1
|
Rogers AJ, Fast VG, Sethu P. Biomimetic Cardiac Tissue Model Enables the Adaption of Human Induced Pluripotent Stem Cell Cardiomyocytes to Physiological Hemodynamic Loads. Anal Chem 2016; 88:9862-9868. [PMID: 27620367 PMCID: PMC6050012 DOI: 10.1021/acs.analchem.6b03105] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) provide a human source of cardiomyocytes for use in cardiovascular research and regenerative medicine. However, attempts to use these cells in vivo have resulted in drastic cell death caused by mechanical, metabolic, and/or exogenous factors. To explore this issue, we designed a Biomimetic Cardiac Tissue Model (BCTM) where various parameters associated with heart function including heart rate, peak-systolic pressure, end-diastolic pressure and volume, end-systolic pressure and volume, and ratio of systole to diastole can all be precisely manipulated to apply hemodynamic loading to culture cells. Using the BCTM, two causes of low survivability in current cardiac stem cell therapies, mechanical and metabolic, were explored. iPSC-CMs were subject to physiologically relevant mechanical loading (50 mmHg systolic, 10% biaxial stretch) in either a low- or high-serum environment and mechanical loads were applied either immediately or gradually. Results confirm that iPSC-CMs subject to mechanical loading in low-serum conditions experienced widespread cell death. The rate of application of stress also played an important role in adaptability to mechanical loading. Under high-serum conditions, iPSC-CMs subject to gradual imposition of stress were comparable to iPSC-CMs maintained in static culture when evaluated in terms of cell viability, sarcomeric structure, action potentials and conduction velocities. In contrast, iPSC-CMs that were immediately exposed to mechanical loading had significantly lower cell viability, destruction of sarcomeres, smaller action potentials, and lower conduction velocities. We report that iPSC-CMs survival under physiologically relevant hemodynamic stress requires gradual imposition of mechanical loads in a nutrient-rich environment.
Collapse
Affiliation(s)
- Aaron J. Rogers
- Division of Cardiovascular Disease, Department of Medicine,
University of Alabama at Birmingham, Birmingham, AL
- Department of Biomedical Engineering, School of
Engineering, University of Alabama at Birmingham, Birmingham, AL
| | - Vladimir G. Fast
- Division of Cardiovascular Disease, Department of Medicine,
University of Alabama at Birmingham, Birmingham, AL
| | - Palaniappan Sethu
- Division of Cardiovascular Disease, Department of Medicine,
University of Alabama at Birmingham, Birmingham, AL
- Department of Biomedical Engineering, School of
Engineering, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
2
|
Edelmann JC, Jones L, Peyronnet R, Lu L, Kohl P, Ravens U. A Bioreactor to Apply Multimodal Physical Stimuli to Cultured Cells. Methods Mol Biol 2016; 1502:21-33. [PMID: 27032949 DOI: 10.1007/7651_2016_336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cells residing in the cardiac niche are constantly experiencing physical stimuli, including electrical pulses and cyclic mechanical stretch. These physical signals are known to influence a variety of cell functions, including the secretion of growth factors and extracellular matrix proteins by cardiac fibroblasts, calcium handling and contractility in cardiomyocytes, or stretch-activated ion channels in muscle and non-muscle cells of the cardiovascular system. Recent progress in cardiac tissue engineering suggests that controlled physical stimulation can lead to functional improvements in multicellular cardiac tissue constructs. To study these effects, aspects of the physical environment of the myocardium have to be mimicked in vitro. Applying continuous live imaging, this protocol demonstrates how a specifically designed bioreactor system allows controlled exposure of cultured cells to cyclic stretch, rhythmic electrical stimulation, and controlled fluid perfusion, at user-defined temperatures.
Collapse
Affiliation(s)
| | | | - Remi Peyronnet
- Imperial College London, London, UK
- Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg - Bad Krozingen and Medical School of the Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Liang Lu
- Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Peter Kohl
- Imperial College London, London, UK
- Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg - Bad Krozingen and Medical School of the Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Ursula Ravens
- Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg - Bad Krozingen and Medical School of the Albert Ludwigs University Freiburg, Freiburg, Germany.
- Department of Pharmacology and Toxicology, Medical Faculty "Carl Gustav Carus", Dresden University of Technology (TU Dresden), Dresden, Germany.
| |
Collapse
|
3
|
Yong KW, Li Y, Huang G, Lu TJ, Safwani WKZW, Pingguan-Murphy B, Xu F. Mechanoregulation of cardiac myofibroblast differentiation: implications for cardiac fibrosis and therapy. Am J Physiol Heart Circ Physiol 2015; 309:H532-42. [PMID: 26092987 DOI: 10.1152/ajpheart.00299.2015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/19/2015] [Indexed: 12/16/2022]
Abstract
Cardiac myofibroblast differentiation, as one of the most important cellular responses to heart injury, plays a critical role in cardiac remodeling and failure. While biochemical cues for this have been extensively investigated, the role of mechanical cues, e.g., extracellular matrix stiffness and mechanical strain, has also been found to mediate cardiac myofibroblast differentiation. Cardiac fibroblasts in vivo are typically subjected to a specific spatiotemporally changed mechanical microenvironment. When exposed to abnormal mechanical conditions (e.g., increased extracellular matrix stiffness or strain), cardiac fibroblasts can undergo myofibroblast differentiation. To date, the impact of mechanical cues on cardiac myofibroblast differentiation has been studied both in vitro and in vivo. Most of the related in vitro research into this has been mainly undertaken in two-dimensional cell culture systems, although a few three-dimensional studies that exist revealed an important role of dimensionality. However, despite remarkable advances, the comprehensive mechanisms for mechanoregulation of cardiac myofibroblast differentiation remain elusive. In this review, we introduce important parameters for evaluating cardiac myofibroblast differentiation and then discuss the development of both in vitro (two and three dimensional) and in vivo studies on mechanoregulation of cardiac myofibroblast differentiation. An understanding of the development of cardiac myofibroblast differentiation in response to changing mechanical microenvironment will underlie potential targets for future therapy of cardiac fibrosis and failure.
Collapse
Affiliation(s)
- Kar Wey Yong
- Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, People's Republic of China; Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia; and
| | - YuHui Li
- Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, People's Republic of China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - GuoYou Huang
- Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, People's Republic of China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | | | - Belinda Pingguan-Murphy
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia; and
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, People's Republic of China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
4
|
Thimm TN, Squirrell JM, Liu Y, Eliceiri KW, Ogle BM. Endogenous Optical Signals Reveal Changes of Elastin and Collagen Organization During Differentiation of Mouse Embryonic Stem Cells. Tissue Eng Part C Methods 2015; 21:995-1004. [PMID: 25923353 DOI: 10.1089/ten.tec.2014.0699] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Components of the extracellular matrix (ECM) have recently been shown to influence stem cell specification. However, it has been challenging to assess the spatial and temporal dynamics of stem cell-ECM interactions because most methodologies utilized to date require sample destruction or fixation. We examined the efficacy of utilizing the endogenous optical signals of two important ECM proteins, elastin (Eln), through autofluorescence, and type I collagen (ColI), through second harmonic generation (SHG), during mouse embryonic stem cell differentiation. After finding favorable overlap between antibody labeling and the endogenous fluorescent signal of Eln, we used this endogenous signal to map temporal changes in Eln and ColI during murine embryoid body differentiation and found that Eln increases until day 9 and then decreases slightly by day 12, while Col1 steadily increases over the 12-day period. Furthermore, we combined endogenous fluorescence imaging and SHG with antibody labeling of cardiomyocytes to examine the spatial relationship between Eln and ColI accumulation and cardiomyocyte differentiation. Eln was ubiquitously present, with enrichment in regions with cardiomyocyte differentiation, while there was an inverse correlation between ColI and cardiomyocyte differentiation. This work provides an important first step for utilizing endogenous optical signals, which can be visualized in living cells, to understand the relationship between the ECM and cardiomyocyte development and sets the stage for future studies of stem cell-ECM interactions and dynamics relevant to stem cells as well as other cell and tissue types.
Collapse
Affiliation(s)
- Terra N Thimm
- 1 Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison , Madison, Wisconsin
| | - Jayne M Squirrell
- 1 Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison , Madison, Wisconsin
| | - Yuming Liu
- 1 Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison , Madison, Wisconsin
| | - Kevin W Eliceiri
- 1 Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison , Madison, Wisconsin.,2 Morgridge Institute for Research, University of Wisconsin-Madison , Madison, Wisconsin
| | - Brenda M Ogle
- 3 Department of Biomedical Engineering, University of Minnesota-Twin Cities , Minneapolis, Minnesota
| |
Collapse
|
5
|
Lajiness JD, Conway SJ. Origin, development, and differentiation of cardiac fibroblasts. J Mol Cell Cardiol 2013; 70:2-8. [PMID: 24231799 DOI: 10.1016/j.yjmcc.2013.11.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/23/2013] [Accepted: 11/04/2013] [Indexed: 01/14/2023]
Abstract
Cardiac fibroblasts are the most abundant cell in the mammalian heart. While they have been historically underappreciated in terms of their functional contributions to cardiac development and physiology, they and their activated form, myofibroblasts, are now known to play key roles in both development and disease through structural, paracrine, and electrical interactions with cardiomyocytes. The lack of specific markers for fibroblasts currently convolutes the study of this dynamic cell lineage, but advances in marker analysis and lineage mapping technologies are continuously being made. Understanding how to best utilize these tools, both individually and in combination, will help to elucidate the functional significance of fibroblast-cardiomyocyte interactions in vivo. Here we review what is currently known about the diverse roles played by cardiac fibroblasts and myofibroblasts throughout development and periods of injury with the intent of emphasizing the duality of their nature. This article is part of a Special Issue entitled "Myocyte-Fibroblast Signalling in Myocardium ".
Collapse
Affiliation(s)
- Jacquelyn D Lajiness
- Developmental Biology and Neonatal Medicine Program, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Simon J Conway
- Developmental Biology and Neonatal Medicine Program, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|