1
|
Xu Z, Zhang M, Guo Z, Chen L, Yang X, Li X, Liang Q, Tang Y, Liu J. Stemness-related lncRNAs signature as a biologic prognostic model for head and neck squamous cell carcinoma. Apoptosis 2023; 28:860-880. [PMID: 36997733 DOI: 10.1007/s10495-023-01832-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/01/2023]
Abstract
Cancer stem cells (CSCs) and long non-coding RNAs (lncRNAs) are particularly important for tumor cell growth and migration, and recurrence and drug resistance, including head and neck squamous cell carcinoma (HNSCC). The purpose of this study was to explore stemness-related lncRNAs (SRlncRNAs) that could be used for prognosis of patients with HNSCC. HNSCC RNA sequencing data and matched clinical data were obtained from TCGA database, and stem cell characteristic genes related to HNSCC mRNAsi were obtained from the online database by WGCNA analysis, respectively. Further, SRlncRNAs were obtained. Then, the prognostic model was constructed to forecast patient survival through univariate Cox regression and LASSO-Cox method based on SRlncRNAs. Kaplan-Meier, ROC and AUC were used to evaluate the predictive ability of the model. Moreover, we probed the underlying biological functions, signalling pathways and immune status hidden within differences in prognosis of patients. We explored whether the model could guide personalized treatments included immunotherapy and chemotherapy for HNSCC patients. At last, RT-qPCR was performed to analyze the expressions levels of SRlncRNAs in HNSCC cell lines. A SRlncRNAs signature was identified based on 5 SRlncRNAs (AC004943.2, AL022328.1, MIR9-3HG, AC015878.1 and FOXD2-AS1) in HNSCC. Also, risk scores were correlated with the abundance of tumor-infiltrating immune cells, whereas HNSCC-nominated chemotherapy drugs were considerably different from one another. The final finding was that these SRlncRNAs were abnormally expressed in HNSCCCS according to the results of RT-qPCR. These 5 SRlncRNAs signature, as a potential prognostic biomarker, can be utilized for personalized medicine in HNSCC patients.
Collapse
Affiliation(s)
- Zejun Xu
- School of Life Sciences, Hainan University, Hainan, 570100, People's Republic of China
- Institute of Biological Anthropology of Jinzhou Medical University, Liaoning, 110000, People's Republic of China
| | - Min Zhang
- Xiangya Hospital, Central South University, Hunan, 410000, People's Republic of China
| | - Zhiqiang Guo
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Lin Chen
- Community Health Service Center of Zhongshan Street, Songjiang District, Shanghai, 201700, People's Republic of China
| | - Xiaolei Yang
- Fourth People's Hospital of Jinan, Jinan, 250031, People's Republic of China
| | - Xiaoyu Li
- School of Life Sciences, Hainan University, Hainan, 570100, People's Republic of China
| | - Qian Liang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yuqing Tang
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TH, UK
| | - Jian Liu
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, People's Republic of China.
| |
Collapse
|
2
|
Cuproptosis-related LncRNA signatures as a prognostic model for head and neck squamous cell carcinoma. Apoptosis 2023; 28:247-262. [PMID: 36344660 DOI: 10.1007/s10495-022-01790-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
Abstract
Cuproptosis is a novel, distinct form of regulated cell death. However, little is known about the role of cuproptosis-related lncRNAs (CRlncRNAs) in head and neck squamous cell carcinoma (HNSCC). This study aimed to identify a CRlncRNAs signature, explore its prognostic value in HNSCC. RNA-seq data and relevant clinical data were downloaded from The Cancer Genome Atlas (TCGA) database, and cuproptosis-related genes were identified from a search of the relevant candidate-gene literature. Analysis of differentially expressed lncRNAs (DElncRNAs) was performed using the R package "edgeR". The intersection of the lncRNAs between DElncRNAs and CRlncRNAs was obtained using the R package "Venn Diagram". Univariate Cox regression was used to identify cuproptosis-related prognostic lncRNAs. LASSO-Cox method was used to narrow these cuproptosis-related prognostic lncRNAs and construct a prognostic model. Multiple statistical methods were used to evaluate the predictive ability of the model. Moreover, the relationships between the model and immune cell subpopulations, related functions and pathways and drug sensitivity were explored. Then, two risk groups were established according to the risk score calculated by the CRlncRNAs signature included three lncRNAs. In HNSCC patients, the risk score was a better predictor of survival than traditional clinicopathological features. In addition, significant differences in immune cells such as B cells, T cells and macrophages were observed between the two groups. Finally, the high-risk group had a lower IC50 for certain chemotherapeutic agents, such as cisplatin and cetuximab. This 3 CRlncRNAs signature is a powerful prognostic biomarker for predicting clinical outcomes and therapeutic responses in HNSCC patients.
Collapse
|
3
|
Zhou C, Zhan G, Jin Y, Chen J, Shen Z, Shen Y, Deng H. A novel pyroptosis-related gene signature to predict outcomes in laryngeal squamous cell carcinoma. Aging (Albany NY) 2021; 13:25960-25979. [PMID: 34910689 PMCID: PMC8751611 DOI: 10.18632/aging.203783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/02/2021] [Indexed: 12/09/2022]
Abstract
Pyroptosis, a pro-inflammatory form of programmed cell death, is associated with carcinogenesis and progression. However, there is little information concerning pyroptosis-related genes (PRGs) in laryngeal squamous cell carcinoma (LSCC). Herein, we aim to explore the prognostic value of PRGs in LSCC. The expression and clinical data of 47 PRGs in LSCC patients were obtained from The Cancer Genome Atlas. A novel prognostic PRG signature was constructed using least absolute shrinkage and selection operator analysis. Receiver operating characteristic (ROC) curves were drawn, and Kaplan-Meier survival Cox proportional hazard regression analyses were performed to measure the predictive capacity of the PRG signature. Furthermore, we constructed a six-PRG signature to divide LSCC patients into high- and low-risk groups. Patients in the high-risk group had worse overall survival than the low-risk group. The area under the time-dependent ROC curve was 0.696 for 1 year, 0.784 for 3 years, and 0.738 for 5 years. We proved that the PRGs signature was an independent predictor for LSCC. Functional enrichment analysis indicated that several immune-related pathways were significantly enriched in the low-risk group. Consistent with this, patients with low-risk scores had higher immune scores and better immunotherapeutic responses than the high-risk group. In conclusion, we established a novel PRGs signature that can predict outcome and response to immunotherapy of LSCC, pyroptosis may be a potential target for LSCC.
Collapse
Affiliation(s)
- Chongchang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315040, Zhejiang, China.,Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo 315040, Zhejiang, China
| | - Guowen Zhan
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Yinzhou Second Hospital, Ningbo 315040, Zhejiang, China
| | - Yangli Jin
- Department of Ultrasonography, Ningbo Yinzhou Second Hospital, Ningbo 315040, Zhejiang, China
| | - Jianneng Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Zhenhai Longsai Hospital, Ningbo 315200, Zhejiang, China
| | - Zhisen Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315040, Zhejiang, China.,Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo 315040, Zhejiang, China
| | - Yi Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315040, Zhejiang, China.,Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo 315040, Zhejiang, China
| | - Hongxia Deng
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315040, Zhejiang, China.,Department of Otorhinolaryngology Head and Neck Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo 315040, Zhejiang, China
| |
Collapse
|
4
|
Kyte JA, Aamdal S, Dueland S, Sæbøe-Larsen S, Inderberg EM, Madsbu UE, Skovlund E, Gaudernack G, Kvalheim G. Immune response and long-term clinical outcome in advanced melanoma patients vaccinated with tumor-mRNA-transfected dendritic cells. Oncoimmunology 2016; 5:e1232237. [PMID: 27999747 DOI: 10.1080/2162402x.2016.1232237] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 01/18/2023] Open
Abstract
The most effective anticancer immune responses are probably directed against patient-specific neoantigens. We have developed a melanoma vaccine targeting this individual mutanome based on dendritic cells (DCs) loaded with autologous tumor-mRNA. Here, we report a phase I/II trial evaluating toxicity, immune response and clinical outcome in 31 metastatic melanoma patients. The first cohort (n = 22) received the vaccine without any adjuvant; the next cohort (n = 9) received adjuvant IL2. Each subject received four weekly intranodal or intradermal injections, followed by optional monthly vaccines. Immune response was evaluated by delayed-type hypersensitivity (DTH), T cell proliferation and cytokine assays. Data were collected for 10 y after inclusion of the last patient. No serious adverse events were detected. In the intention-to-treat-cohort, we demonstrated significantly superior survival compared to matched controls from a benchmark meta-analysis (1 y survival 43% vs. 24%, 2 y 23% vs. 6.6%). A tumor-specific immune response was demonstrated in 16/31 patients. The response rate was higher after intradermal than intranodal vaccination (80% vs. 38%). Immune responders had improved survival compared to non-responders (median 14 mo vs. 6 mo; p = 0.030), and all eight patients surviving >20 mo were immune responders. In addition to the tumor-specific response, most patients developed a response against autologous DC antigens. The cytokine profile was polyfunctional and did not follow a Th1/Th2 dichotomy. We conclude that the favorable safety profile and evidence of a possible survival benefit warrant further studies of the RNA/DC vaccine. The vaccine appears insufficient as monotherapy, but there is a strong rationale for combination with checkpoint modulators.
Collapse
Affiliation(s)
- Jon Amund Kyte
- Department for Cell Therapy, Radiumhospitalet, Oslo University Hospital, Oslo, Norway; The Clinical Trial Unit, Radiumhospitalet, Oslo University Hospital, Oslo, Norway; Department of Immunology, Radiumhospitalet, Oslo University Hospital, Oslo, Norway
| | - Steinar Aamdal
- The Clinical Trial Unit, Radiumhospitalet, Oslo University Hospital , Oslo, Norway
| | - Svein Dueland
- The Clinical Trial Unit, Radiumhospitalet, Oslo University Hospital , Oslo, Norway
| | - Stein Sæbøe-Larsen
- Department for Cell Therapy, Radiumhospitalet, Oslo University Hospital , Oslo, Norway
| | - Else Marit Inderberg
- Department for Cell Therapy, Radiumhospitalet, Oslo University Hospital , Oslo, Norway
| | - Ulf Erik Madsbu
- Department for Radiology, Radiumhospitalet, Oslo University Hospital , Oslo, Norway
| | - Eva Skovlund
- Department of Public Health and General Practice, NTNU , Trondheim, Norway
| | - Gustav Gaudernack
- Department of Immunology, Radiumhospitalet, Oslo University Hospital , Oslo, Norway
| | - Gunnar Kvalheim
- Department for Cell Therapy, Radiumhospitalet, Oslo University Hospital , Oslo, Norway
| |
Collapse
|
5
|
Zamberi NR, Abu N, Mohamed NE, Nordin N, Keong YS, Beh BK, Zakaria ZAB, Nik Abdul Rahman NMA, Alitheen NB. The Antimetastatic and Antiangiogenesis Effects of Kefir Water on Murine Breast Cancer Cells. Integr Cancer Ther 2016; 15:NP53-NP66. [PMID: 27230756 PMCID: PMC5739168 DOI: 10.1177/1534735416642862] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 02/11/2016] [Accepted: 02/19/2016] [Indexed: 12/11/2022] Open
Abstract
Background. Kefir is a unique cultured product that contains beneficial probiotics. Kefir culture from other parts of the world exhibits numerous beneficial qualities such as anti-inflammatory, immunomodulation, and anticancer effects. Nevertheless, kefir cultures from different parts of the world exert different effects because of variation in culture conditions and media. Breast cancer is the leading cancer in women, and metastasis is the major cause of death associated with breast cancer. The antimetastatic and antiangiogenic effects of kefir water made from kefir grains cultured in Malaysia were studied in 4T1 breast cancer cells. Methods. 4T1 cancer cells were treated with kefir water in vitro to assess its antimigration and anti-invasion effects. BALB/c mice were injected with 4T1 cancer cells and treated orally with kefir water for 28 days. Results. Kefir water was cytotoxic toward 4T1 cells at IC50 (half-maximal inhibitory concentration) of 12.5 and 8.33 mg/mL for 48 and 72 hours, respectively. A significant reduction in tumor size and weight (0.9132 ± 0.219 g) and a substantial increase in helper T cells (5-fold) and cytotoxic T cells (7-fold) were observed in the kefir water–treated group. Proinflammatory and proangiogenic markers were significantly reduced in the kefir water–treated group. Conclusions. Kefir water inhibited tumor proliferation in vitro and in vivo mainly through cancer cell apoptosis, immunomodulation by stimulating T helper cells and cytotoxic T cells, and anti-inflammatory, antimetastatic, and antiangiogenesis effects. This study brought out the potential of the probiotic beverage kefir water in cancer treatment.
Collapse
Affiliation(s)
| | - Nadiah Abu
- Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | | | | | - Boon Kee Beh
- Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | | | | |
Collapse
|
6
|
Constantino J, Gomes C, Falcão A, Cruz MT, Neves BM. Antitumor dendritic cell-based vaccines: lessons from 20 years of clinical trials and future perspectives. Transl Res 2016; 168:74-95. [PMID: 26297944 DOI: 10.1016/j.trsl.2015.07.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/25/2015] [Accepted: 07/28/2015] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) are versatile elements of the immune system and are best known for their unparalleled ability to initiate and modulate adaptive immune responses. During the past few decades, DCs have been the subject of numerous studies seeking new immunotherapeutic strategies against cancer. Despite the initial enthusiasm, disappointing results from early studies raised some doubts regarding the true clinical value of these approaches. However, our expanding knowledge of DC immunobiology and the definition of the optimal characteristics for antitumor immune responses have allowed a more rational development of DC-based immunotherapies in recent years. Here, after a brief overview of DC immunobiology, we sought to systematize the knowledge provided by 20 years of clinical trials, with a special emphasis on the diversity of approaches used to manipulate DCs and their consequent impact on vaccine effectiveness. We also address how new therapeutic concepts, namely the combination of DC vaccines with other anticancer therapies, are being implemented and are leveraging clinical outcomes. Finally, optimization strategies, new insights, and future perspectives on the field are also highlighted.
Collapse
Affiliation(s)
- João Constantino
- Faculty of Pharmacy and Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Célia Gomes
- Faculty of Medicine, Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI) and Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy and Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Maria T Cruz
- Faculty of Pharmacy and Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Bruno M Neves
- Faculty of Pharmacy and Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal; Department of Chemistry and QOPNA, Mass Spectrometry Centre, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
7
|
Kepp O, Semeraro M, Bravo-San Pedro JM, Bloy N, Buqué A, Huang X, Zhou H, Senovilla L, Kroemer G, Galluzzi L. eIF2α phosphorylation as a biomarker of immunogenic cell death. Semin Cancer Biol 2015; 33:86-92. [PMID: 25749194 DOI: 10.1016/j.semcancer.2015.02.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/13/2015] [Accepted: 02/21/2015] [Indexed: 12/20/2022]
Abstract
Cancer cells exposed to some forms of chemotherapy and radiotherapy die while eliciting an adaptive immune response. Such a functionally peculiar variant of apoptosis has been dubbed immunogenic cell death (ICD). One of the central events in the course of ICD is the activation of an endoplasmic reticulum (ER) stress response. This is instrumental for cells undergoing ICD to emit all the signals that are required for their demise to be perceived as immunogenic by the host, and culminates with the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α). In particular, eIF2α phosphorylation is required for the pre-apoptotic exposure of the ER chaperone calreticulin (CALR) on the cell surface, which is a central determinant of ICD. Importantly, phosphorylated eIF2α can be quantified in both preclinical and clinical samples by immunoblotting or immunohistochemistry using phosphoneoepitope-specific monoclonal antibodies. Of note, the phosphorylation of eIF2α and CALR exposure do not necessarily correlate with each other, and neither of these parameters is sufficient for cell death to be perceived as immunogenic. Nonetheless, accumulating data indicate that assessing the degree of phosphorylation of eIF2α provides a convenient parameter to monitor ICD. Here, we discuss the role of the ER stress response in ICD and the potential value of eIF2α phosphorylation as a biomarker for this clinically relevant variant of apoptosis.
Collapse
Affiliation(s)
- Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Michaela Semeraro
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1015, Paris, France
| | - José Manuel Bravo-San Pedro
- INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Norma Bloy
- INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Aitziber Buqué
- INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Xing Huang
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Heng Zhou
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Laura Senovilla
- INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France.
| | - Lorenzo Galluzzi
- INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France.
| |
Collapse
|
8
|
Chen L, Meng D, Zhao L, Liu R, Bai P, Wang L, Xiao J. Selective colorectal cancer cell lysates enhance the immune function of mature dendritic cells in vitro. Mol Med Rep 2014; 11:1877-84. [PMID: 25394863 DOI: 10.3892/mmr.2014.2930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 09/24/2014] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to determine the most effective antigen with which to mature dendritic cells (DCs). The immune function of DCs loaded with lysates from three different colorectal cancer cell lines was compared. DCs were induced using granulocyte macrophage colony‑stimulating factor, interleukin (IL)‑4 and tumor necrosis factor-α from the peripheral blood mononuclear cells of patients with colorectal cancer, and loaded with lysates from Colo320, SW480 and SW620 colorectal cancer cell lines, respectively. Autogenous T cells were co‑cultured with mature DCs. Surface markers and the secretory function of mature DCs and stimulated T cells were then analyzed. MTT assays were used to evaluate the killing capacity of autogenous cytotoxic T lymphocytes (CTLs). Compared with control, cluster of differentiation (CD)1a, CD83 and CD86, and human leukocyte antigen‑DR expression levels were significantly higher in DCs matured using cancer cell lysates. In addition, IL‑12 secretion levels were elevated. Autogenous T cells stimulated with DCs that were matured using cancer cell lysates showed a higher proliferation capacity, increased interferon-γ secretion levels and stronger cytotoxic abilities compared with control cells. Among the three cell lines, SW480 lysates were most effective at promoting DC and T cell function. The results showed that SW480 lysates are more efficient than Colo320 and SW620 lysates in inducing DC immune function and activating the antitumor function of autogenous T cells.
Collapse
Affiliation(s)
- Lihong Chen
- Department of Oncology, First Affiliated Hospital of the Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Du Meng
- Department of Oncology, First Affiliated Hospital of the Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lei Zhao
- Department of Oncology, First Affiliated Hospital of the Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Rui Liu
- Department of Oncology, First Affiliated Hospital of the Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Peisong Bai
- Department of Oncology, First Affiliated Hospital of the Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Le Wang
- Department of Oncology, First Affiliated Hospital of the Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Juxiang Xiao
- Department of Oncology, First Affiliated Hospital of the Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
9
|
Vasaturo A, Di Blasio S, Peeters DGA, de Koning CCH, de Vries JM, Figdor CG, Hato SV. Clinical Implications of Co-Inhibitory Molecule Expression in the Tumor Microenvironment for DC Vaccination: A Game of Stop and Go. Front Immunol 2013; 4:417. [PMID: 24348481 PMCID: PMC3847559 DOI: 10.3389/fimmu.2013.00417] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 11/15/2013] [Indexed: 12/13/2022] Open
Abstract
The aim of therapeutic dendritic cell (DC) vaccines in cancer immunotherapy is to activate cytotoxic T cells to recognize and attack the tumor. T cell activation requires the interaction of the T cell receptor with a cognate major-histocompatibility complex-peptide complex. Although initiated by antigen engagement, it is the complex balance between co-stimulatory and co-inhibitory signals on DCs that results in T cell activation or tolerance. Even when already activated, tumor-specific T cells can be neutralized by the expression of co-inhibitory molecules on tumor cells. These and other immunosuppressive cues in the tumor microenvironment are major factors currently hampering the application of DC vaccination. In this review, we discuss recent data regarding the essential and complex role of co-inhibitory molecules in regulating the immune response within the tumor microenvironment. In particular, possible therapeutic intervention strategies aimed at reversing or neutralizing suppressive networks within the tumor microenvironment will be emphasized. Importantly, blocking co-inhibitory molecule signaling, often referred to as immune checkpoint blockade, does not necessarily lead to an effective activation of tumor-specific T cells. Therefore, combination of checkpoint blockade with other immune potentiating therapeutic strategies, such as DC vaccination, might serve as a synergistic combination, capable of reversing effector T cells immunosuppression while at the same time increasing the efficacy of T cell-mediated immunotherapies. This will ultimately result in long-term anti-tumor immunity.
Collapse
Affiliation(s)
- Angela Vasaturo
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , Nijmegen , Netherlands
| | - Stefania Di Blasio
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , Nijmegen , Netherlands
| | - Deborah G A Peeters
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , Nijmegen , Netherlands
| | - Coco C H de Koning
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , Nijmegen , Netherlands
| | - Jolanda M de Vries
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , Nijmegen , Netherlands ; Department of Medical Oncology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , Nijmegen , Netherlands
| | - Carl G Figdor
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , Nijmegen , Netherlands
| | - Stanleyson V Hato
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , Nijmegen , Netherlands
| |
Collapse
|