. It is implicated in several diseases, including laminopathies which are pathologies associated with mutations in lamins and lamin-associated proteins. These pathologies affect muscle, adipose, bone, nerve, and skin cells and range from muscular dystrophies to accelerated aging. Although the exact mechanisms governing laminopathies and gene expression are still not clear, a strong correlation has been found between cell functionality and nuclear behavior. New theories base on the direct effect of external force on the genome, which is indeed sensitive to the force transduced by the nuclear lamina. Nuclear lamina performs two essential functions in mechanotransduction pathway modulating the nuclear stiffness and governing the chromatin remodeling. Indeed, A-type lamin mutation and deregulation has been found to affect the nuclear response, altering several downstream cellular processes such as mitosis, chromatin organization, DNA replication-transcription, and nuclear structural integrity. In this review, we summarize the recent findings on the molecular composition and architecture of the nuclear lamina, its role in healthy cells and disease regulation. We focus on A-type lamins since this protein family is the most involved in mechanotransduction and laminopathies.
Collapse
|
10
|
Jevtić P, Schibler AC, Wesley CC, Pegoraro G, Misteli T, Levy DL. The nucleoporin ELYS regulates nuclear size by controlling NPC number and nuclear import capacity. EMBO Rep 2019; 20:embr.201847283. [PMID: 31085625 DOI: 10.15252/embr.201847283] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022] Open
Abstract
How intracellular organelles acquire their characteristic sizes is a fundamental question in cell biology. Given stereotypical changes in nuclear size in cancer, it is important to understand the mechanisms that control nuclear size in human cells. Using a high-throughput imaging RNAi screen, we identify and mechanistically characterize ELYS, a nucleoporin required for post-mitotic nuclear pore complex (NPC) assembly, as a determinant of nuclear size in mammalian cells. ELYS knockdown results in small nuclei, reduced nuclear lamin B2 localization, lower NPC density, and decreased nuclear import. Increasing nuclear import by importin α overexpression rescues nuclear size and lamin B2 import, while inhibiting importin α/β-mediated nuclear import decreases nuclear size. Conversely, ELYS overexpression increases nuclear size, enriches nuclear lamin B2 at the nuclear periphery, and elevates NPC density and nuclear import. Consistent with these observations, knockdown or inhibition of exportin 1 increases nuclear size. Thus, we identify ELYS as a novel positive effector of mammalian nuclear size and propose that nuclear size is sensitive to NPC density and nuclear import capacity.
Collapse
Affiliation(s)
- Predrag Jevtić
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | | | - Chase C Wesley
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - Gianluca Pegoraro
- High Throughput Imaging Facility (HiTIF), National Cancer Institute, NIH, Bethesda, MD, USA
| | - Tom Misteli
- National Cancer Institute, NIH, Bethesda, MD, USA
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
11
|
Reis-Sobreiro M, Chen JF, Novitskaya T, You S, Morley S, Steadman K, Gill NK, Eskaros A, Rotinen M, Chu CY, Chung LWK, Tanaka H, Yang W, Knudsen BS, Tseng HR, Rowat AC, Posadas EM, Zijlstra A, Di Vizio D, Freeman MR. Emerin Deregulation Links Nuclear Shape Instability to Metastatic Potential. Cancer Res 2018; 78:6086-6097. [PMID: 30154147 DOI: 10.1158/0008-5472.can-18-0608] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/13/2018] [Accepted: 08/22/2018] [Indexed: 01/21/2023]
Abstract
Abnormalities in nuclear shape are a well-known feature of cancer, but their contribution to malignant progression remains poorly understood. Here, we show that depletion of the cytoskeletal regulator, Diaphanous-related formin 3 (DIAPH3), or the nuclear membrane-associated proteins, lamin A/C, in prostate and breast cancer cells, induces nuclear shape instability, with a corresponding gain in malignant properties, including secretion of extracellular vesicles that contain genomic material. This transformation is characterized by a reduction and/or mislocalization of the inner nuclear membrane protein, emerin. Consistent with this, depletion of emerin evokes nuclear shape instability and promotes metastasis. By visualizing emerin localization, evidence for nuclear shape instability was observed in cultured tumor cells, in experimental models of prostate cancer, in human prostate cancer tissues, and in circulating tumor cells from patients with metastatic disease. Quantitation of emerin mislocalization discriminated cancer from benign tissue and correlated with disease progression in a prostate cancer cohort. Taken together, these results identify emerin as a mediator of nuclear shape stability in cancer and show that destabilization of emerin can promote metastasis.Significance: This study identifies a novel mechanism integrating the control of nuclear structure with the metastatic phenotype, and our inclusion of two types of human specimens (cancer tissues and circulating tumor cells) demonstrates direct relevance to human cancer.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/21/6086/F1.large.jpg Cancer Res; 78(21); 6086-97. ©2018 AACR.
Collapse
Affiliation(s)
- Mariana Reis-Sobreiro
- Division of Cancer Biology and Therapeutics, Department of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jie-Fu Chen
- Division of Cancer Biology and Therapeutics, Department of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Tatiana Novitskaya
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee
| | - Sungyong You
- Division of Cancer Biology and Therapeutics, Department of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Samantha Morley
- Division of Cancer Biology and Therapeutics, Department of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kenneth Steadman
- Division of Cancer Biology and Therapeutics, Department of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Navjot Kaur Gill
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California
| | - Adel Eskaros
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee
| | - Mirja Rotinen
- Division of Cancer Biology and Therapeutics, Department of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Chia-Yi Chu
- Urologic Oncology Program/Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Center Institute, Cedars-Sinai Medical Center, Los Angeles, California.,Division of Hematology/Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Leland W K Chung
- Urologic Oncology Program/Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Center Institute, Cedars-Sinai Medical Center, Los Angeles, California.,Division of Hematology/Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Hisashi Tanaka
- Division of Cancer Biology and Therapeutics, Department of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Wei Yang
- Division of Cancer Biology and Therapeutics, Department of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Beatrice S Knudsen
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Hsian-Rong Tseng
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California
| | - Amy C Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California
| | - Edwin M Posadas
- Urologic Oncology Program/Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Center Institute, Cedars-Sinai Medical Center, Los Angeles, California.,Division of Hematology/Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Andries Zijlstra
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee.,Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Dolores Di Vizio
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Michael R Freeman
- Division of Cancer Biology and Therapeutics, Department of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
12
|
Captur G, Arbustini E, Syrris P, Radenkovic D, O'Brien B, Mckenna WJ, Moon JC. Lamin mutation location predicts cardiac phenotype severity: combined analysis of the published literature. Open Heart 2018; 5:e000915. [PMID: 30402260 PMCID: PMC6203068 DOI: 10.1136/openhrt-2018-000915] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/27/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023] Open
Abstract
Objective Two LMNA genotype-phenotype cardiac correlations are reported: first, that cardiac involvement in multisystem laminopathies prevails with mutations upstream of the nuclear localisation signal (NLS); second, that worse outcomes occur with non-missense (compared with missense) mutations. We tested whether LMNA mutation DNA location and mutation subtype can predict phenotype severity in patients with lamin heart disease. Methods We used a semantic workflow platform and manual electronic literature search to identify published LMNA mutations with cardiac-predominant phenotype. Hierarchical cluster analysis (HCA) assembled lamin heart disease into classes based on phenotype severity. 176 reported causative mutations were classified and any relationships to mutation location/subtype assessed by contingency analysis. Results More adverse phenotype was associated with mutation location upstream of the NLS (p=0.014, OR 2.38, 95% CI 1.19 to 4.80) but not with non-missense mutations (p=0.337, OR 1.36, 95% CI 0.72 to 2.57), although an association with non-missense mutations was identified in a subcluster with malignant ventricular arrhythmia (p=0.005, OR 2.64, 95% CI 0.76 to 9.21). HCA limited to the 65 mutations described on ClinVar as pathogenic/likely pathogenic showed similar findings (upstream of NLS, p=0.030, OR 4.78, 95% CI 1.28 to 17.83; non-missense, p=0.121, OR 2.64, 95% CI 0.76 to 9.21) as did analysis limited to pathogenic/likely pathogenic variants according to the American College of Medical Genetics and Genomics standards. Conclusion Cardiac patients with an LMNA mutation located upstream versus downstream of the NLS have a more adverse cardiac phenotype, and some missense mutations can be as harmful as non-missense ones.
Collapse
Affiliation(s)
- Gabriella Captur
- UCL MRC Unit for Lifelong Health and Ageing, London, UK
- Barts Heart Centre, The Cardiovascular Magnetic Resonance Imaging Unit, St Bartholomew’s Hospital, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| | - Eloisa Arbustini
- Center for Inherited Cardiovascular Diseases, Foundation IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Petros Syrris
- Institute of Cardiovascular Science, University College London, London, UK
| | - Dina Radenkovic
- Barts Heart Centre, The Cardiovascular Magnetic Resonance Imaging Unit, St Bartholomew’s Hospital, London, UK
| | - Ben O'Brien
- Department of Perioperative Medicine, St Bartholomew's Hospital & Barts Heart Centre, London, UK
- William Harvey Research Institute, Charterhouse Square, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - William J Mckenna
- Institute of Cardiovascular Science, University College London, London, UK
| | - James C Moon
- Barts Heart Centre, The Cardiovascular Magnetic Resonance Imaging Unit, St Bartholomew’s Hospital, London, UK
- Institute of Cardiovascular Science, University College London, London, UK
| |
Collapse
|
13
|
Pradhan R, Ranade D, Sengupta K. Emerin modulates spatial organization of chromosome territories in cells on softer matrices. Nucleic Acids Res 2018; 46:5561-5586. [PMID: 29684168 PMCID: PMC6009696 DOI: 10.1093/nar/gky288] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 02/06/2023] Open
Abstract
Cells perceive and relay external mechanical forces into the nucleus through the nuclear envelope. Here we examined the effect of lowering substrate stiffness as a paradigm to address the impact of altered mechanical forces on nuclear structure-function relationships. RNA sequencing of cells on softer matrices revealed significant transcriptional imbalances, predominantly in chromatin associated processes and transcriptional deregulation of human Chromosome 1. Furthermore, 3-Dimensional fluorescence in situ hybridization (3D-FISH) analyses showed a significant mislocalization of Chromosome 1 and 19 Territories (CT) into the nuclear interior, consistent with their transcriptional deregulation. However, CT18 with relatively lower transcriptional dysregulation, also mislocalized into the nuclear interior. Furthermore, nuclear Lamins that regulate chromosome positioning, were mislocalized into the nuclear interior in response to lowered matrix stiffness. Notably, Lamin B2 overexpression retained CT18 near the nuclear periphery in cells on softer matrices. While, cells on softer matrices also activated emerin phosphorylation at a novel Tyr99 residue, the inhibition of which in a phospho-deficient mutant (emerinY99F), selectively retained chromosome 18 and 19 but not chromosome 1 territories at their conserved nuclear locations. Taken together, emerin functions as a key mechanosensor, that modulates the spatial organization of chromosome territories in the interphase nucleus.
Collapse
Affiliation(s)
- Roopali Pradhan
- Biology, Main Building, First Floor, Room#B-216, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Devika Ranade
- Biology, Main Building, First Floor, Room#B-216, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Kundan Sengupta
- Biology, Main Building, First Floor, Room#B-216, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| |
Collapse
|
14
|
Bikkul MU, Clements CS, Godwin LS, Goldberg MW, Kill IR, Bridger JM. Farnesyltransferase inhibitor and rapamycin correct aberrant genome organisation and decrease DNA damage respectively, in Hutchinson-Gilford progeria syndrome fibroblasts. Biogerontology 2018; 19:579-602. [PMID: 29907918 PMCID: PMC6223735 DOI: 10.1007/s10522-018-9758-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022]
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) is a rare and fatal premature ageing disease in children. HGPS is one of several progeroid syndromes caused by mutations in the LMNA gene encoding the nuclear structural proteins lamins A and C. In classic HGPS the mutation G608G leads to the formation of a toxic lamin A protein called progerin. During post-translational processing progerin remains farnesylated owing to the mutation interfering with a step whereby the farnesyl moiety is removed by the enzyme ZMPSTE24. Permanent farnesylation of progerin is thought to be responsible for the proteins toxicity. Farnesyl is generated through the mevalonate pathway and three drugs that interfere with this pathway and hence the farnesylation of proteins have been administered to HGPS children in clinical trials. These are a farnesyltransferase inhibitor (FTI), statin and a bisphosphonate. Further experimental studies have revealed that other drugs such as N-acetyl cysteine, rapamycin and IGF-1 may be of use in treating HGPS through other pathways. We have shown previously that FTIs restore chromosome positioning in interphase HGPS nuclei. Mis-localisation of chromosomes could affect the cells ability to regulate proper genome function. Using nine different drug treatments representing drug regimes in the clinic we have shown that combinatorial treatments containing FTIs are most effective in restoring specific chromosome positioning towards the nuclear periphery and in tethering telomeres to the nucleoskeleton. On the other hand, rapamycin was found to be detrimental to telomere tethering, it was, nonetheless, the most effective at inducing DNA damage repair, as revealed by COMET analyses.
Collapse
Affiliation(s)
- Mehmet U Bikkul
- Progeria Research Team, Healthy Ageing Theme, Institute for Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Craig S Clements
- Progeria Research Team, Healthy Ageing Theme, Institute for Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Lauren S Godwin
- Progeria Research Team, Healthy Ageing Theme, Institute for Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Martin W Goldberg
- Department of Biosciences, Durham University, Science Laboratories, South Road, Durham, DH1 3LE, UK
| | - Ian R Kill
- Progeria Research Team, Healthy Ageing Theme, Institute for Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK
| | - Joanna M Bridger
- Progeria Research Team, Healthy Ageing Theme, Institute for Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, UK.
| |
Collapse
|
15
|
Harhouri K, Navarro C, Depetris D, Mattei MG, Nissan X, Cau P, De Sandre-Giovannoli A, Lévy N. MG132-induced progerin clearance is mediated by autophagy activation and splicing regulation. EMBO Mol Med 2018; 9:1294-1313. [PMID: 28674081 PMCID: PMC5582415 DOI: 10.15252/emmm.201607315] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) is a lethal premature and accelerated aging disease caused by a de novo point mutation in LMNA encoding A‐type lamins. Progerin, a truncated and toxic prelamin A issued from aberrant splicing, accumulates in HGPS cells' nuclei and is a hallmark of the disease. Small amounts of progerin are also produced during normal aging. We show that progerin is sequestered into abnormally shaped promyelocytic nuclear bodies, identified as novel biomarkers in late passage HGPS cell lines. We found that the proteasome inhibitor MG132 induces progerin degradation through macroautophagy and strongly reduces progerin production through downregulation of SRSF‐1 and SRSF‐5 accumulation, controlling prelamin A mRNA aberrant splicing. MG132 treatment improves cellular HGPS phenotypes. MG132 injection in skeletal muscle of LmnaG609G/G609G mice locally reduces SRSF‐1 expression and progerin levels. Altogether, we demonstrate progerin reduction based on MG132 dual action and shed light on a promising class of molecules toward a potential therapy for children with HGPS.
Collapse
Affiliation(s)
- Karim Harhouri
- Aix Marseille Univ, INSERM, GMGF (Génétique Médicale et Génomique Fonctionnelle), Marseille, France
| | - Claire Navarro
- Aix Marseille Univ, INSERM, GMGF (Génétique Médicale et Génomique Fonctionnelle), Marseille, France
| | - Danielle Depetris
- Aix Marseille Univ, INSERM, GMGF (Génétique Médicale et Génomique Fonctionnelle), Marseille, France
| | - Marie-Geneviève Mattei
- Aix Marseille Univ, INSERM, GMGF (Génétique Médicale et Génomique Fonctionnelle), Marseille, France
| | - Xavier Nissan
- CECS, I-STEM, Institut des cellules Souches pour le Traitement et l'Etude des maladies Monogéniques, AFM, Evry, France
| | - Pierre Cau
- Aix Marseille Univ, INSERM, GMGF (Génétique Médicale et Génomique Fonctionnelle), Marseille, France.,AP-HM, Hôpital la Timone, Service de Biologie Cellulaire, Marseille, France
| | - Annachiara De Sandre-Giovannoli
- Aix Marseille Univ, INSERM, GMGF (Génétique Médicale et Génomique Fonctionnelle), Marseille, France.,AP-HM, Hôpital la Timone, Département de Génétique Médicale, Marseille, France
| | - Nicolas Lévy
- Aix Marseille Univ, INSERM, GMGF (Génétique Médicale et Génomique Fonctionnelle), Marseille, France .,AP-HM, Hôpital la Timone, Département de Génétique Médicale, Marseille, France
| |
Collapse
|
16
|
Serebryannyy L, Misteli T. Protein sequestration at the nuclear periphery as a potential regulatory mechanism in premature aging. J Cell Biol 2017; 217:21-37. [PMID: 29051264 PMCID: PMC5748986 DOI: 10.1083/jcb.201706061] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/10/2017] [Accepted: 08/17/2017] [Indexed: 12/19/2022] Open
Abstract
Serebryannyy and Misteli provide a perspective on how protein sequestration at the inner nuclear membrane and nuclear lamina might influence aging. Despite the extensive description of numerous molecular changes associated with aging, insights into the driver mechanisms of this fundamental biological process are limited. Based on observations in the premature aging syndrome Hutchinson–Gilford progeria, we explore the possibility that protein regulation at the inner nuclear membrane and the nuclear lamina contributes to the aging process. In support, sequestration of nucleoplasmic proteins to the periphery impacts cell stemness, the response to cytotoxicity, proliferation, changes in chromatin state, and telomere stability. These observations point to the nuclear periphery as a central regulator of the aging phenotype.
Collapse
Affiliation(s)
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
17
|
Tariq Z, Zhang H, Chia-Liu A, Shen Y, Gete Y, Xiong ZM, Tocheny C, Campanello L, Wu D, Losert W, Cao K. Lamin A and microtubules collaborate to maintain nuclear morphology. Nucleus 2017; 8:433-446. [PMID: 28557611 DOI: 10.1080/19491034.2017.1320460] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Lamin A (LA) is a critical structural component of the nuclear lamina. Mutations within the LA gene (LMNA) lead to several human disorders, most striking of which is Hutchinson-Gilford Progeria Syndrome (HGPS), a premature aging disorder. HGPS cells are best characterized by an abnormal nuclear morphology known as nuclear blebbing, which arises due to the accumulation of progerin, a dominant mutant form of LA. The microtubule (MT) network is known to mediate changes in nuclear morphology in the context of specific events such as mitosis, cell polarization, nucleus positioning and cellular migration. What is less understood is the role of the microtubule network in determining nuclear morphology during interphase. In this study, we elucidate the role of the cytoskeleton in regulation and misregulation of nuclear morphology through perturbations of both the lamina and the microtubule network. We found that LA knockout cells exhibit a crescent shape morphology associated with the microtubule-organizing center. Furthermore, this crescent shape ameliorates upon treatment with MT drugs, Nocodazole or Taxol. Expression of progerin, in LA knockout cells also rescues the crescent shape, although the response to Nocodazole or Taxol treatment is altered in comparison to cells expressing LA. Together these results describe a collaborative effort between LA and the MT network to maintain nuclear morphology.
Collapse
Affiliation(s)
- Zeshan Tariq
- a Department of Cell Biology and Molecular Genetics , University of Maryland , College Park , MD , USA
| | - Haoyue Zhang
- a Department of Cell Biology and Molecular Genetics , University of Maryland , College Park , MD , USA
| | - Alexander Chia-Liu
- b Department of Physics , University of Maryland , College Park , MD , USA
| | - Yang Shen
- b Department of Physics , University of Maryland , College Park , MD , USA
| | - Yantenew Gete
- a Department of Cell Biology and Molecular Genetics , University of Maryland , College Park , MD , USA
| | - Zheng-Mei Xiong
- a Department of Cell Biology and Molecular Genetics , University of Maryland , College Park , MD , USA
| | - Claire Tocheny
- c Department of Biology , The College of William and Mary , Williamsburg , VA , USA
| | - Leonard Campanello
- b Department of Physics , University of Maryland , College Park , MD , USA
| | - Di Wu
- a Department of Cell Biology and Molecular Genetics , University of Maryland , College Park , MD , USA
| | - Wolfgang Losert
- b Department of Physics , University of Maryland , College Park , MD , USA
| | - Kan Cao
- a Department of Cell Biology and Molecular Genetics , University of Maryland , College Park , MD , USA
| |
Collapse
|
18
|
Wu D, Yates PA, Zhang H, Cao K. Comparing lamin proteins post-translational relative stability using a 2A peptide-based system reveals elevated resistance of progerin to cellular degradation. Nucleus 2017; 7:585-596. [PMID: 27929926 PMCID: PMC5214577 DOI: 10.1080/19491034.2016.1260803] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nuclear lamins are the major components of the nuclear lamina at the periphery of the nucleus, supporting the nuclear envelope and participating in many nuclear processes, including DNA replication, transcription and chromatin organization. A group of diseases, the laminopathies, is associated with mutations in lamin genes. One of the most striking cases is Hutchinson-Gilford progeria syndrome (HGPS) which is the consequence of a lamin A dominant negative mutant named progerin. Due to the abnormal presence of a permanent C-terminal farnesyl tail, progerin gradually accumulates on the nuclear membrane, perturbing a diversity of signalings and transcriptional events. The accumulation of progerin has led to the speculation that progerin possesses higher stability than the wild type lamin A protein. However, the low solubility of lamin proteins renders traditional immunoprecipitation-dependent methods such as pulse-chase analysis ineffective for comparing the relative stabilities of mutant and wild type lamins. Here, we employ a novel platform for inferring differences in lamin stability, which is based on normalization to a co-translated reporter protein following porcine teschovirus-1 2A peptide-mediated co-translational cleavage. The results obtained using this method support the notion that progerin is more stable than lamin A. Moreover, treatment of FTI reduces progerin relative stability to the level of wild type lamin A.
Collapse
Affiliation(s)
- Di Wu
- a Department of Cell Biology and Molecular Genetics , University of Maryland College Park , MD , USA
| | - Phillip A Yates
- b The Department of Biochemistry and Molecular Biology , Oregon Health & Science University , Portland , OR , USA
| | - Haoyue Zhang
- a Department of Cell Biology and Molecular Genetics , University of Maryland College Park , MD , USA
| | - Kan Cao
- a Department of Cell Biology and Molecular Genetics , University of Maryland College Park , MD , USA
| |
Collapse
|
19
|
Carmosino M, Gerbino A, Schena G, Procino G, Miglionico R, Forleo C, Favale S, Svelto M. The expression of Lamin A mutant R321X leads to endoplasmic reticulum stress with aberrant Ca 2+ handling. J Cell Mol Med 2016; 20:2194-2207. [PMID: 27421120 PMCID: PMC5082401 DOI: 10.1111/jcmm.12926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/07/2016] [Indexed: 01/13/2023] Open
Abstract
Mutations in the Lamin A/C gene (LMNA), which encodes A‐type nuclear Lamins, represent the most frequent genetic cause of dilated cardiomyopathy (DCM). This study is focused on a LMNA nonsense mutation (R321X) identified in several members of an Italian family that produces a truncated protein isoform, which co‐segregates with a severe form of cardiomyopathy with poor prognosis. However, no molecular mechanisms other than nonsense mediated decay of the messenger and possible haploinsufficiency were proposed to explain DCM. Aim of this study was to gain more insights into the disease‐causing mechanisms induced by the expression of R321X at cellular level. We detected the expression of R321X by Western blotting from whole lysate of a mutation carrier heart biopsy. When expressed in HEK293 cells, GFP‐ (or mCherry)‐tagged R321X mislocalized in the endoplasmic reticulum (ER) inducing the PERK‐CHOP axis of the ER stress response. Of note, confocal microscopy showed phosphorylation of PERK in sections of the mutation carrier heart biopsy. ER mislocalization of mCherry‐R321X also induced impaired ER Ca2+ handling, reduced capacitative Ca2+ entry at the plasma membrane and abnormal nuclear Ca2+ dynamics. In addition, expression of R321X by itself increased the apoptosis rate. In conclusion, R321X is the first LMNA mutant identified to date, which mislocalizes into the ER affecting cellular homeostasis mechanisms not strictly related to nuclear functions.
Collapse
Affiliation(s)
- Monica Carmosino
- Department of Sciences, University of Basilicata, Potenza, Italy.
| | - Andrea Gerbino
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Giorgia Schena
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Giuseppe Procino
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | | | - Cinzia Forleo
- Cardiology Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Stefano Favale
- Cardiology Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy.,Consiglio Nazionale delle Ricerche, Bari, Italy
| |
Collapse
|
20
|
Abstract
The intermediate filament proteins, A- and B-type lamins, form the nuclear lamina scaffold adjacent to the inner nuclear membrane. Lamins also contribute to chromatin regulation and various signaling pathways affecting gene expression. In this review, Osmanagic-Myers et al. focus on the role of nuclear lamins in mechanosensing and also discuss how disease-linked lamin mutants may impair the response of cells to mechanical stimuli and influence the properties of the extracellular matrix. The intermediate filament proteins, A- and B-type lamins, form the nuclear lamina scaffold adjacent to the inner nuclear membrane. B-type lamins confer elasticity, while A-type lamins lend viscosity and stiffness to nuclei. Lamins also contribute to chromatin regulation and various signaling pathways affecting gene expression. The mechanical roles of lamins and their functions in gene regulation are often viewed as independent activities, but recent findings suggest a highly cross-linked and interdependent regulation of these different functions, particularly in mechanosignaling. In this newly emerging concept, lamins act as a “mechanostat” that senses forces from outside and responds to tension by reinforcing the cytoskeleton and the extracellular matrix. A-type lamins, emerin, and the linker of the nucleoskeleton and cytoskeleton (LINC) complex directly transmit forces from the extracellular matrix into the nucleus. These mechanical forces lead to changes in the molecular structure, modification, and assembly state of A-type lamins. This in turn activates a tension-induced “inside-out signaling” through which the nucleus feeds back to the cytoskeleton and the extracellular matrix to balance outside and inside forces. These functions regulate differentiation and may be impaired in lamin-linked diseases, leading to cellular phenotypes, particularly in mechanical load-bearing tissues.
Collapse
|