1
|
Nguyen TD, Roh S, Nguyen MTN, Lee JS. Structural Control of Nanofibers According to Electrospinning Process Conditions and Their Applications. MICROMACHINES 2023; 14:2022. [PMID: 38004879 PMCID: PMC10673317 DOI: 10.3390/mi14112022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023]
Abstract
Nanofibers have gained much attention because of the large surface area they can provide. Thus, many fabrication methods that produce nanofiber materials have been proposed. Electrospinning is a spinning technique that can use an electric field to continuously and uniformly generate polymer and composite nanofibers. The structure of the electrospinning system can be modified, thus making changes to the structure, and also the alignment of nanofibers. Moreover, the nanofibers can also be treated, modifying the nanofiber structure. This paper thoroughly reviews the efforts to change the configuration of the electrospinning system and the effects of these configurations on the nanofibers. Excellent works in different fields of application that use electrospun nanofibers are also introduced. The studied materials functioned effectively in their application, thereby proving the potential for the future development of electrospinning nanofiber materials.
Collapse
Affiliation(s)
| | | | | | - Jun Seop Lee
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si 13120, Gyeonggi-Do, Republic of Korea; (T.D.N.); (S.R.); (M.T.N.N.)
| |
Collapse
|
2
|
Hao H, Xue Y, Wu Y, Wang C, Chen Y, Wang X, Zhang P, Ji J. A paradigm for high-throughput screening of cell-selective surfaces coupling orthogonal gradients and machine learning-based cell recognition. Bioact Mater 2023; 28:1-11. [PMID: 37214260 PMCID: PMC10192934 DOI: 10.1016/j.bioactmat.2023.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
The combinational density of immobilized functional molecules on biomaterial surfaces directs cell behaviors. However, limited by the low efficiency of traditional low-throughput experimental methods, investigation and optimization of the combinational density remain daunting challenges. Herein, we report a high-throughput screening set-up to study biomaterial surface functionalization by integrating photo-controlled thiol-ene surface chemistry and machine learning-based label-free cell identification and statistics. Through such a strategy, a specific surface combinational density of polyethylene glycol (PEG) and arginine-glutamic acid-aspartic acid-valine peptide (REDV) leads to high endothelial cell (EC) selectivity against smooth muscle cell (SMC) was identified. The composition was translated as a coating formula to modify medical nickel-titanium alloy surfaces, which was then proved to improve EC competitiveness and induce endothelialization. This work provided a high-throughput method to investigate behaviors of co-cultured cells on biomaterial surfaces modified with combinatorial functional molecules.
Collapse
Affiliation(s)
- Hongye Hao
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
- International Research Center for X Polymers, International Campus, Zhejiang University, Haining, 314400, PR China
| | - Yunfan Xue
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
- International Research Center for X Polymers, International Campus, Zhejiang University, Haining, 314400, PR China
| | - Yuhui Wu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
- International Research Center for X Polymers, International Campus, Zhejiang University, Haining, 314400, PR China
| | - Cong Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
- International Research Center for X Polymers, International Campus, Zhejiang University, Haining, 314400, PR China
| | - Yifeng Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
- International Research Center for X Polymers, International Campus, Zhejiang University, Haining, 314400, PR China
| | - Xingwang Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
- International Research Center for X Polymers, International Campus, Zhejiang University, Haining, 314400, PR China
| | - Peng Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
- International Research Center for X Polymers, International Campus, Zhejiang University, Haining, 314400, PR China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
- International Research Center for X Polymers, International Campus, Zhejiang University, Haining, 314400, PR China
| |
Collapse
|
3
|
Copperman J, Gross SM, Chang YH, Heiser LM, Zuckerman DM. Morphodynamical cell state description via live-cell imaging trajectory embedding. Commun Biol 2023; 6:484. [PMID: 37142678 PMCID: PMC10160022 DOI: 10.1038/s42003-023-04837-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 04/10/2023] [Indexed: 05/06/2023] Open
Abstract
Time-lapse imaging is a powerful approach to gain insight into the dynamic responses of cells, but the quantitative analysis of morphological changes over time remains challenging. Here, we exploit the concept of "trajectory embedding" to analyze cellular behavior using morphological feature trajectory histories-that is, multiple time points simultaneously, rather than the more common practice of examining morphological feature time courses in single timepoint (snapshot) morphological features. We apply this approach to analyze live-cell images of MCF10A mammary epithelial cells after treatment with a panel of microenvironmental perturbagens that strongly modulate cell motility, morphology, and cell cycle behavior. Our morphodynamical trajectory embedding analysis constructs a shared cell state landscape revealing ligand-specific regulation of cell state transitions and enables quantitative and descriptive models of single-cell trajectories. Additionally, we show that incorporation of trajectories into single-cell morphological analysis enables (i) systematic characterization of cell state trajectories, (ii) better separation of phenotypes, and (iii) more descriptive models of ligand-induced differences as compared to snapshot-based analysis. This morphodynamical trajectory embedding is broadly applicable to the quantitative analysis of cell responses via live-cell imaging across many biological and biomedical applications.
Collapse
Affiliation(s)
- Jeremy Copperman
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97239, USA.
| | - Sean M Gross
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Young Hwan Chang
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97239, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Laura M Heiser
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97239, USA.
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97239, USA.
| | - Daniel M Zuckerman
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97239, USA.
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
4
|
An Automated High-Throughput Screening (HTS) Spotter for 3D Tumor Spheroid Formation. Int J Mol Sci 2023; 24:ijms24021006. [PMID: 36674523 PMCID: PMC9867480 DOI: 10.3390/ijms24021006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Three-dimensional (3D) culture platforms have been adopted in a high-throughput screening (HTS) system to mimic in vivo physiological microenvironments. The automated dispenser has been established commercially to enable spotting or distributing non-viscous or viscous biomaterials onto microplates. However, there are still challenges to the precise and accurate dispensation of cells embedded in hydrogels such as Alginate- and Matrigel-extracellular matrices. We developed and improved an automated contact-free dispensing machine, the ASFA SPOTTER (V5 and V6), which is compatible with 96- and 384-pillar/well plates and 330- and 532-micropillar/well chips for the support of 3D spheroid/organoid models using bioprinting techniques. This enables the distribution of non-viscous and viscous biosamples, including chemical drugs and cancer cells, for large-scale drug screening at high speed and small volumes (20 to 4000 nanoliters) with no damage to cells. The ASFA SPOTTER (V5 and V6) utilizes a contact-free method that minimizes cross-contamination for the dispensation of encapsulated tissue cells with highly viscous scaffolds (over 70%). In particular, the SPOTTER V6 does not require a washing process and offers the advantage of almost no dead volume (defined as additional required sample volume, including a pre-shot and flushing shot for dispensing). It can be successfully applied for the achievement of an organoid culture in automation, with rapid and easy operation, as well as miniaturization for high-throughput screening. In this study, we report the advantages of the ASFA SPOTTER, which distributes standard-sized cell spots with hydrogels onto a 384-pillar/well plate with a fast dispensing speed, small-scale volume, accuracy, and precision.
Collapse
|
5
|
Yang L, Jurczak KM, Ge L, Rijn P. High-Throughput Screening and Hierarchical Topography-Mediated Neural Differentiation of Mesenchymal Stem Cells. Adv Healthc Mater 2020; 9:e2000117. [PMID: 32363812 DOI: 10.1002/adhm.202000117] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/27/2020] [Indexed: 12/12/2022]
Abstract
Biophysical factors such as anisotropic topography composed of micro/nanosized structures are important for directing the fate of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and have been applied to neuronal differentiation. Via high-throughput screening (HTS) methods based on topography gradients, the optimum topography is determined and translated toward a hierarchical architecture designed to mimic the nerve nano/microstructure. The polydimethylsiloxane (PDMS)-based topography gradient with amplitudes (A) from 541 to 3073 nm and wavelengths (W) between 4 and 30 µm is developed and the fate commitment of MSC toward neuron lineage is investigated. The hierarchical structures, combining nano- and microtopography (W0.3/W26 parallel/perpendicular) are fabricated to explore the combined topography effects on neuron differentiation. From the immunofluorescent staining results (Tuj1 and MAP2), the substrate characterized by W: 26 µm; A: 2.9 µm shows highest potential for promoting neurogenesis. Furthermore, the hierarchical features (W0.3/W26 parallel) significantly enhance neural differentiation. The hBM-MSCs on the hierarchical substrates exhibit a significantly lower percentage of nuclear Yes-associated protein (YAP)/TAZ and weaker cell contractility indicating that the promoted neurogenesis is mediated by the cell tension and YAP/TAZ pathway. This research provides new insight into designing biomaterials for applications in neural tissue engineering and contributes to the understanding of topography-mediated neuronal differentiation.
Collapse
Affiliation(s)
- Liangliang Yang
- Department of Biomedical Engineering University Medical Center GroningenUniversity of Groningen Groningen, A. Deusinglaan 1 Groningen 9713 AV The Netherlands
| | - Klaudia Malgorzata Jurczak
- Department of Biomedical Engineering University Medical Center GroningenUniversity of Groningen Groningen, A. Deusinglaan 1 Groningen 9713 AV The Netherlands
| | - Lu Ge
- Department of Biomedical Engineering University Medical Center GroningenUniversity of Groningen Groningen, A. Deusinglaan 1 Groningen 9713 AV The Netherlands
| | - Patrick Rijn
- Department of Biomedical Engineering University Medical Center GroningenUniversity of Groningen Groningen, A. Deusinglaan 1 Groningen 9713 AV The Netherlands
| |
Collapse
|
6
|
Jain D, Mattiassi S, Goh EL, Yim EKF. Extracellular matrix and biomimetic engineering microenvironment for neuronal differentiation. Neural Regen Res 2020; 15:573-585. [PMID: 31638079 PMCID: PMC6975142 DOI: 10.4103/1673-5374.266907] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Extracellular matrix (ECM) influences cell differentiation through its structural and biochemical properties. In nervous system, neuronal behavior is influenced by these ECMs structures which are present in a meshwork, fibrous, or tubular forms encompassing specific molecular compositions. In addition to contact guidance, ECM composition and structures also exert its effect on neuronal differentiation. This short report reviewed the native ECM structure and composition in central nervous system and peripheral nervous system, and their impact on neural regeneration and neuronal differentiation. Using topographies, stem cells have been differentiated to neurons. Further, focussing on engineered biomimicking topographies, we highlighted the role of anisotropic topographies in stem cell differentiation to neurons and its recent temporal application for efficient neuronal differentiation.
Collapse
Affiliation(s)
- Deepak Jain
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Sabrina Mattiassi
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Eyleen L Goh
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, Singapore
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
7
|
Rosenfeld A, Brehm M, Welle A, Trouillet V, Heissler S, Benz M, Levkin PA. Solid-phase combinatorial synthesis using microarrays of microcompartments with light-induced on-chip cell screening. Mater Today Bio 2019; 3:100022. [PMID: 32159150 PMCID: PMC7061619 DOI: 10.1016/j.mtbio.2019.100022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 12/31/2022] Open
Abstract
The process of drug discovery includes individual synthesis and characterization of drug candidates, followed by a biological screening, which is separated from synthesis in space and time. This approach suffers from low throughput and associated high costs, which in turn lead to inefficiency in the field of drug discovery. Here, we present a miniaturized platform combining combinatorial solid-phase synthesis with high-throughput cell screenings. The method is based on the formation of nanoporous poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate) layers patterned with hydrophilic spots separated from each other by superhydrophobic liquid-impermeable barriers. The porous polymer inside the hydrophilic spots is used as a support to conduct solid-phase synthesis. The hydrophilic spots can be then filled with droplets containing either reagents for synthesis or live cells. Upon irradiation with UV light, products of solid-phase synthesis are released from the porous polymer because of the photo-cleavable linkers used and diffuse into separate droplets. The light-induced release of the products allows the control of the release spatially, temporally, and quantitatively. To demonstrate the versatility and usability of the platform for various cell lines, we have successfully implemented peptide synthesis to create an exemplary chemical library and demonstrated high cell viability after the UV-triggered small-molecule release.
Collapse
Affiliation(s)
- A Rosenfeld
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), Hermann-von Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - M Brehm
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), Hermann-von Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - A Welle
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, Hermann-von Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Karlsruhe Institute of Technology (KIT), Karlsruhe Nano Micro Facility, Hermann-von Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - V Trouillet
- Karlsruhe Institute of Technology (KIT), Karlsruhe Nano Micro Facility, Hermann-von Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Hermann-von Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - S Heissler
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, Hermann-von Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - M Benz
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), Hermann-von Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - P A Levkin
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), Hermann-von Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, 76131, Karlsruhe, Germany
| |
Collapse
|
8
|
Kukumberg M, Yao Y, Goh SH, Neo DJ, Yao JY, Yim EK. Evaluation of the topographical influence on the cellular behavior of human umbilical vein endothelial cells. ADVANCED BIOSYSTEMS 2018; 2:1700217. [PMID: 30766915 PMCID: PMC6370334 DOI: 10.1002/adbi.201700217] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Indexed: 12/17/2022]
Abstract
Adhesion and proliferation of vascular endothelial cells are important parameters in the endothelialization of biomedical devices for vascular applications. Endothelialization is a complex process affected by endothelial cells and their interaction with the extracellular microenvironment. Although numerous approaches are taken to study the influence of the external environment, a systematic investigation of the impact of an engineered microenvironment on endothelial cell processes is needed. This study aims to investigate the influence of topography, initial cell seeding density, and collagen coating on human umbilical vein endothelial cells (HUVECs). Utilizing the MultiARChitecture (MARC) chamber, the effects of various topographies on HUVECs are identified, and those with more prominent effects were further evaluated individually using the MARC plate. Endothelial cell marker expression and monocyte adhesion assay are examined on the HUVEC monolayer. HUVECs on 1.8 μm convex and concave microlens topographies demonstrate the lowest cell adhesion and proliferation, regardless of initial cell seeding density and collagen I coating, and the HUVEC monolayer on the microlens shows the lowest monocyte adhesion. This property of lens topographies would potentially be a useful parameter in designing vascular biomedical devices. The MARC chamber and MARC plate show a great potential for faster and easy pattern identification for various cellular processes.
Collapse
Affiliation(s)
- Marek Kukumberg
- Mechanobiology Institute, National University of Singapore, #05-01 T-lab, 5A Engineering Drive 1, Singapore 117411
| | - Yuan Yao
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Seok Hong Goh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, 138634, Singapore, Department of Biomedical Engineering, National University of Singapore, E4, #04-10,4 Engineering Drive 3, Singapore 117583
| | - Dawn Jh Neo
- Mechanobiology Institute, National University of Singapore, #05-01 T-lab, 5A Engineering Drive 1, Singapore 117411
| | - Jia Yi Yao
- Department of Biomedical Engineering, National University of Singapore, E4, #04-10,4 Engineering Drive 3, Singapore 117583
| | - Evelyn Kf Yim
- Mechanobiology Institute, National University of Singapore, #05-01 T-lab, 5A Engineering Drive 1, Singapore 117411, Department of Biomedical Engineering, National University of Singapore, E4, #04-10,4 Engineering Drive 3, Singapore 117583, Department of Surgery, National University of Singapore, NUHS Tower Block, Level 8,1E Kent Ridge Road, Singapore 119228, Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
9
|
Acevedo JP, Angelopoulos I, van Noort D, Khoury M. Microtechnology applied to stem cells research and development. Regen Med 2018; 13:233-248. [PMID: 29557299 DOI: 10.2217/rme-2017-0123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Microfabrication and microfluidics contribute to the research of cellular functions of cells and their interaction with their environment. Previously, it has been shown that microfluidics can contribute to the isolation, selection, characterization and migration of cells. This review aims to provide stem cell researchers with a toolkit of microtechnology (mT) instruments for elucidating complex stem cells functions which are challenging to decipher with traditional assays and animal models. These microdevices are able to investigate about the differentiation and niche interaction, stem cells transcriptomics, therapeutic functions and the capture of their secreted microvesicles. In conclusion, microtechnology will allow a more realistic assessment of stem cells properties, driving and accelerating the translation of regenerative medicine approaches to the clinic.
Collapse
Affiliation(s)
- Juan Pablo Acevedo
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile
| | - Ioannis Angelopoulos
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile
| | - Danny van Noort
- Facultad de Ingeniería y Ciencias Aplicadas Universidad de los Andes, Santiago, Chile.,Biotechnology, IFM, Linköping University, Sweden
| | - Maroun Khoury
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile.,Consorcio Regenero, Santiago, Chile
| |
Collapse
|
10
|
Gui N, Xu W, Myers DE, Shukla R, Tang HP, Qian M. The effect of ordered and partially ordered surface topography on bone cell responses: a review. Biomater Sci 2018; 6:250-264. [DOI: 10.1039/c7bm01016h] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Current understanding of the role of ordered and partially ordered surface topography in bone cell responses for bone implant design.
Collapse
Affiliation(s)
- N. Gui
- Centre for Additive Manufacturing
- School of Engineering
- RMIT University
- Melbourne
- Australia
| | - W. Xu
- Department of Engineering
- Macquarie University
- Sydney
- Australia
| | - D. E. Myers
- Australian Institute for Musculoskeletal Science
- Victoria University and University of Melbourne
- Australia
- College of Health and Biomedicine
- Victoria University
| | - R. Shukla
- Nanobiotechnology Research Laboratory and Centre for Advanced Materials & Industrial Chemistry
- School of Science
- RMIT University
- Melbourne
- Australia
| | - H. P. Tang
- State Key Laboratory of Porous Metal Materials
- Northwest Institute for Nonferrous Metal Research
- and Xi'an Sailong Metal Materials Co. Ltd
- Xi'an 710016
- China
| | - M. Qian
- Centre for Additive Manufacturing
- School of Engineering
- RMIT University
- Melbourne
- Australia
| |
Collapse
|
11
|
Dou X, Li P, Schönherr H. Three-Dimensional Microstructured Poly(vinyl alcohol) Hydrogel Platform for the Controlled Formation of Multicellular Cell Spheroids. Biomacromolecules 2017; 19:158-166. [DOI: 10.1021/acs.biomac.7b01345] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Xiaoqiu Dou
- Physical Chemistry I and Research Center
of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57076, Siegen, Germany
| | - Ping Li
- Physical Chemistry I and Research Center
of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57076, Siegen, Germany
| | - Holger Schönherr
- Physical Chemistry I and Research Center
of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, 57076, Siegen, Germany
| |
Collapse
|
12
|
Tronser T, Popova AA, Jaggy M, Bastmeyer M, Levkin PA. Droplet Microarray Based on Patterned Superhydrophobic Surfaces Prevents Stem Cell Differentiation and Enables High-Throughput Stem Cell Screening. Adv Healthc Mater 2017; 6. [PMID: 28961385 DOI: 10.1002/adhm.201700622] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/27/2017] [Indexed: 11/08/2022]
Abstract
Over the past decades, stem cells have attracted growing interest in fundamental biological and biomedical research as well as in regenerative medicine, due to their unique ability to self-renew and differentiate into various cell types. Long-term maintenance of the self-renewal ability and inhibition of spontaneous differentiation, however, still remain challenging and are not fully understood. Uncontrolled spontaneous differentiation of stem cells makes high-throughput screening of stem cells also difficult. This further hinders investigation of the underlying mechanisms of stem cell differentiation and the factors that might affect it. In this work, a dual functionality of nanoporous superhydrophobic-hydrophilic micropatterns is demonstrated in their ability to inhibit differentiation of mouse embryonic stem cells (mESCs) and at the same time enable formation of arrays of microdroplets (droplet microarray) via the effect of discontinuous dewetting. Such combination makes high-throughput screening of undifferentiated mouse embryonic stem cells possible. The droplet microarray is used to investigate the development, differentiation, and maintenance of stemness of mESC, revealing the dependence of stem cell behavior on droplet volume in nano- and microliter scale. The inhibition of spontaneous differentiation of mESCs cultured on the droplet microarray for up to 72 h is observed. In addition, up to fourfold increased cell growth rate of mESCs cultured on our platform has been observed. The difference in the behavior of mESCs is attributed to the porosity and roughness of the polymer surface. This work demonstrates that the droplet microarray possesses the potential for the screening of mESCs under conditions of prolonged inhibition of stem cells' spontaneous differentiation. Such a platform can be useful for applications in the field of stem cell research, pharmacological testing of drug efficacy and toxicity, biomedical research as well as in the field of regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Tina Tronser
- Karlsruhe Institute of Technology (KIT); Institute of Toxicology and Genetics (ITG); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Anna A. Popova
- Karlsruhe Institute of Technology (KIT); Institute of Toxicology and Genetics (ITG); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Mona Jaggy
- Karlsruhe Institute of Technology (KIT); Zoological Institute; Cell- and Neurobiology; Fritz-Haber-Weg 4 76131 Karlsruhe Germany
- Karlsruhe Institute of Technology (KIT); Institute of Functional Interfaces (IFG); New Polymers and Biomaterials; Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Martin Bastmeyer
- Karlsruhe Institute of Technology (KIT); Zoological Institute; Cell- and Neurobiology; Fritz-Haber-Weg 4 76131 Karlsruhe Germany
- Karlsruhe Institute of Technology (KIT); Institute of Functional Interfaces (IFG); New Polymers and Biomaterials; Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Pavel A. Levkin
- Karlsruhe Institute of Technology (KIT); Institute of Toxicology and Genetics (ITG); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Karlsruhe Institute of Technology (KIT); Institute of Organic Chemistry; 76131 Karlsruhe Germany
| |
Collapse
|
13
|
Tronser T, Popova AA, Levkin PA. Miniaturized platform for high-throughput screening of stem cells. Curr Opin Biotechnol 2017; 46:141-149. [PMID: 28388486 DOI: 10.1016/j.copbio.2017.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 03/03/2017] [Indexed: 01/06/2023]
Abstract
Over the past decades stem cells have gained great interest in clinical research, tissue engineering and regenerative medicine, due to their ability of self-renewal and potential to differentiate into the various cell types of the organism. The long-term maintenance of these unique properties and the control of stem cell differentiation in vitro, however, remains challenging, thus limiting their applicability in these fields. High-throughput screening (HTS) of stem cells is widely used by the researchers in order to gain more insight in the underlying mechanisms of stem cell fate as well as identifying compounds and factors maintaining stemness. However, limited availability and expandability of stem cells restricts the use of microtiter plates for HTS of stem cells emitting the urge for miniaturized platforms. This review highlights recent advances in the development of miniaturized platforms for HTS of stem cells and presents novel designs of miniaturized HTS systems.
Collapse
Affiliation(s)
- Tina Tronser
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Anna A Popova
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Pavel A Levkin
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, 76131 Karlsruhe, Germany.
| |
Collapse
|
14
|
Jonczyk R, Kurth T, Lavrentieva A, Walter JG, Scheper T, Stahl F. Living Cell Microarrays: An Overview of Concepts. MICROARRAYS (BASEL, SWITZERLAND) 2016; 5:E11. [PMID: 27600077 PMCID: PMC5003487 DOI: 10.3390/microarrays5020011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 02/06/2023]
Abstract
Living cell microarrays are a highly efficient cellular screening system. Due to the low number of cells required per spot, cell microarrays enable the use of primary and stem cells and provide resolution close to the single-cell level. Apart from a variety of conventional static designs, microfluidic microarray systems have also been established. An alternative format is a microarray consisting of three-dimensional cell constructs ranging from cell spheroids to cells encapsulated in hydrogel. These systems provide an in vivo-like microenvironment and are preferably used for the investigation of cellular physiology, cytotoxicity, and drug screening. Thus, many different high-tech microarray platforms are currently available. Disadvantages of many systems include their high cost, the requirement of specialized equipment for their manufacture, and the poor comparability of results between different platforms. In this article, we provide an overview of static, microfluidic, and 3D cell microarrays. In addition, we describe a simple method for the printing of living cell microarrays on modified microscope glass slides using standard DNA microarray equipment available in most laboratories. Applications in research and diagnostics are discussed, e.g., the selective and sensitive detection of biomarkers. Finally, we highlight current limitations and the future prospects of living cell microarrays.
Collapse
Affiliation(s)
- Rebecca Jonczyk
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, Hannover 30167, Germany.
| | - Tracy Kurth
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, Hannover 30167, Germany.
| | - Antonina Lavrentieva
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, Hannover 30167, Germany.
| | - Johanna-Gabriela Walter
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, Hannover 30167, Germany.
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, Hannover 30167, Germany.
| | - Frank Stahl
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, Hannover 30167, Germany.
| |
Collapse
|
15
|
Azeem A, English A, Kumar P, Satyam A, Biggs M, Jones E, Tripathi B, Basu N, Henkel J, Vaquette C, Rooney N, Riley G, O'Riordan A, Cross G, Ivanovski S, Hutmacher D, Pandit A, Zeugolis D. The influence of anisotropic nano- to micro-topography on in vitro and in vivo osteogenesis. Nanomedicine (Lond) 2016; 10:693-711. [PMID: 25816874 DOI: 10.2217/nnm.14.218] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM Topographically modified substrates are increasingly used in tissue engineering to enhance biomimicry. The overarching hypothesis is that topographical cues will control cellular response at the cell-substrate interface. MATERIALS & METHODS The influence of anisotropically ordered poly(lactic-co-glycolic acid) substrates (constant groove width of ~1860 nm; constant line width of ~2220 nm; variable groove depth of ~35, 306 and 2046 nm) on in vitro and in vivo osteogenesis were assessed. RESULTS & DISCUSSION We demonstrate that substrates with groove depths of approximately 306 and 2046 nm promote osteoblast alignment parallel to underlined topography in vitro. However, none of the topographies assessed promoted directional osteogenesis in vivo. CONCLUSION 2D imprinting technologies are useful tools for in vitro cell phenotype maintenance.
Collapse
Affiliation(s)
- Ayesha Azeem
- Network of Excellence for Functional Biomaterials (NFB), Biosciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tonazzini I, Meucci S, Van Woerden GM, Elgersma Y, Cecchini M. Impaired Neurite Contact Guidance in Ubiquitin Ligase E3a (Ube3a)-Deficient Hippocampal Neurons on Nanostructured Substrates. Adv Healthc Mater 2016; 5:850-62. [PMID: 26845073 DOI: 10.1002/adhm.201500815] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/09/2015] [Indexed: 12/21/2022]
Abstract
Recent discoveries indicate that during neuronal development the signaling processes that regulate extracellular sensing (e.g., adhesion, cytoskeletal dynamics) are important targets for ubiquitination-dependent regulation, in particular through E3 ubiquitin ligases. Among these, Ubiquitin E3a ligase (UBE3A) has a key role in brain functioning, but its function and how its deficiency results in the neurodevelopmental disorder Angelman syndrome is still unclear. Here, the role of UBE3A is investigated in neurite contact guidance during neuronal development, in vitro. The microtopography sensing of wild-type and Ube3a-deficient hippocampal neurons is studied by exploiting gratings with different topographical characteristics, with the aim to compare their capabilities to read and follow physical directional stimuli. It is shown that neuronal contact guidance is defective in Ube3a-deficient neurons, and this behavior is linked to an impaired activation of the focal adhesion signaling pathway. Taken together, the results suggest that the neuronal contact sensing machinery might be affected in Angelman syndrome.
Collapse
Affiliation(s)
- I. Tonazzini
- NEST; Istituto Nanoscienze-CNR and Scuola Normale Superiore; Piazza San Silvestro 12 56127 Pisa Italy
- Fondazione Umberto Veronesi; Piazza Velasca 5 20122 Milano Italy
| | - S. Meucci
- NEST; Istituto Nanoscienze-CNR and Scuola Normale Superiore; Piazza San Silvestro 12 56127 Pisa Italy
| | - G. M. Van Woerden
- Department of Neuroscience; ENCORE Expertise Center for Neurodevelopmental Disorders; Erasmus MC, Wytemaweg 80 3000 CA Rotterdam The Netherlands
| | - Y. Elgersma
- Department of Neuroscience; ENCORE Expertise Center for Neurodevelopmental Disorders; Erasmus MC, Wytemaweg 80 3000 CA Rotterdam The Netherlands
| | - M. Cecchini
- NEST; Istituto Nanoscienze-CNR and Scuola Normale Superiore; Piazza San Silvestro 12 56127 Pisa Italy
| |
Collapse
|
17
|
Lin E, Sikand A, Wickware J, Hao Y, Derda R. Peptide microarray patterning for controlling and monitoring cell growth. Acta Biomater 2016; 34:53-59. [PMID: 26805426 DOI: 10.1016/j.actbio.2016.01.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 01/09/2016] [Accepted: 01/20/2016] [Indexed: 02/08/2023]
Abstract
The fate of cells is influenced by their microenvironment and many cell types undergo differentiation when stimulated by extracellular cues, such as soluble growth factors and the insoluble extracellular matrix (ECM). Stimulating differentiation by insoluble or "immobilized" cues is a particularly attractive method because it allows for the induction of differentiation in a spatially-defined cohort of cells within a larger subpopulation. To improve the design of de novo screening of such insoluble factors, we describe a methodology for producing high-density peptide microarrays suitable for extended cell culture and fluorescence microscopy. As a model, we used a murine mammary gland cell line (NMuMG) that undergoes epithelial to mesenchymal transition (EMT) in response to soluble transforming growth factor beta (TGF-β) and surface-immobilized peptides that target TGF-β receptors (TGFβRI/II). We repurposed a well-established DNA microarray printing technique to produce arrays of micropatterned surfaces that displayed TGFβRI/II-binding peptides and integrin binding peptides. Upon long-term culture on these arrays, only NMuMG cells residing on EMT-stimulating areas exhibited growth arrest and decreased E-cadherin expression. We believe that the methodology created in this report will aid the development of peptide-decorated surfaces that can locally stimulate defined cell surface receptors and control EMT and other well-characterized differentiation events. STATEMENT OF SIGNIFICANCE Scope of work: This manuscript aims to accelerate the development of instructive biomaterials decorated with specific ligands that target cell-surface receptors and induce specific differentiation of cells upon contact. These materials can be used for practical applications, such as fabricating synthetic materials for large scale, stem cell culture, or investigating differentiation and asymmetric division in stem cells. Specifically, in this manuscript, we repurposed a DNA microarray printer to produce microarrays of peptide-terminated self-assembled monolayers (SAMs). To demonstrate the utility of these arrays in phenotypic assays with mammalian cells, we monitored the induction of epithelial to mesenchymal transition (EMT) in murine mammary epithelial cells using specific peptide ligands printed on these arrays. Novelty: We, and others, have published several strategies for producing peptide-based arrays suitable for long-term phenotypic assays. Many reports relied on patterning steps that made adaptation difficult. The use of a DNA microarray printer as the sole production tool simplified the production of peptide microarrays and increased the throughput of this technology. We confirmed that simplification in production did not compromise the performance of the array; it is still possible to study short-term adhesion, long-term growth, and complex phenotypic responses, such as EMT, in the cells. EMT was studied using immunofluorescent staining after four days of culture. IMPACT This methodology will serve as a foundation for future screening of instructive biomaterials in our research group. As DNA printers are broadly available in academic institutions, we foresee rapid adaptation of this approach by academic researchers.
Collapse
|
18
|
Abstract
In this chapter the state of the art of live cell microarrays for high-throughput biological assays are reviewed. The fabrication of novel microarrays with respect to material science and cell patterning methods is included. A main focus of the chapter is on various aspects of the application of cell microarrays by providing selected examples in research fields such as biomaterials, stem cell biology and neuroscience. Additionally, the importance of microfluidic technologies for high-throughput on-chip live-cell microarrays is highlighted for single-cell and multi-cell assays as well as for 3D tissue constructs.
Collapse
|
19
|
Semrau S, van Oudenaarden A. Studying Lineage Decision-Making In Vitro: Emerging Concepts and Novel Tools. Annu Rev Cell Dev Biol 2015; 31:317-45. [DOI: 10.1146/annurev-cellbio-100814-125300] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Alexander van Oudenaarden
- Hubrecht Institute, 3584 CT Utrecht, The Netherlands;
- University Medical Center Utrecht, Cancer Genomics Netherlands, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
20
|
Wang YC, Liu JS, Chen JY, Wu SQ, Wang GR, Nie J, Zhang SK, Guo QL, Luo JM. Multiple functions of the first EGF domain in matrilin-3: Secretion and endoplasmic reticulum stress. Int J Mol Med 2015; 36:1648-56. [PMID: 26499313 DOI: 10.3892/ijmm.2015.2377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 10/02/2015] [Indexed: 11/06/2022] Open
Abstract
Mutations in matrilin-3 are associated with common skeletal diseases, such as hand osteoarthritis (HOA), as well as rare chondrodysplasias, such as multiple epiphyseal dysplasia (MED) and spondyloepimetaphyseal dysplasia (SEMD). In the present study, we constructed the mutations R116W [at the von Willebrand factor, type A (vWFA) domain], T298M [at the first epidermal growth factor (EGF) domain] and C299S (at the first EGF domain), according to the mouse sequence, which are associated with human MED, HOA and SEMD, respectively, by overlap extension PCR and inserted them into an expression vector (pcDNA3.1/v5-His). We transfected these contructs into the COS-1 or MCT cells, and the results revealed that the HOA-related matrilin-3 mutation (T298M) leads to a high expression level of growth arrest DNA damage-inducible gene 153 (GADD153, also known as CHOP; an endoplasmic reticulum stress marker), as shown by western blot analysis and does not significantly affect protein secretion, as shown by immunofluorescence staining; however, osteochondroplasia, i.e., MED-related (R116W) and SEMD-related (C299S) mutations lead to both high levels of GADD153 expression and protein trafficking into the cytoplasm and form multiple vacuoles in cells, which in turn leads to insufficient protein secretion.
Collapse
Affiliation(s)
- Yi-Chun Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jing-Shi Liu
- Department of Critical Care Medicine, The Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jun-Yi Chen
- Department of Critical Care Medicine, The Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013, P.R. China
| | - Sheng-Qi Wu
- Central Laboratory, The Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013, P.R. China
| | - Gui-Rong Wang
- Department of Surgery, SUNY Upstate Medical University College of Medicine, Syracuse, NY 13210, USA
| | - Jing Nie
- Department of Critical Care Medicine, The Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013, P.R. China
| | - Shu-Kun Zhang
- Department of Pathology, Qinghai People's Provincial Hospital, Xining, Qinghai 810007, P.R. China
| | - Qu-Lian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jun-Ming Luo
- Department of Pathology, Qinghai People's Provincial Hospital, Xining, Qinghai 810007, P.R. China
| |
Collapse
|
21
|
Rape AD, Zibinsky M, Murthy N, Kumar S. A synthetic hydrogel for the high-throughput study of cell-ECM interactions. Nat Commun 2015; 6:8129. [PMID: 26350361 PMCID: PMC4566157 DOI: 10.1038/ncomms9129] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/22/2015] [Indexed: 02/07/2023] Open
Abstract
It remains extremely challenging to dissect the cooperative influence of multiple extracellular matrix (ECM) parameters on cell behaviour. This stems in part from a lack of easily deployable strategies for the combinatorial variation of matrix biochemical and biophysical properties. Here we describe a simple, high-throughput platform based on light-modulated hyaluronic acid hydrogels that enables imposition of mutually independent and spatially continuous gradients of ligand density and substrate stiffness. We validate this system by showing that it can support mechanosensitive differentiation of mesenchymal stem cells. We also use it to show that the oncogenic microRNA, miR18a, is nonlinearly regulated by matrix stiffness and fibronectin density in glioma cells. The parallelization of experiments enabled by this platform allows condensation of studies that would normally require hundreds of independent hydrogels to a single substrate. This system is a highly accessible, high-throughput technique to study the combinatorial variation of biophysical and biochemical signals in a single experimental paradigm. Multiple extracellular matrix parameters influence cellular behaviour, but it is difficult to dissect their cooperative contributions. Here the authors describe a hydrogel system in which ligand density and substrate stiffness can be tuned orthogonally to study the contribution of combinations of these parameters simultaneously.
Collapse
Affiliation(s)
- Andrew D Rape
- Department of Bioengineering, University of California, Berkeley, California 94720, USA
| | - Mikhail Zibinsky
- Department of Bioengineering, University of California, Berkeley, California 94720, USA
| | - Niren Murthy
- Department of Bioengineering, University of California, Berkeley, California 94720, USA
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, California 94720, USA
| |
Collapse
|
22
|
Onses MS, Sutanto E, Ferreira PM, Alleyne AG, Rogers JA. Mechanisms, Capabilities, and Applications of High-Resolution Electrohydrodynamic Jet Printing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:4237-4266. [PMID: 26122917 DOI: 10.1002/smll.201500593] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/20/2015] [Indexed: 06/04/2023]
Abstract
This review gives an overview of techniques used for high-resolution jet printing that rely on electrohydrodynamically induced flows. Such methods enable the direct, additive patterning of materials with a resolution that can extend below 100 nm to provide unique opportunities not only in scientific studies but also in a range of applications that includes printed electronics, tissue engineering, and photonic and plasmonic devices. Following a brief historical perspective, this review presents descriptions of the underlying processes involved in the formation of liquid cones and jets to establish critical factors in the printing process. Different printing systems that share similar principles are then described, along with key advances that have been made in the last decade. Capabilities in terms of printable materials and levels of resolution are reviewed, with a strong emphasis on areas of potential application.
Collapse
Affiliation(s)
- M Serdar Onses
- Department of Materials Science and Engineering, Nanotechnology Research Center (ERNAM), Erciyes University, Kayseri, 38039, Turkey
| | - Erick Sutanto
- The Dow Chemical Company, Collegeville, PA, 19426, USA
| | - Placid M Ferreira
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Andrew G Alleyne
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - John A Rogers
- Departments of Materials Science and Engineering, Beckman Institute and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
23
|
Nedjari S, Hébraud A, Eap S, Siegwald S, Mélart C, Benkirane-Jessel N, Schlatter G. Electrostatic template-assisted deposition of microparticles on electrospun nanofibers: towards microstructured functional biochips for screening applications. RSC Adv 2015. [DOI: 10.1039/c5ra15931h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Electrostatic Template-Assisted Deposition (ETAD) of microparticles is described as a new process to control the deposition of microparticles by electrospraying onto a substrate.
Collapse
Affiliation(s)
- S. Nedjari
- ICPEES Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, UMR 7515
- CNRS, Université de Strasbourg
- 67089 Strasbourg Cedex
- France
| | - A. Hébraud
- ICPEES Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, UMR 7515
- CNRS, Université de Strasbourg
- 67089 Strasbourg Cedex
- France
| | - S. Eap
- INSERM Unité 1109
- Université de Strasbourg
- F-67085 Strasbourg Cedex
- France
| | - S. Siegwald
- ICPEES Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, UMR 7515
- CNRS, Université de Strasbourg
- 67089 Strasbourg Cedex
- France
| | - C. Mélart
- ICPEES Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, UMR 7515
- CNRS, Université de Strasbourg
- 67089 Strasbourg Cedex
- France
| | | | - G. Schlatter
- ICPEES Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, UMR 7515
- CNRS, Université de Strasbourg
- 67089 Strasbourg Cedex
- France
| |
Collapse
|
24
|
Oliveira MB, Mano JF. High-throughput screening for integrative biomaterials design: exploring advances and new trends. Trends Biotechnol 2014; 32:627-36. [DOI: 10.1016/j.tibtech.2014.09.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/20/2014] [Accepted: 09/25/2014] [Indexed: 12/21/2022]
|
25
|
Matrilin-2 is a widely distributed extracellular matrix protein and a potential biomarker in the early stage of osteoarthritis in articular cartilage. BIOMED RESEARCH INTERNATIONAL 2014; 2014:986127. [PMID: 24741569 PMCID: PMC3967717 DOI: 10.1155/2014/986127] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 01/30/2023]
Abstract
In this study, we first generated and characterized a polyclonal antibody against unique domain of matrlin-2 and then used this specific antibody to assess the expression pattern of matrilin-2 by immunohistochemistry. We found that marilin-2 is widely distributed in the connective tissues of many mouse tissues including heart, colon, penis, esophagus, lung, kidney, tracheal cartilage, developmental bone, and adult bone. The expression level of matrilin-2 was remarkably increased in the tissues of osteoarthritis developmental articular cartilage, compared to normal healthy tissues. Furthermore, we determined matrilin-2 expression in specific epithelial cells in stomach and ductal epithelial cells of salivary gland. In other tissues, the positive signals were mainly located around cardiac muscle cells and Purkinje fibers in the heart; corpus spongiosum in the penis; submucosa in the colon and esophagus; extracellular matrix of cartilage in the tracheal cartilage; and, glomerulus, the basement membrane of distal convoluted tubule and renal matrix in kidney. These observations indicated that the distribution pattern of matrilin-2 is heterogeneous in each tissue. Matrilin-2 may play an important role in the communication of matrix to matrix and matrix to cells and will be used as a potential biomarker in the early stage of osteoarthritis of articular cartilage.
Collapse
|