1
|
Zhu A, Bai Y, Nan Y, Ju D. Natural killer cell engagers: From bi-specific to tri-specific and tetra-specific engagers for enhanced cancer immunotherapy. Clin Transl Med 2024; 14:e70046. [PMID: 39472273 PMCID: PMC11521791 DOI: 10.1002/ctm2.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/25/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
Natural killer cell engagers (NKCEs) are a specialised subset of antibodies capable of simultaneously targeting endogenous NK cells and tumour cells, generating precise and effective cytolytic responses against cancer. This review systematically explores NK engagers as a rising star in NK-mediated immunotherapy, specifically focusing on multi-specific engagers. It examines the diverse configuration of NKCEs and how certain biologics could be employed to boost NK activity, including activating receptor engagement and cytokine incorporation. Some challenges and future perspectives of current NKCEs therapy are also discussed, including optimising pharmacokinetics, addressing the immunosuppressive tumour microenvironment and exploring potential combinatorial approaches. By offering an in-depth analysis of the current landscape and future trajectories of multi-specific NKCEs in cancer treatment, this review serves as a valuable resource for understanding this promising field of immunotherapy. HIGHLIGHTS Innovative NKCEs: NK cell engagers (NKCEs) represent a promising new class of immunotherapeutics targeting tumours by activating NK cells. Multi-specific formats: The transition from bi-specific to multi-specific NKCEs enhances their versatility and therapeutic efficacy. MECHANISMS OF ACTION NKCEs have the potential to improve NK cell activation by engaging activating receptors and incorporating cytokines. CLINICAL POTENTIAL Current clinical trials demonstrate the safety and efficacy of various NKCEs across different cancer types. Future research directions: Optimising NKCE designs and exploring combination therapies are essential for overcoming challenges in cancer treatment.
Collapse
Affiliation(s)
- An Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiChina
- Shanghai Institute of Infectious Disease and BiosecurityFudan UniversityShanghaiChina
| | - Yu Bai
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiChina
| | - Yanyang Nan
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiChina
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunotherapeuticsFudan University School of PharmacyShanghaiChina
- Shanghai Institute of Infectious Disease and BiosecurityFudan UniversityShanghaiChina
| |
Collapse
|
2
|
Huang S, Qin Z, Wang F, Kang Y, Ren B. A potential mechanism of tumor immune escape: Regulation and application of soluble natural killer group 2 member D ligands (Review). Oncol Rep 2024; 52:137. [PMID: 39155864 PMCID: PMC11358674 DOI: 10.3892/or.2024.8796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/31/2024] [Indexed: 08/20/2024] Open
Abstract
The immune system is integral to the surveillance and eradication of tumor cells. Interactions between the natural killer group 2 member D (NKG2D) receptor and its ligands (NKG2DLs) are vital for activating NKG2D receptor‑positive immune cells, such as natural killer cells. This activation enables these cells to identify and destroy tumor cells presenting with NKG2DLs, which is an essential aspect of tumor immunity. However, tumor immune escape is facilitated by soluble NKG2DL (sNKG2DL) shed from the surface of tumor cells. The production of sNKG2DL is predominantly regulated by metalloproteinases [a disintegrin and metalloproteinases (ADAM) and matrix metalloproteinase (MMP) families] and exosomes. sNKG2DL not only diminish immune recognition on the tumor cell surface but also suppress the function of immune cells, such as NK cells, and reduce the expression of the NKG2D receptor. This process promotes immune evasion, progression, and metastasis of tumors. In this review, an in‑depth summary of the mechanisms and factors that influence sNKG2DL production and their contribution to immune suppression within the tumor microenvironment are provided. Furthermore, due to the significant link between sNKG2DLs and tumor progression and metastasis, they have great potential as novel biomarkers. Detectable via liquid biopsies, sNKG2DLs could assess tumor malignancy and prognosis, and act as pivotal targets for immunotherapy. This could lead to the discovery of new drugs or the enhancement of existing treatments. Thus, the application of sNKG2DLs in clinical oncology was explored, offering substantial theoretical support for the development of innovative immunotherapeutic strategies for sNKG2DLs.
Collapse
Affiliation(s)
- Shuhao Huang
- Hunan Center for Clinical Laboratory, Second People's Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zihao Qin
- Hunan Center for Clinical Laboratory, Second People's Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Feiyang Wang
- Hunan Center for Clinical Laboratory, Second People's Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yiping Kang
- Hunan Center for Clinical Laboratory, Second People's Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Biqiong Ren
- Hunan Center for Clinical Laboratory, Second People's Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| |
Collapse
|
3
|
Leifheit ME, Johnson G, Kuzel TM, Schneider JR, Barker E, Yun HD, Ustun C, Goldufsky JW, Gupta K, Marzo AL. Enhancing Therapeutic Efficacy of FLT3 Inhibitors with Combination Therapy for Treatment of Acute Myeloid Leukemia. Int J Mol Sci 2024; 25:9448. [PMID: 39273395 PMCID: PMC11394928 DOI: 10.3390/ijms25179448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) mutations are genetic changes found in approximately thirty percent of patients with acute myeloid leukemia (AML). FLT3 mutations in AML represent a challenging clinical scenario characterized by a high rate of relapse, even after allogeneic hematopoietic stem cell transplantation (allo-HSCT). The advent of FLT3 tyrosine kinase inhibitors (TKIs), such as midostaurin and gilteritinib, has shown promise in achieving complete remission. However, a substantial proportion of patients still experience relapse following TKI treatment, necessitating innovative therapeutic strategies. This review critically addresses the current landscape of TKI treatments for FLT3+ AML, with a particular focus on gilteritinib. Gilteritinib, a highly selective FLT3 inhibitor, has demonstrated efficacy in targeting the mutant FLT3 receptor, thereby inhibiting aberrant signaling pathways that drive leukemic proliferation. However, monotherapy with TKIs may not be sufficient to eradicate AML blasts. Specifically, we provide evidence for integrating gilteritinib with mammalian targets of rapamycin (mTOR) inhibitors and interleukin-15 (IL-15) complexes. The combination of gilteritinib, mTOR inhibitors, and IL-15 complexes presents a compelling strategy to enhance the eradication of AML blasts and enhance NK cell killing, offering a potential for improved patient outcomes.
Collapse
Affiliation(s)
- Malia E Leifheit
- Department of Internal Medicine, Division of Hematology, and Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
| | - Gunnar Johnson
- Department of Internal Medicine, Division of Hematology, and Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
| | - Timothy M Kuzel
- Department of Internal Medicine, Division of Hematology, and Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
| | - Jeffrey R Schneider
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Edward Barker
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Hyun D Yun
- Hematology, Oncology, Veterans Affairs Long Beach Healthcare System, Long Beach, CA 90822, USA
- Department of Medicine, Division of Hematology, Oncology, School of Medicine, University of California, Irvine, CA 92617, USA
| | - Celalettin Ustun
- Department of Internal Medicine, Division of Hematology, and Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
| | - Josef W Goldufsky
- Department of Internal Medicine, Division of Hematology, and Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
| | - Kajal Gupta
- Department of Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Amanda L Marzo
- Department of Internal Medicine, Division of Hematology, and Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
4
|
Ghaedrahmati F, Esmaeil N, Akbari V, Ashrafi F. More balance toward activating receptors and cytotoxic activity of NK cells ex vivo differentiated from human umbilical cord blood-derived CD34 + stem cells in comparison with peripheral blood NK cells. Heliyon 2024; 10:e35509. [PMID: 39170467 PMCID: PMC11336728 DOI: 10.1016/j.heliyon.2024.e35509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Adoptive immunotherapies that use functional NK cells depend on the availability of sufficient numbers of these cells. We expanded umbilical cord blood (UCB)-CD34+ HSCs for 2 weeks and then differentiated them into NK cells and compared their function to peripheral blood (PB) NK cells. We assessed NKG2D, NKG2A, NKp30, NKp44, NKp46, and the expression of CD107a, CD57, CD69, FasL, PD-1, and IFN-γ level in two groups after co-culture with K562 cell line. We found that UCB-CD34+-derived NK cells express significantly more NKG2D, NKp44, and NKp46 receptors than PB NK cells. PB NK cells expressed significantly higher NKG2A and CD57 than UCB-CD34+-derived NK cells. In addition, UCB-CD34+-derived NK cells significantly expressed CD107a more than PB NK cells. Based on our findings, UCB-CD34+ cells can be a potentially advantageous source with strong cytotoxic function to produce allogeneic NK cells for adoptive cancer immunotherapy.
Collapse
Affiliation(s)
- Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Esmaeil
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vajihe Akbari
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzaneh Ashrafi
- Department of Hematology Oncology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Kühnel I, Vogler I, Spreu J, Bonig H, Döring C, Steinle A. The activating receptor NKp65 is selectively expressed by human ILC3 and demarcates ILC3 from mature NK cells. Eur J Immunol 2024; 54:e2250318. [PMID: 38072999 DOI: 10.1002/eji.202250318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 02/27/2024]
Abstract
Innate lymphocytes comprise cytotoxic natural killer (NK) cells and tissue-resident innate lymphoid cells (ILC) that are subgrouped according to their cytokine profiles into group 1 ILC (ILC1), ILC2, and ILC3. However, cell surface receptors unambiguously defining or specifically activating such ILC subsets are scarcely known. Here, we report on the physiologic expression of the human activating C-type lectin-like receptor (CTLR) NKp65, a high-affinity receptor for the CTLR keratinocyte-associated C-type lectin (KACL). Tracking rare NKp65 transcripts in human blood, we identify ILC3 to selectively express NKp65. NKp65 expression not only demarcates "bona fide" ILC3 from likewise RORγt-expressing ILC precursors and lymphoid tissue inducer cells but also from mature NK cells which acquire the NKp65-relative NKp80 during a Notch-dependent differentiation from NKp65+ precursor cells. Hence, ILC3 and NK cells mutually exclusively and interdependently express the genetically coupled sibling receptors NKp65 and NKp80. Much alike NKp80, NKp65 promotes cytotoxicity by innate lymphocytes which may become relevant during pathophysiological reprogramming of ILC3. Altogether, we report the selective expression of the activating immunoreceptor NKp65 by ILC3 demarcating ILC3 from mature NK cells and endowing ILC3 with a dedicated immunosensor for the epidermal immune barrier.
Collapse
Affiliation(s)
- Ines Kühnel
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Isabel Vogler
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Jessica Spreu
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
- German Red Cross Blood Service Baden-Württemberg-Hessen, Frankfurt am Main, Germany
| | - Claudia Döring
- Dr. Senckenbergisches Institute of Pathology, Goethe University Hospital Frankfurt am Main, Frankfurt am Main, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
6
|
Wang W, Liu Y, He Z, Li L, Liu S, Jiang M, Zhao B, Deng M, Wang W, Mi X, Sun Z, Ge X. Breakthrough of solid tumor treatment: CAR-NK immunotherapy. Cell Death Discov 2024; 10:40. [PMID: 38245520 PMCID: PMC10799930 DOI: 10.1038/s41420-024-01815-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/22/2024] Open
Abstract
As the latest and most anticipated method of tumor immunotherapy, CAR-NK therapy has received increasing attention in recent years, and its safety and high efficiency have irreplaceable advantages over CAR-T. Current research focuses on the application of CAR-NK in hematological tumors, while there are fewer studies on solid tumor. This article reviews the process of constructing CAR-NK, the effects of hypoxia and metabolic factors, NK cell surface receptors, cytokines, and exosomes on the efficacy of CAR-NK in solid tumor, and the role of CAR-NK in various solid tumor. The mechanism of action and the research status of the potential of CAR-NK in the treatment of solid tumor in clinical practice, and put forward the advantages, limitations and future problems of CAR-NK in the treatment of solid tumor.
Collapse
Affiliation(s)
- Wenkang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yang Liu
- Department of Radiotherapy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Zhen He
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Lifeng Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Senbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingqiang Jiang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bing Zhao
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng Deng
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wendong Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuefang Mi
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Xin Ge
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
7
|
Serritella AV, Saenz-Lopez Larrocha P, Dhar P, Liu S, Medd MM, Jia S, Cao Q, Wu JD. The Human Soluble NKG2D Ligand Differentially Impacts Tumorigenicity and Progression in Temporal and Model-Dependent Modes. Biomedicines 2024; 12:196. [PMID: 38255301 PMCID: PMC10812945 DOI: 10.3390/biomedicines12010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/25/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
NKG2D is an activating receptor expressed by all human NK cells and CD8 T cells. Harnessing the NKG2D/NKG2D ligand axis has emerged as a viable avenue for cancer immunotherapy. However, there is a long-standing controversy over whether soluble NKG2D ligands are immunosuppressive or immunostimulatory, originating from conflicting data generated from different scopes of pre-clinical investigations. Using multiple pre-clinical tumor models, we demonstrated that the impact of the most characterized human solid tumor-associated soluble NKG2D ligand, the soluble MHC I chain-related molecule (sMIC), on tumorigenesis depended on the tumor model being studied and whether the tumor cells possessed stemness-like properties. We demonstrated that the potential of tumor formation or establishment depended upon tumor cell stem-like properties irrespective of tumor cells secreting the soluble NKG2D ligand sMIC. Specifically, tumor formation was delayed or failed if sMIC-expressing tumor cells expressed low stem-cell markers; tumor formation was rapid if sMIC-expressing tumor cells expressed high stem-like cell markers. However, once tumors were formed, overexpression of sMIC unequivocally suppressed tumoral NK and CD8 T cell immunity and facilitated tumor growth. Our study distinguished the differential impacts of soluble NKG2D ligands in tumor formation and tumor progression, cleared the outstanding controversy over soluble NKG2D ligands in modulating tumor immunity, and re-enforced the viability of targeting soluble NKG2D ligands for cancer immunotherapy for established tumors.
Collapse
Affiliation(s)
- Anthony V. Serritella
- Department of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Pablo Saenz-Lopez Larrocha
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.S.-L.L.); (P.D.); (S.L.); (M.M.M.); (S.J.); (Q.C.)
| | - Payal Dhar
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.S.-L.L.); (P.D.); (S.L.); (M.M.M.); (S.J.); (Q.C.)
| | - Sizhe Liu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.S.-L.L.); (P.D.); (S.L.); (M.M.M.); (S.J.); (Q.C.)
| | - Milan M. Medd
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.S.-L.L.); (P.D.); (S.L.); (M.M.M.); (S.J.); (Q.C.)
| | - Shengxian Jia
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.S.-L.L.); (P.D.); (S.L.); (M.M.M.); (S.J.); (Q.C.)
| | - Qi Cao
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.S.-L.L.); (P.D.); (S.L.); (M.M.M.); (S.J.); (Q.C.)
| | - Jennifer D. Wu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.S.-L.L.); (P.D.); (S.L.); (M.M.M.); (S.J.); (Q.C.)
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
8
|
Wang J, Nakafuku KM, Ziff J, Gelin CF, Gholami H, Thompson AA, Karpowich NK, Limon L, Coate HR, Damm-Ganamet KL, Shih AY, Grant JC, Côte M, Mak PA, Pascual HA, Rives ML, Edwards JP, Venable JD, Venkatesan H, Shi Z, Allen SJ, Sharma S, Kung PP, Shireman BT. Development of small molecule inhibitors of natural killer group 2D receptor (NKG2D). Bioorg Med Chem Lett 2023; 96:129492. [PMID: 37778428 DOI: 10.1016/j.bmcl.2023.129492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Natural killer group 2D (NKG2D) is a homodimeric activating immunoreceptor whose function is to detect and eliminate compromised cells upon binding to the NKG2D ligands (NKG2DL) major histocompatibility complex (MHC) molecules class I-related chain A (MICA) and B (MICB) and UL16 binding proteins (ULBP1-6). While typically present at low levels in healthy cells and tissue, NKG2DL expression can be induced by viral infection, cellular stress or transformation. Aberrant activity along the NKG2D/NKG2DL axis has been associated with autoimmune diseases due to the increased expression of NKG2D ligands in human disease tissue, making NKG2D inhibitors an attractive target for immunomodulation. Herein we describe the discovery and optimization of small molecule PPI (protein-protein interaction) inhibitors of NKG2D/NKG2DL. Rapid SAR was guided by structure-based drug design and accomplished by iterative singleton and parallel medicinal chemistry synthesis. These efforts resulted in the identification of several potent analogs (14, 21, 30, 45) with functional activity and improved LLE.
Collapse
Affiliation(s)
- Jocelyn Wang
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States.
| | - Kohki M Nakafuku
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States.
| | - Jeannie Ziff
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States
| | - Christine F Gelin
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States
| | - Hadi Gholami
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States
| | - Aaron A Thompson
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States
| | - Nathan K Karpowich
- Janssen Research & Development L.L.C., 1400 McKean Rd., Spring House, PA 19477, United States
| | - Luis Limon
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States
| | - Heather R Coate
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States
| | - Kelly L Damm-Ganamet
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States
| | - Amy Y Shih
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States
| | - Joanna C Grant
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States
| | - Marjorie Côte
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States
| | - Puiying A Mak
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States
| | - Heather A Pascual
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States
| | - Marie-Laure Rives
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States
| | - James P Edwards
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States
| | - Jennifer D Venable
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States
| | - Hariharan Venkatesan
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States
| | - Zhicai Shi
- Janssen Research & Development L.L.C., 1400 McKean Rd., Spring House, PA 19477, United States
| | - Samantha J Allen
- Janssen Research & Development L.L.C., 1400 McKean Rd., Spring House, PA 19477, United States
| | - Sujata Sharma
- Janssen Research & Development L.L.C., 1400 McKean Rd., Spring House, PA 19477, United States
| | - Pei-Pei Kung
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States
| | - Brock T Shireman
- Janssen Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA, 92121, United States
| |
Collapse
|
9
|
da Costa AC, de Souza Barbosa LC, Kipnis A, Junqueira-Kipnis AP. Decreased Expression of CD314 by NK Cells Correlates with Their Ability to Respond by Producing IFN-γ after BCG Moscow Vaccination and Is Associated with Distinct Early Immune Responses. Vaccines (Basel) 2023; 11:1297. [PMID: 37631865 PMCID: PMC10458680 DOI: 10.3390/vaccines11081297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
The immune response to vaccines is complex and results in various outcomes. BCG vaccination induces innate and specific responses that can lead to protection against tuberculosis, and cross-protection against other infections. NK cells have been associated with BCG-induced protection. Therefore, we hypothesize that differences in NK cell status before BCG vaccination may have a role in the ability of BCG to activate the immune response. Participants of a clinical trial were evaluated after BCG vaccination. The participants were assigned to different groups according to variation in IFN-γ expression by NK cells between days 1 and 15 after BCG vaccination. Individuals that presented a higher increase in IFN-γ expression by NK cells presented reduced CD314 expression at day 1, and after vaccination an increase in inflammatory NK cells and CD4 T-cell expression of IL-17. A negative correlation between expression of CD314 at day 1 and that of IFN-γ by NK cells after BCG vaccination was observed. Participants with lower of IFN-γ expression by NK cells after BCG vaccination presented an increase in the cytotoxic NK subpopulation and CD4 T-cell expression of IL-17 and IFN-γ. In conclusion, the expression of CD314 by NK cells before BCG vaccination influences their IFN-γ responses, generation of NK subpopulations, and the specific T immune response at 15 days after vaccination.
Collapse
Affiliation(s)
- Adeliane Castro da Costa
- Campus Goiânia, Goiás Estácio de Sá University, Goiânia 74063-010, ZC, Brazil;
- Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, ZC, Brazil; (L.C.d.S.B.); (A.K.)
| | - Lília Cristina de Souza Barbosa
- Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, ZC, Brazil; (L.C.d.S.B.); (A.K.)
| | - André Kipnis
- Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, ZC, Brazil; (L.C.d.S.B.); (A.K.)
| | - Ana Paula Junqueira-Kipnis
- Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, ZC, Brazil; (L.C.d.S.B.); (A.K.)
| |
Collapse
|
10
|
Zhang Y, Luo F, Dong K. Soluble NKG2D ligands impair CD8 + T cell antitumor function dependent of NKG2D downregulation in neuroblastoma. Oncol Lett 2023; 26:297. [PMID: 37274476 PMCID: PMC10236264 DOI: 10.3892/ol.2023.13883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
T cell-based immunotherapy has achieved remarkable beneficial clinical outcomes. Tumor-derived NKG2D ligands (NKG2DL) allow tumors to escape immunologic surveillance. However, the mechanism underlying NKG2DL-mediated immune escape in neuroblastoma (NB) remains incompletely understood. In the present study, first soluble NKG2DL, soluble major histocompatibility complex (MHC) class-I-related chain A and soluble UL-16 binding proteins expression levels were determined in both the serum from patients with NB and in NB cell line culture supernatants. NB cell-derived sNKG2DL was initially cleaved by ADAM10 and ADAM17. Furthermore, sNKG2DL expression levels were positively correlated with the immunosuppressive microenvironment and poor prognosis. Tumor-derived sNKG2DL induced degradation of NKG2D on CD8+ T cells and impaired CD8+ T cell proliferation, IFN-γ production, and CD107a translocation. More importantly, blockage of sNKG2DL increased the antitumor activity of CD8+ T cells. Thus, the results showed that NB-induced immunosuppression was achieved through tumor-derived sMICA and sULBP-2, and blockage of the tumor-derived sNKG2DLs with sNKG2DL neutralizing antibodies was a novel strategy to recover T-cell function and enhance antitumor immunotherapy.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| | - Feifei Luo
- Biotherapy Research Center, Fudan University, Shanghai 200040, P.R. China
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Kuiran Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai 201102, P.R. China
| |
Collapse
|
11
|
Molfetta R, Petillo S, Cippitelli M, Paolini R. SUMOylation and related post-translational modifications in natural killer cell anti-cancer responses. Front Cell Dev Biol 2023; 11:1213114. [PMID: 37313439 PMCID: PMC10258607 DOI: 10.3389/fcell.2023.1213114] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023] Open
Abstract
SUMOylation is a reversible modification that involves the covalent attachment of small ubiquitin-like modifier (SUMO) to target proteins, leading to changes in their localization, function, stability, and interactor profile. SUMOylation and additional related post-translational modifications have emerged as important modulators of various biological processes, including regulation of genomic stability and immune responses. Natural killer (NK) cells are innate immune cells that play a critical role in host defense against viral infections and tumors. NK cells can recognize and kill infected or transformed cells without prior sensitization, and their activity is tightly regulated by a balance of activating and inhibitory receptors. Expression of NK cell receptors as well as of their specific ligands on target cells is finely regulated during malignant transformation through the integration of different mechanisms including ubiquitin- and ubiquitin-like post-translational modifications. Our review summarizes the role of SUMOylation and other related pathways in the biology of NK cells with a special emphasis on the regulation of their response against cancer. The development of novel selective inhibitors as useful tools to potentiate NK-cell mediated killing of tumor cells is also briefly discussed.
Collapse
|
12
|
D’Silva SZ, Singh M, Pinto AS. NK cell defects: implication in acute myeloid leukemia. Front Immunol 2023; 14:1112059. [PMID: 37228595 PMCID: PMC10203541 DOI: 10.3389/fimmu.2023.1112059] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Acute Myeloid Leukemia (AML) is a complex disease with rapid progression and poor/unsatisfactory outcomes. In the past few years, the focus has been on developing newer therapies for AML; however, relapse remains a significant problem. Natural Killer cells have strong anti-tumor potential against AML. This NK-mediated cytotoxicity is often restricted by cellular defects caused by disease-associated mechanisms, which can lead to disease progression. A stark feature of AML is the low/no expression of the cognate HLA ligands for the activating KIR receptors, due to which these tumor cells evade NK-mediated lysis. Recently, different Natural Killer cell therapies have been implicated in treating AML, such as the adoptive NK cell transfer, Chimeric antigen receptor-modified NK (CAR-NK) cell therapy, antibodies, cytokine, and drug treatment. However, the data available is scarce, and the outcomes vary between different transplant settings and different types of leukemia. Moreover, remission achieved by some of these therapies is only for a short time. In this mini-review, we will discuss the role of NK cell defects in AML progression, particularly the expression of different cell surface markers, the available NK cell therapies, and the results from various preclinical and clinical trials.
Collapse
Affiliation(s)
- Selma Z. D’Silva
- Transplant Immunology and Immunogenetics Lab, Advanced Centre for Treatment, Education and Research in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Meenakshi Singh
- Transplant Immunology and Immunogenetics Lab, Advanced Centre for Treatment, Education and Research in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Andrea S. Pinto
- Transplant Immunology and Immunogenetics Lab, Advanced Centre for Treatment, Education and Research in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| |
Collapse
|
13
|
Youlin K, Simin L, Jian K, Li Z. Inhibition of miR-20a by pterostilbene facilitates prostate cancer cells killed by NK cells via up-regulation of NKG2D ligands and TGF-β1down-regulation. Heliyon 2023; 9:e14957. [PMID: 37064475 PMCID: PMC10102449 DOI: 10.1016/j.heliyon.2023.e14957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
Natural killer (NK) cells play a potent role in antitumor immunity via spontaneously eliminating tumor directly. However, some tumors such as prostate cancer constantly escape this immune response by down-regulating cell surface molecule recognition and/or secreting immune impressive cytokines. Here, we found pterostilbene, a natural agent with potent anticancer activity, could enhance expression of major histocompatibility complex class I chain-related proteins A and B (MICA/B) on prostate cancer cells surface, which are ligands of the natural killer group 2 member D (NKG2D) expressed by NK cells, and inhibit TGF-β1 secretion by prostate cancer cells. Further, we discovered that these effects were caused by inhibition of miR-20a in prostate cancer cells by pterostilbene. MiR-20a could target the 3' untranslated region (UTR) of MICA/B, resulting in their expression down-regulation. Inhibition of TGF-β1 function by its specific antibody attenuated its impairment to NKG2D on NK cells. Finally, we observed that pterostilbene-treated prostate cancer cells were more easily to be killed by NK cells. Taken together, our findings demonstrated inhibition of miR-20a by pterostilbene in prostate cancer cells could increase MICA/B expression and decrease TGF-β1 secretion, which enhanced NK cell-mediated cytotoxicity againt prostate cancer cells, suggesting a potential approach for increasing anti-prostate cancer immune.
Collapse
Affiliation(s)
- Kuang Youlin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Liang Simin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Kang Jian
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhang Li
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Corresponding author.
| |
Collapse
|
14
|
Whalen KA, Rakhra K, Mehta NK, Steinle A, Michaelson JS, Baeuerle PA. Engaging natural killer cells for cancer therapy via NKG2D, CD16A and other receptors. MAbs 2023; 15:2208697. [PMID: 37165468 PMCID: PMC10173799 DOI: 10.1080/19420862.2023.2208697] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023] Open
Abstract
The field of immuno-oncology has revolutionized cancer patient care and improved survival and quality of life for patients. Much of the focus in the field has been on exploiting the power of the adaptive immune response through therapeutic targeting of T cells. While these approaches have markedly advanced the field, some challenges remain, and the clinical benefit of T cell therapies does not extend to all patients or tumor indications. Alternative strategies, such as engaging the innate immune system, have become an intense area of focus in the field. In particular, the engagement of natural killer (NK) cells as potent effectors of the innate immune response has emerged as a promising modality in immunotherapy. Here, we review therapeutic approaches for selective engagement of NK cells for cancer therapy, with a particular focus on targeting the key activating receptors NK Group 2D (NKG2D) and cluster of differentiation 16A (CD16A).
Collapse
Affiliation(s)
- Kerry A. Whalen
- Preclinical and Early Development, Cullinan Oncology, Inc, Cambridge, MA, USA
| | - Kavya Rakhra
- Preclinical and Early Development, Cullinan Oncology, Inc, Cambridge, MA, USA
| | - Naveen K. Mehta
- Preclinical and Early Development, Cullinan Oncology, Inc, Cambridge, MA, USA
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe-University Frankfurt, Frankfurt am Main, Germany
- Preclinical and Early Development, Frankfurt Cancer Institute, Frankfurt am Main, Germany
| | | | - Patrick A. Baeuerle
- Preclinical and Early Development, Cullinan Oncology, Inc, Cambridge, MA, USA
- Institute for Immunology, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
15
|
Koukourakis IM, Tiniakos D, Kouloulias V, Zygogianni A. The molecular basis of immuno-radiotherapy. Int J Radiat Biol 2022; 99:715-736. [PMID: 36383201 DOI: 10.1080/09553002.2023.2144960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE Radiotherapy (RT) and immunotherapy are powerful anti-tumor treatment modalities. Experimental research has demonstrated an important interplay between the cytotoxic effects of RT and the immune system. This systematic review provides an overview of the basics of anti-tumor immunity and focuses on the mechanisms underlying the interplay between RT and immune anti-tumor response that set the molecular basis of immuno-RT. CONCLUSIONS An 'immunity acquired equilibrium' mimicking tumor dormancy can be achieved post-irradiation treatment, with the balance shifted toward tumor eradication or regrowth when immune cells' cytotoxic effects or cancer proliferation rate prevail, respectively. RT has both immunosuppressive and immune-enhancing properties. The latter effect is also known as radio-vaccination. Its mechanisms involve up- or down-regulation of membrane molecules, such as PD-L1, HLA-class-I, CD80/86, CD47, and Fas/CD95, that play a vital role in immune checkpoint pathways and increased cytokine expression (e.g. INFα,β,γ, IL1,2, and TNFα) by cancer or immune cells. Moreover, the interactions of radiation with the tumor microenvironment (fibroblasts, tumor-infiltrating lymphocytes, monocytes, and dendritic cells are also an important component of radio-vaccination. Thus, RT may have anti-tumor vaccine properties, whose sequels can be exploited by immunotherapy agents to treat different cancer subtypes effectively.
Collapse
Affiliation(s)
- Ioannis M. Koukourakis
- Radiation Oncology Unit, First Department of Radiology, Medical School, Aretaieion Hospital, National and Kapodistrian University of Athens (NKUOA), Athens, Greece
| | - Dina Tiniakos
- Department of Pathology, Aretaieion University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Vassilis Kouloulias
- Radiation Oncology Unit, Second Department of Radiology, School of Medicine, Rimini 1, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Zygogianni
- Radiation Oncology Unit, First Department of Radiology, Medical School, Aretaieion Hospital, National and Kapodistrian University of Athens (NKUOA), Athens, Greece
| |
Collapse
|
16
|
Jones AB, Rocco A, Lamb LS, Friedman GK, Hjelmeland AB. Regulation of NKG2D Stress Ligands and Its Relevance in Cancer Progression. Cancers (Basel) 2022; 14:2339. [PMID: 35565467 PMCID: PMC9105350 DOI: 10.3390/cancers14092339] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Under cellular distress, multiple facets of normal homeostatic signaling are altered or disrupted. In the context of the immune landscape, external and internal stressors normally promote the expression of natural killer group 2 member D (NKG2D) ligands that allow for the targeted recognition and killing of cells by NKG2D receptor-bearing effector populations. The presence or absence of NKG2D ligands can heavily influence disease progression and impact the accessibility of immunotherapy options. In cancer, tumor cells are known to have distinct regulatory mechanisms for NKG2D ligands that are directly associated with tumor progression and maintenance. Therefore, understanding the regulation of NKG2D ligands in cancer will allow for targeted therapeutic endeavors aimed at exploiting the stress response pathway. In this review, we summarize the current understanding of regulatory mechanisms controlling the induction and repression of NKG2D ligands in cancer. Additionally, we highlight current therapeutic endeavors targeting NKG2D ligand expression and offer our perspective on considerations to further enhance the field of NKG2D ligand biology.
Collapse
Affiliation(s)
- Amber B. Jones
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Abbey Rocco
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.R.); (G.K.F.)
| | | | - Gregory K. Friedman
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.R.); (G.K.F.)
| | - Anita B. Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| |
Collapse
|
17
|
Zhang C, Röder J, Scherer A, Bodden M, Pfeifer Serrahima J, Bhatti A, Waldmann A, Müller N, Oberoi P, Wels WS. Bispecific antibody-mediated redirection of NKG2D-CAR natural killer cells facilitates dual targeting and enhances antitumor activity. J Immunother Cancer 2021; 9:jitc-2021-002980. [PMID: 34599028 PMCID: PMC8488744 DOI: 10.1136/jitc-2021-002980] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Natural killer group 2D (NKG2D) is an activating receptor of natural killer (NK) cells and other lymphocytes that mediates lysis of malignant cells through recognition of stress-induced ligands such as MICA and MICB. Such ligands are broadly expressed by cancer cells of various origins and serve as targets for adoptive immunotherapy with effector cells endogenously expressing NKG2D or carrying an NKG2D-based chimeric antigen receptor (CAR). However, shedding or downregulation of NKG2D ligands (NKG2DL) can prevent NKG2D activation, resulting in escape of cancer cells from NKG2D-dependent immune surveillance. METHODS To enable tumor-specific targeting of NKG2D-expressing effector cells independent of membrane-anchored NKG2DLs, we generated a homodimeric recombinant antibody which harbors an N-terminal single-chain fragment variable (scFv) antibody domain for binding to NKG2D, linked via a human IgG4 Fc region to a second C-terminal scFv antibody domain for recognition of the tumor-associated antigen ErbB2 (HER2). The ability of this molecule, termed NKAB-ErbB2, to redirect NKG2D-expressing effector cells to ErbB2-positive tumor cells of different origins was investigated using peripheral blood mononuclear cells, ex vivo expanded NK cells, and NK and T cells engineered with an NKG2D-based chimeric receptor. RESULTS On its own, bispecific NKAB-ErbB2 increased lysis of ErbB2-positive breast carcinoma cells by peripheral blood-derived NK cells endogenously expressing NKG2D more effectively than an ErbB2-specific IgG1 mini-antibody able to induce antibody-dependent cell-mediated cytotoxicity via activation of CD16. Furthermore, NKAB-ErbB2 synergized with NK-92 cells or primary T cells engineered to express an NKG2D-CD3ζ chimeric antigen receptor (NKAR), leading to targeted cell killing and greatly enhanced antitumor activity, which remained unaffected by soluble MICA known as an inhibitor of NKG2D-mediated natural cytotoxicity. In an immunocompetent mouse glioblastoma model mimicking low or absent NKG2DL expression, the combination of NKAR-NK-92 cells and NKAB-ErbB2 effectively suppressed outgrowth of ErbB2-positive tumors, resulting in treatment-induced endogenous antitumor immunity and cures in the majority of animals. CONCLUSIONS Our results demonstrate that combining an NKAB antibody with effector cells expressing an activating NKAR receptor represents a powerful and versatile approach to simultaneously enhance tumor antigen-specific as well as NKG2D-CAR and natural NKG2D-mediated cytotoxicity, which may be particularly useful to target tumors with heterogeneous target antigen expression.
Collapse
Affiliation(s)
- Congcong Zhang
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany.,German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Jasmin Röder
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Anne Scherer
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Malena Bodden
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | | | - Anita Bhatti
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Anja Waldmann
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Nina Müller
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Pranav Oberoi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany.,German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Winfried S Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany .,German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| |
Collapse
|
18
|
Unleashing the power of NK cells in anticancer immunotherapy. J Mol Med (Berl) 2021; 100:337-349. [PMID: 34374809 PMCID: PMC8843917 DOI: 10.1007/s00109-021-02120-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022]
Abstract
Due to their physiological role in removing damaged cells, natural killer (NK) cells represent ideal candidates for cellular immunotherapy in the treatment of cancer. Thereby, the cytotoxicity of NK cells is regulated by signals on both, the NK cells as well as the targeted tumor cells, and the interplay and balance of these signals determine the killing capacity of NK cells. One promising avenue in cancer treatment is therefore the combination of NK cell therapy with agents that either help to increase the killing capacity of NK cells or sensitize tumor cells to an NK cell-mediated attack. In this mini-review, we present different strategies that can be explored to unleash the potential of NK cell immunotherapy. In particular, we summarize how modulation of apoptosis signaling within tumor cells can be exploited to sensitize tumor cells to NK cell-mediated cytotoxicity.
Collapse
|
19
|
Jacobs B, Gebel V, Heger L, Grèze V, Schild H, Dudziak D, Ullrich E. Characterization and Manipulation of the Crosstalk Between Dendritic and Natural Killer Cells Within the Tumor Microenvironment. Front Immunol 2021; 12:670540. [PMID: 34054844 PMCID: PMC8160470 DOI: 10.3389/fimmu.2021.670540] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/19/2021] [Indexed: 01/22/2023] Open
Abstract
Cellular therapy has entered the daily clinical life with the approval of CAR T cell therapeutics and dendritic cell (DCs) vaccines in the US and the EU. In addition, numerous other adoptive cellular products, including natural killer (NK) cells, are currently evaluated in early phase I/ II clinical trials for the treatment of cancer patients. Despite these promising accomplishments, various challenges remain to be mastered in order to ensure sustained therapeutic success. These include the identification of strategies by which tumor cells escape the immune system or establish an immunosuppressive tumor microenvironment (TME). As part of the innate immune system, DCs and NK cells are both present within the TME of various tumor entities. While NK cells are well known for their intrinsic anti-tumor activity by their cytotoxicity capacities and the secretion of pro-inflammatory cytokines, the role of DCs within the TME is a double-edged sword as different DC subsets have been described with either tumor-promoting or -inhibiting characteristics. In this review, we will discuss recent findings on the interaction of DCs and NK cells under physiological conditions and within the TME. One focus is the crosstalk of various DC subsets with NK cells and their impact on the progression or inhibition of tumor growth. In addition, we will provide suggestions to overcome the immunosuppressive outcome of the interaction of DCs and NK cells within the TME.
Collapse
Affiliation(s)
- Benedikt Jacobs
- Department of Internal Medicine 5, Haematology and Oncology, Friedrich Alexander University Erlangen-Nuremberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Veronika Gebel
- Children's Hospital, Goethe-University Frankfurt, Frankfurt, Germany.,Experimental Immunology, Goethe University Frankfurt , Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Lukas Heger
- Department of Dermatology, Laboratory of Dendritic Cell Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Victoria Grèze
- Children's Hospital, Goethe-University Frankfurt, Frankfurt, Germany.,Experimental Immunology, Goethe University Frankfurt , Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Hansjörg Schild
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany.,Research Centre for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Diana Dudziak
- Department of Dermatology, Laboratory of Dendritic Cell Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Evelyn Ullrich
- Children's Hospital, Goethe-University Frankfurt, Frankfurt, Germany.,Experimental Immunology, Goethe University Frankfurt , Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| |
Collapse
|
20
|
Wendel P, Reindl LM, Bexte T, Künnemeyer L, Särchen V, Albinger N, Mackensen A, Rettinger E, Bopp T, Ullrich E. Arming Immune Cells for Battle: A Brief Journey through the Advancements of T and NK Cell Immunotherapy. Cancers (Basel) 2021; 13:cancers13061481. [PMID: 33807011 PMCID: PMC8004685 DOI: 10.3390/cancers13061481] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary This review is intended to provide an overview on the history and recent advances of T cell and natural killer (NK) cell-based immunotherapy. While the thymus was discovered as the origin of T cells in the 1960s, and NK cells were first described in 1975, the clinical application of adoptive cell therapies (ACT) only began in the early 1980s with the first lymphokine activated killer (LAK) cell product for the treatment of cancer patients. Over the past decades, further immunotherapies have been developed, including ACT using cytokine-induced killer (CIK) cells, products based on the NK cell line NK-92 as well as specific T and NK cell preparations. Recent advances have successfully improved the effectiveness of T, NK, CIK or NK-92 cells towards tumor-targeting antigens generated by genetic engineering of the immune cells. Herein, we summarize the promising development of ACT over the past decades in the fight against cancer. Abstract The promising development of adoptive immunotherapy over the last four decades has revealed numerous therapeutic approaches in which dedicated immune cells are modified and administered to eliminate malignant cells. Starting in the early 1980s, lymphokine activated killer (LAK) cells were the first ex vivo generated NK cell-enriched products utilized for adoptive immunotherapy. Over the past decades, various immunotherapies have been developed, including cytokine-induced killer (CIK) cells, as a peripheral blood mononuclear cells (PBMCs)-based therapeutic product, the adoptive transfer of specific T and NK cell products, and the NK cell line NK-92. In addition to allogeneic NK cells, NK-92 cell products represent a possible “off-the-shelf” therapeutic concept. Recent approaches have successfully enhanced the specificity and cytotoxicity of T, NK, CIK or NK-92 cells towards tumor-specific or associated target antigens generated by genetic engineering of the immune cells, e.g., to express a chimeric antigen receptor (CAR). Here, we will look into the history and recent developments of T and NK cell-based immunotherapy.
Collapse
Affiliation(s)
- Philipp Wendel
- Children’s Hospital, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (P.W.); (L.M.R.); (T.B.); (L.K.); (N.A.); (E.R.)
- Experimental Immunology, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Lisa Marie Reindl
- Children’s Hospital, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (P.W.); (L.M.R.); (T.B.); (L.K.); (N.A.); (E.R.)
- Experimental Immunology, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Tobias Bexte
- Children’s Hospital, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (P.W.); (L.M.R.); (T.B.); (L.K.); (N.A.); (E.R.)
- Experimental Immunology, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Leander Künnemeyer
- Children’s Hospital, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (P.W.); (L.M.R.); (T.B.); (L.K.); (N.A.); (E.R.)
- Experimental Immunology, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Vinzenz Särchen
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, 60528 Frankfurt am Main, Germany;
| | - Nawid Albinger
- Children’s Hospital, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (P.W.); (L.M.R.); (T.B.); (L.K.); (N.A.); (E.R.)
- Experimental Immunology, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Andreas Mackensen
- Department of Medicine 5, University Hospital Erlangen, University of Erlangen-Nuremberg, 91054 Erlangen, Germany;
| | - Eva Rettinger
- Children’s Hospital, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (P.W.); (L.M.R.); (T.B.); (L.K.); (N.A.); (E.R.)
| | - Tobias Bopp
- Institute for Immunology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
- Research Center for Immunotherapy (FZI), University Medical Center Mainz, 55131 Mainz, Germany
- University Cancer Center Mainz, University Medical Center, 55131 Mainz, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 69120 Heidelberg, Germany
| | - Evelyn Ullrich
- Children’s Hospital, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (P.W.); (L.M.R.); (T.B.); (L.K.); (N.A.); (E.R.)
- Experimental Immunology, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 69120 Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
- Correspondence:
| |
Collapse
|
21
|
The NKG2D ligand ULBP4 is not expressed by human monocytes. PLoS One 2021; 16:e0246726. [PMID: 33556116 PMCID: PMC7870063 DOI: 10.1371/journal.pone.0246726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 01/26/2021] [Indexed: 11/21/2022] Open
Abstract
The C-type lectin-like receptor NKG2D contributes to the immunosurveillance of virally infected and malignant cells by cytotoxic lymphocytes. A peculiar and puzzling feature of the NKG2D-based immunorecognition system is the high number of ligands for this single immunoreceptor. In humans, there are a total of eight NKG2D ligands (NKG2DL) comprising two members of the MIC (MICA, MICB) and six members of the ULBP family of glycoproteins (ULBP1 to ULBP6). While MICA has been extensively studied with regard to its biochemistry, cellular expression and function, very little is known about the NKG2DL ULBP4. This is, at least in part, due to its rather restricted expression by very few cell lines and tissues. Recently, constitutive ULBP4 expression by human monocytes was reported, questioning the view of tissue-restricted ULBP4 expression. Here, we scrutinized ULBP4 expression by human peripheral blood mononuclear cells and monocytes by analyzing ULBP4 transcripts and ULBP4 surface expression. In contrast to MICA, there was no ULBP4 expression detectable, neither by freshly isolated monocytes nor by PAMP-activated monocytes. However, a commercial antibody erroneously indicated surface ULBP4 on monocytes due to a non-ULBP4-specific binding activity, emphasizing the critical importance of validated reagents for life sciences. Collectively, our data show that ULBP4 is not expressed by monocytes, and likely also not by other peripheral blood immune cells, and therefore exhibits an expression pattern rather distinct from other human NKG2DL.
Collapse
|
22
|
Wu Z, Zhang H, Wu M, Peng G, He Y, Wan N, Zeng Y. Targeting the NKG2D/NKG2D-L axis in acute myeloid leukemia. Biomed Pharmacother 2021; 137:111299. [PMID: 33508619 DOI: 10.1016/j.biopha.2021.111299] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/20/2022] Open
Abstract
Natural killer group 2, member D (NKG2D) receptor is a crucial activating receptor in the immune recognition and eradication of abnormal cells by natural killer (NK) cells, and T lymphocytes. NKG2D can transmit activation signals and activate the immune system by recognizing the NKG2D ligands (NKG2D-L) on acute myeloid leukemia (AML) cells. Downregulation of NKG2D-L in AML can circumvent resistance to chemotherapy and immune recognition. Considering this effect, the exploration of targeting the NKG2D/NKG2D-L axis is considered to have tremendous potential for the discovery of novel biomacromolecule antibodies and pharmacological modulators in AML. This review was to outline the impact of NKG2D/NKG2D-L axis on intrinsic immunosurveillance and the development of AML. Furthermore, the NKG2D/NKG2D-L axis related modulators and progress in preclinical and clinical trials was also to be reviewed.
Collapse
Affiliation(s)
- Zhenhui Wu
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi Province, China
| | - Huan Zhang
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi Province, China
| | - Min Wu
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi Province, China
| | - Guorui Peng
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi Province, China
| | - Yanqiu He
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Na Wan
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Yingjian Zeng
- The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
23
|
Zhang R, Mou N, Pu YD, Li Q, Jiang YY, Yuan T, Deng Q. [Overexpression of NKG2D-CD3ζ in NY-ESO-1 TCR-T cells enhanced cytotoxicity to acute myeloid leukemia cells in vitro]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 41:946-950. [PMID: 33333701 PMCID: PMC7767805 DOI: 10.3760/cma.j.issn.0253-2727.2020.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- R Zhang
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| | - N Mou
- Shanghai Genbase Biotechnology Co., Ltd. Shanghai 201206, China
| | - Y D Pu
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Q Li
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Y Y Jiang
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| | - T Yuan
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Q Deng
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| |
Collapse
|
24
|
Bottino C, Walzer T, Santoni A, Castriconi R. Editorial: TGF-β as a Key Regulator of NK and ILCs Development and Functions. Front Immunol 2021; 11:631712. [PMID: 33542726 PMCID: PMC7851045 DOI: 10.3389/fimmu.2020.631712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Cristina Bottino
- Laboratory of Clinical and Experimental Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Giannina Gaslini, Genoa, Italy.,Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie, INSERM U1111 - CNRS UMR5308, Université de Lyon, ENS de Lyon, Université Lyon, Lyon, France
| | - Angela Santoni
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
25
|
Reindl LM, Albinger N, Bexte T, Müller S, Hartmann J, Ullrich E. Immunotherapy with NK cells: recent developments in gene modification open up new avenues. Oncoimmunology 2020; 9:1777651. [PMID: 33457093 PMCID: PMC7781759 DOI: 10.1080/2162402x.2020.1777651] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapies have achieved remarkable success. However, application-related toxicities, such as cytokine release syndrome or neurotoxicity, moved natural killer (NK) cells into focus as novel players in immunotherapy. CAR-NK cells provide an advantageous dual killing-capacity by CAR-dependent and -independent mechanisms and induce few side effects. While the majority of trials still use CAR-T cells, CAR-NK cell trials are on the rise with 19 ongoing studies worldwide. This review illuminates the current state of research and clinical application of CAR-NK cells, as well as future developmental potential.
Collapse
Affiliation(s)
- Lisa Marie Reindl
- Children’s Hospital, Goethe-University Frankfurt, Frankfurt am Main, Germany
- Experimental Immunology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Nawid Albinger
- Children’s Hospital, Goethe-University Frankfurt, Frankfurt am Main, Germany
- Experimental Immunology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Tobias Bexte
- Children’s Hospital, Goethe-University Frankfurt, Frankfurt am Main, Germany
- Experimental Immunology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stephan Müller
- Children’s Hospital, Goethe-University Frankfurt, Frankfurt am Main, Germany
- Experimental Immunology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jessica Hartmann
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Evelyn Ullrich
- Children’s Hospital, Goethe-University Frankfurt, Frankfurt am Main, Germany
- Experimental Immunology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
26
|
Lazarova M, Wels WS, Steinle A. Arming cytotoxic lymphocytes for cancer immunotherapy by means of the NKG2D/NKG2D-ligand system. Expert Opin Biol Ther 2020; 20:1491-1501. [PMID: 32726145 DOI: 10.1080/14712598.2020.1803273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The activating NKG2D receptor plays a central role in the immune recognition and elimination of abnormal self-cells by cytotoxic lymphocytes. NKG2D binding to cell stress-inducible ligands (NKG2DL) up-regulated on cancer cells facilitates their immunorecognition. Yet tumor cells utilize various escape mechanisms to avert NKG2D-based immunosurveillance. Hence, therapeutic strategies targeting the potent NKG2D/NKG2DL axis and such immune escape mechanisms become increasingly attractive in cancer therapy. AREAS COVERED This perspective provides a brief introduction into the NKG2D/NKG2DL axis and its relevance for cancer immune surveillance. Subsequently, the most advanced therapeutic approaches targeting the NKG2D system are presented focusing on NKG2D-CAR engineered immune cells and antibody-mediated strategies to inhibit NKG2DL shedding by tumors. EXPERT OPINION Thus far, NKG2D-CAR engineered lymphocytes represent the most advanced therapeutic approach utilizing the NKG2D system. Similarly to other tumor-targeting CAR approaches, NKG2D-CAR cells demonstrate powerful on-target activity, but may also cause off-tumor toxicities or lose efficacy, if NKG2DL expression by tumors is reduced. However, NKG2D-CAR cells also act on the tumor microenvironment curtailing its immunosuppressive properties, thus providing an independent therapeutic benefit. The potency of tumoricidal NKG2D-expressing lymphocytes can be further boosted by enhancing NKG2DL expression through small molecules and therapeutic antibodies inhibiting tumor-associated shedding of NKG2DL.
Collapse
Affiliation(s)
- Mariya Lazarova
- Institute for Molecular Medicine, Goethe University Frankfurt , Frankfurt am Main, Germany
| | - Winfried S Wels
- Institute for Tumor Biology and Experimental Therapy , Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt , Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz , Frankfurt am Main, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe University Frankfurt , Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt , Frankfurt am Main, Germany
| |
Collapse
|
27
|
Kim Y, Born C, Bléry M, Steinle A. MICAgen Mice Recapitulate the Highly Restricted but Activation-Inducible Expression of the Paradigmatic Human NKG2D Ligand MICA. Front Immunol 2020; 11:960. [PMID: 32582150 PMCID: PMC7287395 DOI: 10.3389/fimmu.2020.00960] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/23/2020] [Indexed: 11/13/2022] Open
Abstract
NKG2D is a potent activating immunoreceptor expressed on nearly all cytotoxic lymphocytes promoting their cytotoxicity against self-cells expressing NKG2D ligands (NKG2DLs). NKG2DLs are MHC class I-like glycoproteins that usually are not expressed on "healthy" cells. Rather, their surface expression is induced by various forms of cellular stress, viral infection, or malignant transformation. Hence, cell surface NKG2DLs mark "dangerous" cells for elimination by cytotoxic lymphocytes and therefore can be considered as "kill-me" signals. In addition, NKG2DLs are up-regulated on activated leukocytes, which facilitates containment of immune responses. While the NKG2D receptor is conserved among mammals, NKG2DL genes have rapidly diversified during mammalian speciation, likely due to strong selective pressures exerted by species-specific pathogens. Consequently, NKG2DL genes are not conserved in man and mice, although their NKG2D-binding domains maintained structural homology. Human NKG2DLs comprise two members of the MIC (MICA/MICB) and six members of the ULBP family of glycoproteins (ULBP1-6) with MICA representing the best-studied human NKG2DLs by far. Many of these studies implicate a role of MICA in various malignant, infectious, or autoimmune diseases. However, conclusions from these studies often were limited in default of supporting in vivo experiments. Here, we report a MICA transgenic (MICAgen) mouse model that replicates central features of human MICA expression and function and, therefore, constitutes a novel tool to critically assess and extend conclusions from previous in vitro studies on MICA. Similarly to humans, MICA transcripts are broadly present in organs of MICAgen mice, while MICA glycoproteins are barely detectable. Upon activation, hematopoietic cells up-regulate and proteolytically shed surface MICA. Shed soluble MICA (sMICA) is also present in plasma of MICAgen mice but affects neither surface NKG2D expression of circulating NK cells nor their functional recognition of MICA-expressing tumor cells. Accordingly, MICAgen mice also show a delayed growth of MICA-expressing B16F10 tumors, not accompanied by an emergence of MICA-specific antibodies. Such immunotolerance for the xenoantigen MICA ideally suits MICAgen mice for anti-MICA-based immunotherapies. Altogether, MICAgen mice represent a valuable model to study regulation, function, disease relevance, and therapeutic targeting of MICA in vivo.
Collapse
Affiliation(s)
- Younghoon Kim
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Christina Born
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Mathieu Bléry
- Science & Innovation Division, Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Frankfurt am Main, Germany
| |
Collapse
|
28
|
Natural Killer Cell Responses in Hepatocellular Carcinoma: Implications for Novel Immunotherapeutic Approaches. Cancers (Basel) 2020; 12:cancers12040926. [PMID: 32283827 PMCID: PMC7226319 DOI: 10.3390/cancers12040926] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) still represents a significant complication of chronic liver disease, particularly when cirrhosis ensues. Current treatment options include surgery, loco-regional procedures and chemotherapy, according to specific clinical practice guidelines. Immunotherapy with check-point inhibitors, aimed at rescuing T-cells from exhaustion, has been applied as second-line therapy with limited and variable success. Natural killer (NK) cells are an essential component of innate immunity against cancer and changes in phenotype and function have been described in patients with HCC, who also show perturbations of NK activating receptor/ligand axes. Here we discuss the current status of NK cell treatment of HCC on the basis of existing evidence and ongoing clinical trials on adoptive transfer of autologous or allogeneic NK cells ex vivo or after activation with cytokines such as IL-15 and use of antibodies to target cell-expressed molecules to promote antibody-dependent cellular cytotoxicity (ADCC). To this end, bi-, tri- and tetra-specific killer cell engagers are being devised to improve NK cell recognition of tumor cells, circumventing tumor immune escape and efficiently targeting NK cells to tumors. Moreover, the exciting technique of chimeric antigen receptor (CAR)-engineered NK cells offers unique opportunities to create CAR-NK with multiple specificities along the experience gained with CAR-T cells with potentially less adverse effects.
Collapse
|
29
|
Directed Differentiation of Mobilized Hematopoietic Stem and Progenitor Cells into Functional NK cells with Enhanced Antitumor Activity. Cells 2020; 9:cells9040811. [PMID: 32230942 PMCID: PMC7226771 DOI: 10.3390/cells9040811] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
Obtaining sufficient numbers of functional natural killer (NK) cells is crucial for the success of NK-cell-based adoptive immunotherapies. While expansion from peripheral blood (PB) is the current method of choice, ex vivo generation of NK cells from hematopoietic stem and progenitor cells (HSCs) may constitute an attractive alternative. Thereby, HSCs mobilized into peripheral blood (PB-CD34+) represent a valuable starting material, but the rather poor and donor-dependent differentiation of isolated PB-CD34+ cells into NK cells observed in earlier studies still represents a major hurdle. Here, we report a refined approach based on ex vivo culture of PB-CD34+ cells with optimized cytokine cocktails that reliably generates functionally mature NK cells, as assessed by analyzing NK-cell-associated surface markers and cytotoxicity. To further enhance NK cell expansion, we generated K562 feeder cells co-expressing 4-1BB ligand and membrane-anchored IL-15 and IL-21. Co-culture of PB-derived NK cells and NK cells that were ex-vivo-differentiated from HSCs with these feeder cells dramatically improved NK cell expansion, and fully compensated for donor-to-donor variability observed during only cytokine-based propagation. Our findings suggest mobilized PB-CD34+ cells expanded and differentiated according to this two-step protocol as a promising source for the generation of allogeneic NK cells for adoptive cancer immunotherapy.
Collapse
|
30
|
Martin TC, Ilieva KM, Visconti A, Beaumont M, Kiddle SJ, Dobson RJB, Mangino M, Lim EM, Pezer M, Steves CJ, Bell JT, Wilson SG, Lauc G, Roederer M, Walsh JP, Spector TD, Karagiannis SN. Dysregulated Antibody, Natural Killer Cell and Immune Mediator Profiles in Autoimmune Thyroid Diseases. Cells 2020; 9:E665. [PMID: 32182948 PMCID: PMC7140647 DOI: 10.3390/cells9030665] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
The pathogenesis of autoimmune thyroid diseases (AITD) is poorly understood and the association between different immune features and the germline variants involved in AITD are yet unclear. We previously observed systemic depletion of IgG core fucosylation and antennary α1,2 fucosylation in peripheral blood mononuclear cells in AITD, correlated with anti-thyroid peroxidase antibody (TPOAb) levels. Fucose depletion is known to potentiate strong antibody-mediated NK cell activation and enhanced target antigen-expressing cell killing. In autoimmunity, this may translate to autoantibody-mediated immune cell recruitment and attack of self-antigen expressing normal tissues. Hence, we investigated the crosstalk between immune cell traits, secreted proteins, genetic variants and the glycosylation patterns of serum IgG, in a multi-omic and cross-sectional study of 622 individuals from the TwinsUK cohort, 172 of whom were diagnosed with AITD. We observed associations between two genetic variants (rs505922 and rs687621), AITD status, the secretion of Desmoglein-2 protein, and the profile of two IgG N-glycan traits in AITD, but further studies need to be performed to better understand their crosstalk in AITD. On the other side, enhanced afucosylated IgG was positively associated with activatory CD335- CD314+ CD158b+ NK cell subsets. Increased levels of the apoptosis and inflammation markers Caspase-2 and Interleukin-1α positively associated with AITD. Two genetic variants associated with AITD, rs1521 and rs3094228, were also associated with altered expression of the thyrocyte-expressed ligands known to recognize the NK cell immunoreceptors CD314 and CD158b. Our analyses reveal a combination of heightened Fc-active IgG antibodies, effector cells, cytokines and apoptotic signals in AITD, and AITD genetic variants associated with altered expression of thyrocyte-expressed ligands to NK cell immunoreceptors. Together, TPOAb responses, dysregulated immune features, germline variants associated with immunoactivity profiles, are consistent with a positive autoreactive antibody-dependent NK cell-mediated immune response likely drawn to the thyroid gland in AITD.
Collapse
Affiliation(s)
- Tiphaine C. Martin
- Department of Twin Research and Genetic Epidemiology, King’s College, London SE1 7EH, UK; (A.V.); (M.B.); (M.M.); (C.J.S.); (J.T.B.); (S.G.W.); (T.D.S.)
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristina M. Ilieva
- St John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK; (K.M.I.); (S.N.K.)
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London SE1 9RT, UK
| | - Alessia Visconti
- Department of Twin Research and Genetic Epidemiology, King’s College, London SE1 7EH, UK; (A.V.); (M.B.); (M.M.); (C.J.S.); (J.T.B.); (S.G.W.); (T.D.S.)
| | - Michelle Beaumont
- Department of Twin Research and Genetic Epidemiology, King’s College, London SE1 7EH, UK; (A.V.); (M.B.); (M.M.); (C.J.S.); (J.T.B.); (S.G.W.); (T.D.S.)
| | - Steven J. Kiddle
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London SE5 8AF, UK; (S.J.K.); (R.J.B.D.)
- MRC Biostatistics Unit, University of Cambridge, Cambridge CB2 0SR, UK
| | - Richard J. B. Dobson
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London SE5 8AF, UK; (S.J.K.); (R.J.B.D.)
- Health Data Research UK (HDR UK), London Institute of Health Informatics, University College London, London NW1 2DA, UK
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King’s College, London SE1 7EH, UK; (A.V.); (M.B.); (M.M.); (C.J.S.); (J.T.B.); (S.G.W.); (T.D.S.)
- NIHR Biomedical Research Centre at Guy’s and St. Thomas’s NHS Foundation Trust, London SE1 9RT, UK
| | - Ee Mun Lim
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia; (E.M.L.); (J.P.W.)
- Medical School, The University of Western Australia, Crawley, WA 6009, Australia
- PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Marija Pezer
- Genos, Glycoscience Research Laboratory, 10000 Zagreb, Croatia; (M.P.); (G.L.)
| | - Claire J. Steves
- Department of Twin Research and Genetic Epidemiology, King’s College, London SE1 7EH, UK; (A.V.); (M.B.); (M.M.); (C.J.S.); (J.T.B.); (S.G.W.); (T.D.S.)
| | - Jordana T. Bell
- Department of Twin Research and Genetic Epidemiology, King’s College, London SE1 7EH, UK; (A.V.); (M.B.); (M.M.); (C.J.S.); (J.T.B.); (S.G.W.); (T.D.S.)
| | - Scott G. Wilson
- Department of Twin Research and Genetic Epidemiology, King’s College, London SE1 7EH, UK; (A.V.); (M.B.); (M.M.); (C.J.S.); (J.T.B.); (S.G.W.); (T.D.S.)
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia; (E.M.L.); (J.P.W.)
| | - Gordan Lauc
- Genos, Glycoscience Research Laboratory, 10000 Zagreb, Croatia; (M.P.); (G.L.)
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Mario Roederer
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA;
| | - John P. Walsh
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia; (E.M.L.); (J.P.W.)
- Medical School, The University of Western Australia, Crawley, WA 6009, Australia
| | - Tim D. Spector
- Department of Twin Research and Genetic Epidemiology, King’s College, London SE1 7EH, UK; (A.V.); (M.B.); (M.M.); (C.J.S.); (J.T.B.); (S.G.W.); (T.D.S.)
| | - Sophia N. Karagiannis
- St John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK; (K.M.I.); (S.N.K.)
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London SE1 9RT, UK
| |
Collapse
|
31
|
Müller S, Bexte T, Gebel V, Kalensee F, Stolzenberg E, Hartmann J, Koehl U, Schambach A, Wels WS, Modlich U, Ullrich E. High Cytotoxic Efficiency of Lentivirally and Alpharetrovirally Engineered CD19-Specific Chimeric Antigen Receptor Natural Killer Cells Against Acute Lymphoblastic Leukemia. Front Immunol 2020; 10:3123. [PMID: 32117200 PMCID: PMC7025537 DOI: 10.3389/fimmu.2019.03123] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/23/2019] [Indexed: 01/03/2023] Open
Abstract
Autologous chimeric antigen receptor-modified (CAR) T cells with specificity for CD19 showed potent antitumor efficacy in clinical trials against relapsed and refractory B-cell acute lymphoblastic leukemia (B-ALL). Contrary to T cells, natural killer (NK) cells kill their targets in a non-antigen-specific manner and do not carry the risk of inducing graft vs. host disease (GvHD), allowing application of donor-derived cells in an allogenic setting. Hence, unlike autologous CAR-T cells, therapeutic CD19-CAR-NK cells can be generated as an off-the-shelf product from healthy donors. Nevertheless, genetic engineering of peripheral blood (PB) derived NK cells remains challenging and optimized protocols are needed. In our study, we aimed to optimize the generation of CD19-CAR-NK cells by retroviral transduction to improve the high antileukemic capacity of NK cells. We compared two different retroviral vector platforms, the lentiviral and alpharetroviral, both in combination with two different transduction enhancers (Retronectin and Vectofusin-1). We further explored different NK cell isolation techniques (NK cell enrichment and CD3/CD19 depletion) to identify the most efficacious methods for genetic engineering of NK cells. Our results demonstrated that transduction of NK cells with RD114-TR pseudotyped retroviral vectors, in combination with Vectofusin-1 was the most efficient method to generate CD19-CAR-NK cells. Retronectin was potent in enhancing lentiviral/VSV-G gene delivery to NK cells but not alpharetroviral/RD114-TR. Furthermore, the Vectofusin-based transduction of NK cells with CD19-CARs delivered by alpharetroviral/RD114-TR and lentiviral/RD114-TR vectors outperformed lentiviral/VSV-G vectors. The final generated CD19-CAR-NK cells displayed superior cytotoxic activity against CD19-expressing target cells when compared to non-transduced NK cells achieving up to 90% specific killing activity. In summary, our findings present the use of RD114-TR pseudotyped retroviral particles in combination with Vectofusin-1 as a successful strategy to genetically modify PB-derived NK cells to achieve highly cytotoxic CD19-CAR-NK cells at high yield.
Collapse
Affiliation(s)
- Stephan Müller
- Experimental Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Division of Pediatric Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Tobias Bexte
- Experimental Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Division of Pediatric Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
| | - Veronika Gebel
- Experimental Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Division of Pediatric Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Franziska Kalensee
- Experimental Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Division of Pediatric Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Eva Stolzenberg
- Experimental Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Division of Pediatric Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Jessica Hartmann
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Ulrike Koehl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany.,Institute of Cellular Therapeutics, Hannover Medical School, Hanover, Germany.,Institute of Clinical Immunology, Faculty of Medicine, University Leipzig, Leipzig, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hanover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Winfried S Wels
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Ute Modlich
- Research Group for Gene Modification in Stem Cells, Division of Veterinary Medicine, Paul-Ehrlich Institute, Langen, Germany
| | - Evelyn Ullrich
- Experimental Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Division of Pediatric Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
32
|
Al-Abdallah A, Jahanbani I, Mehdawi H, Ali RH, Al-Brahim N, Mojiminiyi O, Junaid TA. Down-regulation of the human major histocompatibility complex class I chain-related gene A (MICA) and its receptor is mediated by microRNA-146b-5p and is a potential mechanism of immunoediting in papillary thyroid carcinoma. Exp Mol Pathol 2020; 113:104379. [PMID: 31935378 DOI: 10.1016/j.yexmp.2020.104379] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/09/2019] [Accepted: 01/11/2020] [Indexed: 12/27/2022]
Abstract
Immune escape is one of the main reasons for the rapid progression of cancer and the poor efficacy of immunotherapy. Papillary thyroid cancer (PTC) is usually accompanied by intra-tumoral lymphocytic infiltration. The mechanisms regulating this tumor associated immune response or its evasion are not well understood. The major histocompatibility complex class I chain-related proteins A (MICA) and its receptor the natural killer group 2 member D (NKG2D) are major executers of the anti-tumor defense. This work aimed to study the expression and regulation of MICA-NKG2D and its association with the lymphocytic infiltration and miRNAs in PTC. Expression of MICA and NKG2D in thyroid tissues, and in cultured primary thyroid cancer cells and lymphocytes transfected with miR-146b-5p inhibitor/mimic was tested by RT-PCR. Results were confirmed by immunofluorescence staining and confocal microscopy. MICA is expressed in malignant and benign thyroid tissues with no association with aggressive behavior. Expression of MICA and NKG2D in PTC is concomitant with the presence of tumor associated lymphocytic response and is regulated by miR-146b-5p. MiR-146b-5p indirectly downregulates NKG2D expression in cancer cells and in lymphocytes. Overexpression of miR-146b-5p in PTC down-regulates MICA expression possibly to reduce the immunogenicity of the tumor cells. Targeting of the MICA-NKG2D axis by miR-146b-5p might be one of the ways adopted by thyroid cancer cells to aid the tumor in evading the immune response. The importance of our findings resides in the potential therapeutic use of MICA, NKG2D and miRNA-146b-5p as targets or modulators to enable the immune response against cancer.
Collapse
Affiliation(s)
- Abeer Al-Abdallah
- Pathology Department, Faculty of Medicine, Kuwait University, Kuwait.
| | - Iman Jahanbani
- Pathology Department, Faculty of Medicine, Kuwait University, Kuwait.
| | - Heba Mehdawi
- Pathology Department, Faculty of Medicine, Kuwait University, Kuwait.
| | - Rola H Ali
- Pathology Department, Faculty of Medicine, Kuwait University, Kuwait.
| | | | | | | |
Collapse
|
33
|
Heinze A, Grebe B, Bremm M, Huenecke S, Munir TA, Graafen L, Frueh JT, Merker M, Rettinger E, Soerensen J, Klingebiel T, Bader P, Ullrich E, Cappel C. The Synergistic Use of IL-15 and IL-21 for the Generation of NK Cells From CD3/CD19-Depleted Grafts Improves Their ex vivo Expansion and Cytotoxic Potential Against Neuroblastoma: Perspective for Optimized Immunotherapy Post Haploidentical Stem Cell Transplantation. Front Immunol 2019; 10:2816. [PMID: 31849984 PMCID: PMC6901699 DOI: 10.3389/fimmu.2019.02816] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022] Open
Abstract
Neuroblastoma (NB) is the most common solid extracranial tumor in childhood. Despite therapeutic progress, prognosis in high-risk NB is poor and innovative therapies are urgently needed. Therefore, we addressed the potential cytotoxic capacity of interleukin (IL)-activated natural killer (NK) cells compared to cytokine-induced killer (CIK) cells for the treatment of NB. NK cells were isolated from peripheral blood mononuclear cells (PBMCs) by indirect CD56-enrichment or CD3/CD19-depletion and expanded with different cytokine combinations, such as IL-2, IL-15, and/or IL-21 under feeder-cell free conditions. CIK cells were generated from PBMCs by ex vivo stimulation with interferon-γ, IL-2, OKT-3, and IL-15. Comparative analysis of expansion rate, purity, phenotype and cytotoxicity was performed. CD56-enriched NK cells showed a median expansion rate of 4.3-fold with up to 99% NK cell content. The cell product after CD3/CD19-depletion consisted of a median 43.5% NK cells that expanded significantly faster reaching also 99% of NK cell purity. After 10–12 days of expansion, both NK cell preparations showed a significantly higher median cytotoxic capacity against NB cells relative to CIK cells. Remarkably, these NK cells were also capable of efficiently killing NB spheroidal 3D culture in long-term cytotoxicity assays. Further optimization using a novel NK cell culture medium and a prolonged culturing procedure after CD3/CD19-depletion for up to 15 days enhanced the expansion rate up to 24.4-fold by maintaining the cytotoxic potential. Addition of an IL-21 boost prior to harvesting significantly increased the cytotoxicity. The final cell product consisted for the major part of CD16−, NCR-expressing, poly-functional NK cells with regard to cytokine production, CD107a degranulation and antitumor capacity. In summary, our study revealed that NK cells have a significantly higher cytotoxic potential to combat NB than CIK cell products, especially following the synergistic use of IL-15 and IL-21 for NK cell activation. Therefore, the use of IL-15+IL-21 expanded NK cells generated from CD3/CD19-depleted apheresis products seems to be highly promising as an immunotherapy in combination with haploidentical stem cell transplantation (SCT) for high-risk NB patients.
Collapse
Affiliation(s)
- Annekathrin Heinze
- Experimental Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Beatrice Grebe
- Experimental Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Melanie Bremm
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Sabine Huenecke
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Tasleem Ah Munir
- Experimental Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Lea Graafen
- Experimental Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Jochen T Frueh
- Experimental Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Michael Merker
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Eva Rettinger
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Jan Soerensen
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Thomas Klingebiel
- Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Peter Bader
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Evelyn Ullrich
- Experimental Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt am Main, Frankfurt am Main, Germany
| | - Claudia Cappel
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
34
|
Lazarova M, Steinle A. Impairment of NKG2D-Mediated Tumor Immunity by TGF-β. Front Immunol 2019; 10:2689. [PMID: 31803194 PMCID: PMC6873348 DOI: 10.3389/fimmu.2019.02689] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor-β (TGF-β) suppresses innate and adaptive immune responses via multiple mechanisms. TGF-β also importantly contributes to the formation of an immunosuppressive tumor microenvironment thereby promoting tumor growth. Amongst others, TGF-β impairs tumor recognition by cytotoxic lymphocytes via NKG2D. NKG2D is a homodimeric C-type lectin-like receptor expressed on virtually all human NK cells and cytotoxic T cells, and stimulates their effector functions upon engagement by NKG2D ligands (NKG2DL). While NKG2DL are mostly absent from healthy cells, their expression is induced by cellular stress and malignant transformation, and, accordingly, frequently detected on various tumor cells. Hence, the NKG2D axis is thought to play a decisive role in cancer immunosurveillance and, obviously, often is compromised in clinically apparent tumors. There is mounting evidence that TGF-β, produced by tumor cells and immune cells in the tumor microenvironment, plays a key role in blunting the NKG2D-mediated tumor surveillance. Here, we review the current knowledge on the impairment of NKG2D-mediated cancer immunity through TGF-β and discuss therapeutic approaches aiming at counteracting this major immune escape pathway. By reducing tumor-associated expression of NKG2DL and blinding cytotoxic lymphocytes through down-regulation of NKG2D, TGF-β is acting upon both sides of the NKG2D axis severely compromising NKG2D-mediated tumor rejection. Consequently, novel therapies targeting the TGF-β pathway are expected to reinvigorate NKG2D-mediated tumor elimination and thereby to improve the survival of cancer patients.
Collapse
Affiliation(s)
- Mariya Lazarova
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
35
|
Molfetta R, Zingoni A, Santoni A, Paolini R. Post-translational Mechanisms Regulating NK Cell Activating Receptors and Their Ligands in Cancer: Potential Targets for Therapeutic Intervention. Front Immunol 2019; 10:2557. [PMID: 31736972 PMCID: PMC6836727 DOI: 10.3389/fimmu.2019.02557] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
Efficient clearance of transformed cells by Natural Killer (NK) cells is regulated by several activating receptors, including NKG2D, NCRs, and DNAM-1. Expression of these receptors as well as their specific “induced self” ligands is finely regulated during malignant transformation through the integration of different mechanisms acting on transcriptional, post-transcriptional, and post-translational levels. Among post-translational mechanisms, the release of activating ligands in the extracellular milieu through protease-mediated cleavage or by extracellular vesicle secretion represents some relevant cancer immune escape processes. Moreover, covalent modifications including ubiquitination and SUMOylation also contribute to negative regulation of NKG2D and DNAM-1 ligand surface expression resulting either in ligand intracellular retention and/or ligand degradation. All these mechanisms greatly impact on NK cell mediated recognition and killing of cancer cells and may be targeted to potentiate NK cell surveillance against tumors. Our mini review summarizes the main post-translational mechanisms regulating the expression of activating receptors and their ligands with particular emphasis on the contribution of ligand shedding and of ubiquitin and ubiquitin-like modifications in reducing target cell susceptibility to NK cell-mediated killing. Strategies aimed at inhibiting shedding of activating ligands and their modifications in order to preserve ligand expression on cancer cells will be also discussed.
Collapse
Affiliation(s)
- Rosa Molfetta
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Alessandra Zingoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Rossella Paolini
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
36
|
Natural killer cells involved in tumour immune escape of hepatocellular carcinomar. Int Immunopharmacol 2019; 73:10-16. [PMID: 31078921 DOI: 10.1016/j.intimp.2019.04.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/21/2019] [Accepted: 04/25/2019] [Indexed: 02/08/2023]
Abstract
Natural killer cells are the first line of host immune surveillance and play major roles in the defence against infection and tumours. Hepatic NK cells exhibit unique phenotypic and functional characteristics compared to circulating and spleen NK cells, such as higher levels of cytolytic activity and cytotoxicity mediators against tumour cells. However, the activities of NK cells may be reversed during tumour progression. Recent studies demonstrated that hepatic NK cells were exhausted in hepatocellular carcinoma (HCC) and exhibited impaired cytolytic activity and decreased production of effector cytokines. The present review discusses current knowledge on the role of exhausted NK cells in promoting HCC development and the mechanisms contributing to tumour immune escape, including an imbalance of activating and inhibitory receptors on NK cells, abnormal receptor-ligand interaction, and cross-talk with immune cells and other stromal cells in the tumour environment. We provide a fundamental basis for further study of innate immunity in tumour progression and serve the purpose of exploring new HCC treatment strategies.
Collapse
|
37
|
Lazarova M, Steinle A. The NKG2D axis: an emerging target in cancer immunotherapy. Expert Opin Ther Targets 2019; 23:281-294. [DOI: 10.1080/14728222.2019.1580693] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Mariya Lazarova
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
38
|
Tognarelli S, Wirsching S, von Metzler I, Rais B, Jacobs B, Serve H, Bader P, Ullrich E. Enhancing the Activation and Releasing the Brakes: A Double Hit Strategy to Improve NK Cell Cytotoxicity Against Multiple Myeloma. Front Immunol 2018; 9:2743. [PMID: 30542346 PMCID: PMC6277768 DOI: 10.3389/fimmu.2018.02743] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/07/2018] [Indexed: 01/16/2023] Open
Abstract
Natural killer (NK) cells are innate lymphocytes with a strong antitumor ability. In tumor patients, such as multiple myeloma (MM) patients, an elevated number of NK cells after stem cell transplantation (SCT) has been reported to be correlated with a higher overall survival rate. With the aim of improving NK cell use for adoptive cell therapy, we also addressed the cytotoxicity of patient-derived, cytokine-stimulated NK cells against MM cells at specific time points: at diagnosis and before and after autologous stem cell transplantation. Remarkably, after cytokine stimulation, the patients' NK cells did not significantly differ from those of healthy donors. In a small cohort of MM patients, we were able to isolate autologous tumor cells, and we could demonstrate that IL-2/15 stimulated autologous NK cells were able to significantly improve their killing capacity of autologous tumor cells. With the aim to further improve the NK cell killing capacity against MM cells, we investigated the potential use of NK specific check point inhibitors with focus on NKG2A because this inhibitory NK cell receptor was upregulated following ex vivo cytokine stimulation and MM cells showed HLA-E expression that could even be increased by exposure to IFN-γ. Importantly, blocking of NKG2A resulted in a significant increase in the NK cell-mediated lysis of different MM target cells. Finally, these results let suggest that combining cytokine induced NK cell activation and the specific check point inhibition of the NKG2A-mediated pathways can be an effective strategy to optimize NK cell therapeutic approaches for treatment of multiple myeloma.
Collapse
Affiliation(s)
- Sara Tognarelli
- Childrens Hospital, Experimental Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
- Childrens Hospital, Department of Pediatric Stem Cell Transplantation and Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
- LOEWE Center for Cell and Gene Therapy, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Sebastian Wirsching
- Childrens Hospital, Experimental Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
- Childrens Hospital, Department of Pediatric Stem Cell Transplantation and Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Ivana von Metzler
- Department of Hematology and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Bushra Rais
- Childrens Hospital, Experimental Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
- Childrens Hospital, Department of Pediatric Stem Cell Transplantation and Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
- LOEWE Center for Cell and Gene Therapy, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Benedikt Jacobs
- Department of Haematology and Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Hubert Serve
- Department of Hematology and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Bader
- Childrens Hospital, Experimental Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Evelyn Ullrich
- Childrens Hospital, Experimental Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
- Childrens Hospital, Department of Pediatric Stem Cell Transplantation and Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
- LOEWE Center for Cell and Gene Therapy, Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
39
|
Yelton CJ, Ray SK. Histone deacetylase enzymes and selective histone deacetylase inhibitors for antitumor effects and enhancement of antitumor immunity in glioblastoma. ACTA ACUST UNITED AC 2018; 5. [PMID: 30701185 PMCID: PMC6348296 DOI: 10.20517/2347-8659.2018.58] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glioblastoma multiforme (GBM), which is the most common primary central nervous system malignancy in adults, has long presented a formidable challenge to researchers and clinicians alike. Dismal 5-year survival rates of the patients with these tumors and the ability of the recurrent tumors to evade primary treatment strategies have prompted a need for alternative therapies in the treatment of GBM. Histone deacetylase (HDAC) inhibitors are currently a potential epigenetic therapy modality under investigation for use in GBM with mixed results. While these agents show promise through a variety of proposed mechanisms in the pre-clinical realm, only several of these agents have shown this same promise when translated into the clinical arena, either as monotherapy or for use in combination regimens. This review will examine the current state of use of HDAC inhibitors in GBM, the mechanistic rationale for use of HDAC inhibitors in GBM, and then examine an exciting new mechanistic revelation of certain HDAC inhibitors that promote antitumor immunity in GBM. The details of this antitumor immunity will be discussed with an emphasis on application of this antitumor immunity towards developing alternative therapies for treatment of GBM. The final section of this article will provide an overview of the current state of immunotherapy targeted specifically to GBM.
Collapse
Affiliation(s)
- Caleb J Yelton
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| |
Collapse
|
40
|
Aberrant miRNAs Regulate the Biological Hallmarks of Glioblastoma. Neuromolecular Med 2018; 20:452-474. [PMID: 30182330 DOI: 10.1007/s12017-018-8507-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/17/2018] [Indexed: 12/14/2022]
Abstract
GBM is the highest incidence in primary intracranial malignancy, and it remains poor prognosis even though the patient is gave standard treatment. Despite decades of intense research, the complex biology of GBM remains elusive. In view of eight hallmarks of cancer which were proposed in 2011, studies related to the eight biological capabilities in GBM have made great progress. From these studies, it can be inferred that miRs, as a mode of post-transcriptional regulation, are involved in regulating these malignant biological hallmarks of GBM. Herein, we discuss state-of-the-art research on how aberrant miRs modulate the eight hallmarks of GBM. The upregulation of 'oncomiRs' or the genetic loss of tumor suppressor miRs is associated with these eight biological capabilities acquired during GBM formation. Furthermore, we also discuss the applicable clinical potential of these research results. MiRs may aid in the diagnosis and prognosis of GBM. Moreover, miRs are also therapeutic targets of GBM. These studies will develop and improve precision medicine for GBM in the future.
Collapse
|
41
|
Neuss S, Bartel Y, Born C, Weil S, Koch J, Behrends C, Hoffmeister M, Steinle A. Cellular Mechanisms Controlling Surfacing of AICL Glycoproteins, Cognate Ligands of the Activating NK Receptor NKp80. THE JOURNAL OF IMMUNOLOGY 2018; 201:1275-1286. [PMID: 29980609 DOI: 10.4049/jimmunol.1800059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/08/2018] [Indexed: 01/03/2023]
Abstract
AICL glycoproteins are cognate activation-induced ligands of the C-type lectin-like receptor NKp80, which is expressed on virtually all mature human NK cells, and NKp80-AICL interaction stimulates NK cell effector functions such as cytotoxicity and cytokine secretion. Notably, AICL and NKp80 are encoded by adjacent genes in the NK gene complex and are coexpressed by human NK cells. Whereas AICL is intracellularly retained in resting NK cells, exposure of NK cells to proinflammatory cytokines results in AICL surfacing and susceptibility to NKp80-mediated NK fratricide. In this study, we characterize molecular determinants of AICL glycoproteins that cause intracellular retention, thereby controlling AICL surface expression. Cys87 residing within the C-type lectin-like domain not only ensures stable homodimerization of AICL glycoproteins by disulfide bonding, but Cys87 is also required for efficient cell surface expression of AICL homodimers and essential for AICL-NKp80 interaction. In contrast, cytoplasmic lysines act as negative regulators targeting AICL for proteasomal degradation. One atypical and three conventional N-linked glycosylation sites in the AICL C-type lectin-like domain critically impact maturation and surfacing of AICL, which is strictly dependent on glycosylation of at least one conventional glycosylation site. However, although the extent of conventional N-linked glycosylation positively correlates with AICL surface expression, the atypical glycosylation site impairs AICL surfacing. Stringent control of AICL surface expression by glycosylation is reflected by the pronounced interaction of AICL with calnexin and the impaired AICL expression in calnexin-deficient cells. Collectively, our data demonstrate that AICL expression and surfacing are tightly controlled by several independent cellular posttranslational mechanisms.
Collapse
Affiliation(s)
- Sebastian Neuss
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, 60590 Frankfurt am Main, Germany
| | - Yvonne Bartel
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, 60590 Frankfurt am Main, Germany
| | - Christina Born
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, 60590 Frankfurt am Main, Germany
| | - Sandra Weil
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt am Main, Germany
| | - Joachim Koch
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, 60596 Frankfurt am Main, Germany
| | - Christian Behrends
- Institute of Biochemistry II, Goethe-University Frankfurt am Main, 60590 Frankfurt am Main, Germany.,Munich Cluster for Systems Neurology, Ludwig Maximilian University of Munich, 80539 Munich, Germany; and
| | - Meike Hoffmeister
- Institute of Biochemistry II, Goethe-University Frankfurt am Main, 60590 Frankfurt am Main, Germany.,Institute of Biochemistry, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, 60590 Frankfurt am Main, Germany;
| |
Collapse
|
42
|
Kropp KN, Maurer S, Rothfelder K, Schmied BJ, Clar KL, Schmidt M, Strunz B, Kopp HG, Steinle A, Grünebach F, Rittig SM, Salih HR, Dörfel D. The novel deubiquitinase inhibitor b-AP15 induces direct and NK cell-mediated antitumor effects in human mantle cell lymphoma. Cancer Immunol Immunother 2018; 67:935-947. [PMID: 29556699 PMCID: PMC11028140 DOI: 10.1007/s00262-018-2151-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 03/12/2018] [Indexed: 12/18/2022]
Abstract
The first therapeutic proteasome inhibitor bortezomib has clinical efficacy in mantle cell lymphoma (MCL) which resulted in its incorporation in treatment algorithms for this disease. Impairment of proteasomal function by bortezomib is mediated via inhibition of the 20S core particle. However, proteasome function can also be modified by targeting upstream components of the ubiquitin-proteasome system. Recently, b-AP15 has been identified as a small molecule achieving proteasome inhibition by targeting the deubiquitinase (DUB) activity of the 19S regulatory subunit and was found to inhibit cancer cell growth in preclinical analyses. In the present study, both direct antitumor effects and the possibility to induce natural killer group 2 member D ligands (NKG2DL) to reinforce NK cell immunity with b-AP15 were investigated to provide a rational basis for clinical evaluation of this novel DUB inhibitor in MCL. Treatment with b-AP15 resulted in reduced viability as well as induction of apoptosis in a time- and dose-dependent manner, which could be attributed to caspase activation in MCL cells. In addition, treatment with b-AP15 differentially induced NKG2DL expression and subsequent NK cell lysis of MCL cells. These results indicate that the DUB inhibitor b-AP15 displays substantial antitumor activity in human MCL and suggest that b-AP15 might be a novel therapeutic option in the treatment of MCL that warrants clinical investigation.
Collapse
Affiliation(s)
- Korbinian N Kropp
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
| | - Stefanie Maurer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
| | - Kathrin Rothfelder
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
| | - Bastian J Schmied
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
| | - Kim L Clar
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
| | - Moritz Schmidt
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
| | - Benedikt Strunz
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
| | - Hans-Georg Kopp
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmology, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Departments of Molecular Oncology and Thoracic Oncology, Robert-Bosch-Hospital Stuttgart, Auerbachstr. 110, 70376, Stuttgart, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Frank Grünebach
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmology, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
| | - Susanne M Rittig
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmology, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Department of Hematology, Oncology and Tumor Immunology, Charité Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmology, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
| | - Daniela Dörfel
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany.
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmology, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany.
| |
Collapse
|
43
|
Antigenic targets of CAR T Cell Therapy. A retrospective view on clinical trials. Exp Cell Res 2018; 369:1-10. [PMID: 29758187 DOI: 10.1016/j.yexcr.2018.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/05/2018] [Accepted: 05/07/2018] [Indexed: 01/13/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is anticipated to be increasingly implemented in the context of cancer treatment after two current FDA approval of anti-CD19 CAR-T cells (Kymriah™ & Yescarta™). The success of CD19 is mainly attributable to the proper selection of the antigen, CD19, as the target of the disease, highlighting the importance of target selection for other CAR therapies. Therefore, here we performed a global analysis of targets that are the prime focus for various CAR T cell therapies in human clinical trials.
Collapse
|
44
|
Schmidt S, Tramsen L, Rais B, Ullrich E, Lehrnbecher T. Natural killer cells as a therapeutic tool for infectious diseases - current status and future perspectives. Oncotarget 2018; 9:20891-20907. [PMID: 29755697 PMCID: PMC5945539 DOI: 10.18632/oncotarget.25058] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/21/2018] [Indexed: 12/12/2022] Open
Abstract
Natural Killer (NK) cells are involved in the host immune response against infections due to viral, bacterial and fungal pathogens, all of which are a significant cause of morbidity and mortality in immunocompromised patients. Since the recovery of the immune system has a major impact on the outcome of an infectious complication, there is major interest in strengthening the host response in immunocompromised patients, either by using cytokines or growth factors or by adoptive cellular therapies transfusing immune cells such as granulocytes or pathogen-specific T-cells. To date, relatively little is known about the potential of adoptively transferring NK cells in immunocompromised patients with infectious complications, although the anti-cancer property of NK cells is already being investigated in the clinical setting. This review will focus on the antimicrobial properties of NK cells and the current standing and future perspectives of generating and using NK cells as immunotherapy in patients with infectious complications, an approach which is promising and might have an important clinical impact in the future.
Collapse
Affiliation(s)
- Stanislaw Schmidt
- Division for Pediatric Hematology and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Lars Tramsen
- Division for Pediatric Hematology and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Bushra Rais
- Division of Stem Cell Transplantation and Immunology, Laboratory for Cellular Immunology, Hospital for Children and Adolescents, Johann Wolfgang Goethe University, Frankfurt, Germany.,LOEWE Center for Cell and Gene Therapy, Cellular Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Evelyn Ullrich
- Division of Stem Cell Transplantation and Immunology, Laboratory for Cellular Immunology, Hospital for Children and Adolescents, Johann Wolfgang Goethe University, Frankfurt, Germany.,LOEWE Center for Cell and Gene Therapy, Cellular Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Thomas Lehrnbecher
- Division for Pediatric Hematology and Oncology, Johann Wolfgang Goethe University, Frankfurt, Germany.,LOEWE Center for Cell and Gene Therapy, Cellular Immunology, Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
45
|
Lin D, Hiron TK, O'Callaghan CA. Intragenic transcriptional interference regulates the human immune ligand MICA. EMBO J 2018; 37:embj.201797138. [PMID: 29643123 DOI: 10.15252/embj.201797138] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/27/2022] Open
Abstract
Many human genes have tandem promoters driving overlapping transcription, but the value of this distributed promoter configuration is generally unclear. Here we show that MICA, a gene encoding a ligand for the activating immune receptor NKG2D, contains a conserved upstream promoter that expresses a noncoding transcript. Transcription from the upstream promoter represses the downstream standard promoter activity in cis through transcriptional interference. The effect of transcriptional interference depends on the strength of transcription from the upstream promoter and can be described quantitatively by a simple reciprocal repressor function. Transcriptional interference coincides with recruitment at the standard downstream promoter of the FACT histone chaperone complex, which is involved in nucleosomal remodelling during transcription. The mechanism is invoked in the regulation of MICA expression by the physiological inputs interferon-γ and interleukin-4 that act on the upstream promoter. Genome-wide analysis indicates that transcriptional interference between tandem intragenic promoters may constitute a general mechanism with widespread importance in human transcriptional regulation.
Collapse
Affiliation(s)
- Da Lin
- Nuffield Department of Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Thomas K Hiron
- Nuffield Department of Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Christopher A O'Callaghan
- Nuffield Department of Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
46
|
Zöller T, Wittenbrink M, Hoffmeister M, Steinle A. Cutting an NKG2D Ligand Short: Cellular Processing of the Peculiar Human NKG2D Ligand ULBP4. Front Immunol 2018; 9:620. [PMID: 29651291 PMCID: PMC5884875 DOI: 10.3389/fimmu.2018.00620] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/12/2018] [Indexed: 12/25/2022] Open
Abstract
Stress-induced cell surface expression of MHC class I-related glycoproteins of the MIC and ULBP families allows for immune recognition of dangerous "self cells" by human cytotoxic lymphocytes via the NKG2D receptor. With two MIC molecules (MICA and MICB) and six ULBP molecules (ULBP1-6), there are a total of eight human NKG2D ligands (NKG2DL). Since the discovery of the NKG2D-NKG2DL system, the cause for both redundancy and diversity of NKG2DL has been a major and ongoing matter of debate. NKG2DL diversity has been attributed, among others, to the selective pressure by viral immunoevasins, to diverse regulation of expression, to differential tissue expression as well as to variations in receptor interactions. Here, we critically review the current state of knowledge on the poorly studied human NKG2DL ULBP4. Summarizing available facts and previous studies, we picture ULBP4 as a peculiar ULBP family member distinct from other ULBP family members by various aspects. In addition, we provide novel experimental evidence suggesting that cellular processing gives rise to mature ULBP4 glycoproteins different to previous reports. Finally, we report on the proteolytic release of soluble ULBP4 and discuss these results in the light of known mechanisms for generation of soluble NKG2DL.
Collapse
Affiliation(s)
- Tobias Zöller
- Institute for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Mareike Wittenbrink
- Institute for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Meike Hoffmeister
- Institute of Biochemistry II, Goethe University Frankfurt am Main, Frankfurt am Main, Germany.,Brandenburg Medical School (MHB) Theodor Fontane, Institute of Biochemistry, Neuruppin, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
47
|
Maurer S, Kropp KN, Klein G, Steinle A, Haen SP, Walz JS, Hinterleitner C, Märklin M, Kopp HG, Salih HR. Platelet-mediated shedding of NKG2D ligands impairs NK cell immune-surveillance of tumor cells. Oncoimmunology 2017; 7:e1364827. [PMID: 29308299 DOI: 10.1080/2162402x.2017.1364827] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022] Open
Abstract
Platelets promote metastasis, among others by coating cancer cells traveling through the blood, which results in protection from NK cell immune-surveillance. The underlying mechanisms, however, remain to be fully elucidated. Here we report that platelet-coating reduces surface expression of NKG2D ligands, in particular MICA and MICB, on tumor cells, which was mirrored by enhanced release of their soluble ectodomains. Similar results were obtained upon exposure of tumor cells to platelet-releasate and can be attributed to the sheddases ADAM10 and ADAM17 that are detectable on the platelet surface and in releasate following activation and at higher levels on platelets of patients with metastasized lung cancer compared with healthy controls. Platelet-mediated NKG2DL-shedding in turn resulted in impaired "induced self" recognition by NK cells as revealed by diminished NKG2D-dependent lysis of tumor cells. Our results indicate that platelet-mediated NKG2DL-shedding may be involved in immune-evasion of (metastasizing) tumor cells from NK cell reactivity.
Collapse
Affiliation(s)
- Stefanie Maurer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Tuebingen, Germany
| | - Korbinian Nepomuk Kropp
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Tuebingen, Germany
| | - Gerd Klein
- Department of Hematology and Oncology, Eberhard Karls University, Tuebingen, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Sebastian P Haen
- Department of Hematology and Oncology, Eberhard Karls University, Tuebingen, Germany
| | - Juliane S Walz
- Department of Hematology and Oncology, Eberhard Karls University, Tuebingen, Germany
| | - Clemens Hinterleitner
- Department of Hematology and Oncology, Eberhard Karls University, Tuebingen, Germany
| | - Melanie Märklin
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Tuebingen, Germany
| | - Hans-Georg Kopp
- Department of Hematology and Oncology, Eberhard Karls University, Tuebingen, Germany
| | - Helmut Rainer Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Tuebingen, Germany
| |
Collapse
|
48
|
Koch C, Kim Y, Zöller T, Born C, Steinle A. Chronic NKG2D Engagement In Vivo Differentially Impacts NK Cell Responsiveness by Activating NK Receptors. Front Immunol 2017; 8:1466. [PMID: 29163533 PMCID: PMC5675847 DOI: 10.3389/fimmu.2017.01466] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/19/2017] [Indexed: 11/25/2022] Open
Abstract
Immunosuppression is a typical hallmark of cancer and frequently includes perturbations of the NKG2D tumor recognition system as well as impaired signaling by other activating NK cell receptors. Several in vitro studies suggested that sustained engagement of the NKG2D receptor, as it is occurring in the tumor microenvironment, not only impairs expression and function of NKG2D but also impacts signaling by other activating NK receptors. Here, we made use of a transgenic mouse model of ubiquitous NKG2D ligand expression (H2-Kb-MICA mice) to investigate consequences of chronic NKG2D engagement in vivo for functional responsiveness by other activating NK receptors such as NKp46 and Ly49D. Unexpectedly, we found no evidence for an impairment of NKp46 expression and function in H2-Kb-MICA mice, as anticipated from previous in vitro experiments. However, we observed a marked downregulation and dysfunction of the activating receptor Ly49D in activated NK cells from H2-Kb-MICA mice. Ly49D shares the adaptor proteins DAP10 and DAP12 with NKG2D possibly explaining the collateral impairment of Ly49D function in situations of chronic NKG2D engagement. Altogether, our results demonstrate that persistent engagement of NKG2D in vivo, as often observed in tumors, can selectively impair functions of unrelated NK receptors and thereby compromise NK responsiveness to third-party antigens.
Collapse
Affiliation(s)
- Christine Koch
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany.,Department of Internal Medicine I, Division of Gastroenterology and Hepatology, University Hospital Frankfurt am Main, Frankfurt am Main, Germany
| | - Younghoon Kim
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Tobias Zöller
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Christina Born
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
49
|
Anti-NKG2D mAb: A New Treatment for Crohn's Disease? Int J Mol Sci 2017; 18:ijms18091997. [PMID: 28926962 PMCID: PMC5618646 DOI: 10.3390/ijms18091997] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/24/2017] [Accepted: 09/11/2017] [Indexed: 01/09/2023] Open
Abstract
Crohn’s disease (CD) and ulcerative colitis (UC) are immunologically-mediated, debilitating conditions resulting from destructive inflammation of the gastrointestinal tract. The pathogenesis of IBD is incompletely understood, but is considered to be the result of an abnormal immune response with a wide range of cell types and proteins involved. Natural Killer Group 2D (NKG2D) is an activating receptor constitutively expressed on human Natural Killer (NK), γδ T, mucosal-associated invariant T (MAIT), CD56+ T, and CD8+ T cells. Activation of NKG2D triggers cellular proliferation, cytokine production, and target cell killing. Research into the NKG2D mechanism of action has primarily been focused on cancer and viral infections where cytotoxicity evasion is a concern. In human inflammatory bowel disease (IBD) this system is less characterized, but the ligands have been shown to be highly expressed during intestinal inflammation and the following receptor activation may contribute to tissue degeneration. A recent phase II clinical trial showed that an antibody against NKG2D induced clinical remission of CD in some patients, suggesting NKG2D and its ligands to be of importance in the pathogenesis of CD. This review will describe the receptor and its ligands in intestinal tissues and the clinical potential of blocking NKG2D in Crohn’s disease.
Collapse
|
50
|
Vyas M, Reinartz S, Hoffmann N, Reiners KS, Lieber S, Jansen JM, Wagner U, Müller R, von Strandmann EP. Soluble NKG2D ligands in the ovarian cancer microenvironment are associated with an adverse clinical outcome and decreased memory effector T cells independent of NKG2D downregulation. Oncoimmunology 2017; 6:e1339854. [PMID: 28932639 PMCID: PMC5599084 DOI: 10.1080/2162402x.2017.1339854] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022] Open
Abstract
The immune receptor NKG2D is predominantly expressed on NK cells and T cell subsets and confers anti-tumor activity. According to the current paradigm, immune surveillance is counteracted by soluble ligands shed into the microenvironment, which down-regulate NKG2D receptor expression. Here, we analyzed the clinical significance of the soluble NKG2D ligands sMICA and sULBP2 in the malignancy-associated ascites of ovarian cancer. We show that high levels of sMICA and sULBP2 in ascites were associated with a poor prognosis. Ascites inhibited the activation of normal NK cells, which, in contrast to the prevailing notion, was not associated with decreased NKG2D expression. Of note, an inverse correlation of soluble NKG2D ligands with effector memory T cells and a direct correlation with pro-tumorigenic CD163+CD206+ macrophages was observed. Thus, the role of soluble NKG2D ligands within the ovarian cancer microenvironment is more complex than anticipated and does not exclusively function via NKG2D downregulation.
Collapse
Affiliation(s)
- Maulik Vyas
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University, Marburg, Germany
| | - Silke Reinartz
- Clinic for Gynecology, Gynecologic Oncology and Endocrinology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Nathalie Hoffmann
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University, Marburg, Germany.,Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Katrin S Reiners
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University, Marburg, Germany
| | - Sonja Lieber
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Julia M Jansen
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital Giessen and Marburg (UKGM), Marburg, Germany
| | - Uwe Wagner
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital Giessen and Marburg (UKGM), Marburg, Germany
| | - Rolf Müller
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Elke Pogge von Strandmann
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University, Marburg, Germany
| |
Collapse
|