1
|
Barszczewska-Pietraszek G, Drzewiecka M, Czarny P, Skorski T, Śliwiński T. Polθ Inhibition: An Anticancer Therapy for HR-Deficient Tumours. Int J Mol Sci 2022; 24:ijms24010319. [PMID: 36613762 PMCID: PMC9820168 DOI: 10.3390/ijms24010319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022] Open
Abstract
DNA polymerase theta (Polθ)-mediated end joining (TMEJ) is, along with homologous recombination (HR) and non-homologous end-joining (NHEJ), one of the most important mechanisms repairing potentially lethal DNA double-strand breaks (DSBs). Polθ is becoming a new target in cancer research because it demonstrates numerous synthetically lethal interactions with other DNA repair mechanisms, e.g., those involving PARP1, BRCA1/2, DNA-PK, ATR. Inhibition of Polθ could be achieved with different methods, such as RNA interference (RNAi), CRISPR/Cas9 technology, or using small molecule inhibitors. In the context of this topic, RNAi and CRISPR/Cas9 are still more often applied in the research itself rather than clinical usage, different than small molecule inhibitors. Several Polθ inhibitors have been already generated, and two of them, novobiocin (NVB) and ART812 derivative, are being tested in clinical trials against HR-deficient tumors. In this review, we describe the significance of Polθ and the Polθ-mediated TMEJ pathway. In addition, we summarize the current state of knowledge about Polθ inhibitors and emphasize the promising role of Polθ as a therapeutic target.
Collapse
Affiliation(s)
| | - Małgorzata Drzewiecka
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
- Correspondence: ; Tel.: +48-42-635-44-86
| |
Collapse
|
2
|
Bartoszewski R, Sikorski AF. Editorial focus: understanding off-target effects as the key to successful RNAi therapy. Cell Mol Biol Lett 2019; 24:69. [PMID: 31867046 PMCID: PMC6902517 DOI: 10.1186/s11658-019-0196-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022] Open
Abstract
With the first RNA interference (RNAi) drug (ONPATTRO (patisiran)) on the market, we witness the RNAi therapy field reaching a critical turning point, when further improvements in drug candidate design and delivery pipelines should enable fast delivery of novel life changing treatments to patients. Nevertheless, ignoring parallel development of RNAi dedicated in vitro pharmacological profiling aiming to identify undesirable off-target activity may slow down or halt progress in the RNAi field. Since academic research is currently fueling the RNAi development pipeline with new therapeutic options, the objective of this article is to briefly summarize the basics of RNAi therapy, as well as to discuss how to translate basic research into better understanding of related drug candidate safety profiles early in the process.
Collapse
Affiliation(s)
- Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Aleksander F. Sikorski
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
3
|
Wang Y, Li W, Phay JE, Shen R, Pellegata NS, Saji M, Ringel MD, de la Chapelle A, He H. Primary Cell Culture Systems for Human Thyroid Studies. Thyroid 2016; 26:1131-40. [PMID: 27296473 PMCID: PMC4976228 DOI: 10.1089/thy.2015.0518] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Cell models are key instruments for in vitro studies of the thyroid. Permanent thyroid cell lines that are widely used in laboratory research typically originate from tumors. For many purposes, it is desirable to compare tumor cells with cells originating from normal tissue. However, such cultures grow slowly, have a highly limited life-span, and are known to lose their thyroid characteristics. The aim of the present study was to type coding and noncoding thyroid markers in different culture systems in an attempt to determine the optimal conditions for in vitro experimentation. METHODS Human primary thyroid cells were isolated from histologically non-tumorous tissues. Two alternative media (6H and h7H) were used. The morphology and behavior of the ensuing monolayer (two-dimensional) cultures was monitored by microscopy. The expression of key thyroid-related genes (n = 9) was monitored by reverse transcription polymerase chain reaction on days 8, 21, and 43 after initiation. As a pilot study, the same markers were studied in a three-dimensional hanging-drop culture system. RESULTS In the cultures with 6H or h7H medium, the primary thyroid cells displayed growth in numbers and size. Most cells retained the main morphological characteristics of thyroid cells throughout the first two weeks of culture, and fibroblast-like cells appeared around day 19. By day 21, most thyroid gene markers were retained, but by day 43, several markers were no longer present. The lncRNA transcripts PTCSC2 (spliced) and PTCSC3 were the first to disappear. There were no fundamental differences between the two media in the early period of culture. In the three-dimensional system, most thyroid markers were retained by day 21. CONCLUSION Cultures of thyroid cells retain many thyroid characteristics up to day 21. Thereafter, fibroblast-like dedifferentiated cells begin to dominate.
Collapse
Affiliation(s)
- Yanqiang Wang
- Human Cancer Genetics Program and Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Wei Li
- Human Cancer Genetics Program and Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - John E. Phay
- Department of Surgery, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Rulong Shen
- Department of Pathology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Natalia S. Pellegata
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institut für Pathologie, Neuherberg, Germany
| | - Motoyasu Saji
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Matthew D. Ringel
- Human Cancer Genetics Program and Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Albert de la Chapelle
- Human Cancer Genetics Program and Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Huiling He
- Human Cancer Genetics Program and Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
4
|
Lee WC, Chiu CH, Chen JB, Chen CH, Chang HW. Mitochondrial Fission Increases Apoptosis and Decreases Autophagy in Renal Proximal Tubular Epithelial Cells Treated with High Glucose. DNA Cell Biol 2016; 35:657-665. [PMID: 27420408 DOI: 10.1089/dna.2016.3261] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The aim of this study was to examine the effect of mitochondrial morphogenesis changes on apoptosis and autophagy of high-glucose-treated proximal tubular epithelial cells (HK2). Cell viability, apoptosis, and mitochondrial morphogenesis were examined using crystal violet, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL), and mitotracker staining, respectively. High glucose inhibited cell viability and induced mitochondrial fission in HK2 cells. After depleting mitofusin 1 (MFN1), the MFN1(-) HK2 cells (fission type) became more susceptible to high-glucose-induced apoptosis and mitochondrial fragmentation observed by TUNEL and mitotracker assays. In siMFN2 HK2 cells (fission type), mitochondria were highly fragmented (>80% fission rate) with or without high-glucose treatment; however, siFIS1 (mitochondrial fission protein 1) HK2 cells (fusion type) exhibited little fragmentation (<13%). High-glucose treatment induced autophagy, characterized by the formation of autophagosome and microtubule-associated protein light chain 3 (LC3) B-II, as observed by transmission electron microscopy and western blotting, respectively. LC3B-II levels decreased in both MFN1(-) and siMFN2 HK2 cells, but increased in siFIS1 HK2 cells. Moreover, autophagy displays a protective role against high-glucose-induced cell death based on cotreatment with autophagy inhibitors (3-methyladenine and chloroquine). Mitochondrial fission may increase apoptosis and decrease autophagy of high-glucose-treated HK2 cells.
Collapse
Affiliation(s)
- Wen-Chin Lee
- 1 Mitochondrial Research Unit, Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine , Kaohsiung, Taiwan
| | - Chien-Hua Chiu
- 1 Mitochondrial Research Unit, Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine , Kaohsiung, Taiwan
| | - Jin-Bor Chen
- 1 Mitochondrial Research Unit, Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine , Kaohsiung, Taiwan
| | - Chiu-Hua Chen
- 1 Mitochondrial Research Unit, Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine , Kaohsiung, Taiwan .,2 Department of Biological Sciences, National Sun Yat-Sen University , Kaohsiung, Taiwan
| | - Hsueh-Wei Chang
- 3 Institute of Medical Science and Technology, National Sun Yat-Sen University , Kaohsiung, Taiwan .,4 Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University , Kaohsiung, Taiwan
| |
Collapse
|
5
|
Dihazi GH, Jahn O, Tampe B, Zeisberg M, Müller C, Müller GA, Dihazi H. Proteomic analysis of embryonic kidney development: Heterochromatin proteins as epigenetic regulators of nephrogenesis. Sci Rep 2015; 5:13951. [PMID: 26359909 PMCID: PMC4566080 DOI: 10.1038/srep13951] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 07/10/2015] [Indexed: 01/18/2023] Open
Abstract
Elucidation of the mechanisms underlying the nephrogenesis will boost enormously the regenerative medicine. Here we performed 2-D gel-based comparative proteome analyses of rat embryonic kidney from different developmental stages. Out of 288 non-redundant identified proteins, 102 were common in all developmental stages. 86% of the proteins found in E14 and E16 were identical, in contrast only 37% of the identified proteins overlap between E14 and P1. Bioinformatics analysis suggests developmental stage-specific pathway activation and highlighted heterochromatin protein 1 (Cbx1, Cbx3, Cbx5) and Trim28 as potential key players in nephrogenesis. These are involved in the epigenetic regulation of gene silencing and were down-regulated in the course of kidney development. Trim28 is a potential epigenetic regulator of the branching inhibitor Bmp4. Silencing of Trim28 in cultured kidneys resulted in branching arrest. In contrast knockdown of Cbx5 was associated with abnormal ureteric bud growth and slight impairment of branching. ChIP analysis showed that the H3K9me3 distribution on Bmp4 promoters at E14 and E19 inversely correlate with mRNA expression levels. The concentrated expression-pattern of heterochromatin proteins and the negative impact of their silencing on kidney development, suggest an important role in reciprocal and inductive signaling between the ureteric bud and the metanephric mesenchyme.
Collapse
Affiliation(s)
- Gry H Dihazi
- Department of Nephrology and Rheumatology, Georg-August University Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | - Olaf Jahn
- Proteomics Group, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Strasse 3, D-37075 Göttingen, Germany.,Deutsche Forschungsgemeinschaft Research Center for Molecular Physiology of the Brain, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Björn Tampe
- Department of Nephrology and Rheumatology, Georg-August University Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | - Michael Zeisberg
- Department of Nephrology and Rheumatology, Georg-August University Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | - Claudia Müller
- Department of Nephrology and Rheumatology, Georg-August University Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany.,Section for Transplantation- Immunology and Immunohematology, ZMF, Eberhard-Karls-University Tübingen, Germany
| | - Gerhard A Müller
- Department of Nephrology and Rheumatology, Georg-August University Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | - Hassan Dihazi
- Department of Nephrology and Rheumatology, Georg-August University Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| |
Collapse
|
6
|
Abstract
The mammalian kidney forms via cell-cell interactions between an epithelial outgrowth of the nephric duct and the surrounding nephrogenic mesenchyme. Initial morphogenetic events include ureteric bud branching to form the collecting duct (CD) tree and mesenchymal-to-epithelial transitions to form the nephrons, requiring reciprocal induction between adjacent mesenchyme and epithelial cells. Within the tips of the branching ureteric epithelium, cells respond to mesenchyme-derived trophic factors by proliferation, migration, and mitosis-associated cell dispersal. Self-inhibition signals from one tip to another play a role in branch patterning. The position, survival, and fate of the nephrogenic mesenchyme are regulated by ECM and secreted signals from adjacent tip and stroma. Signals from the ureteric tip promote mesenchyme self-renewal and trigger nephron formation. Subsequent fusion to the CDs, nephron segmentation and maturation, and formation of a patent glomerular basement membrane also require specialized cell-cell interactions. Differential cadherin, laminin, nectin, and integrin expression, as well as intracellular kinesin and actin-mediated regulation of cell shape and adhesion, underlies these cell-cell interactions. Indeed, the capacity for the kidney to form via self-organization has now been established both via the recapitulation of expected morphogenetic interactions after complete dissociation and reassociation of cellular components during development as well as the in vitro formation of 3D kidney organoids from human pluripotent stem cells. As we understand more about how the many cell-cell interactions required for kidney formation operate, this enables the prospect of bioengineering replacement structures based on these self-organizing properties.
Collapse
|
7
|
Junttila S, Saarela U, Halt K, Manninen A, Pärssinen H, Lecca MR, Brändli AW, Sims-Lucas S, Skovorodkin I, Vainio SJ. Functional genetic targeting of embryonic kidney progenitor cells ex vivo. J Am Soc Nephrol 2014; 26:1126-37. [PMID: 25201883 DOI: 10.1681/asn.2013060584] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/23/2014] [Indexed: 01/11/2023] Open
Abstract
The embryonic mammalian metanephric mesenchyme (MM) is a unique tissue because it is competent to generate the nephrons in response to Wnt signaling. An ex vivo culture in which the MM is separated from the ureteric bud (UB), the natural inducer, can be used as a classic tubule induction model for studying nephrogenesis. However, technological restrictions currently prevent using this model to study the molecular genetic details before or during tubule induction. Using nephron segment-specific markers, we now show that tubule induction in the MM ex vivo also leads to the assembly of highly segmented nephrons. This induction capacity was reconstituted when MM tissue was dissociated into a cell suspension and then reaggregated (drMM) in the presence of human recombinant bone morphogenetic protein 7/human recombinant fibroblast growth factor 2 for 24 hours before induction. Growth factor-treated drMM also recovered the capacity for organogenesis when recombined with the UB. Cell tracking and time-lapse imaging of chimeric drMM cultures indicated that the nephron is not derived from a single progenitor cell. Furthermore, viral vector-mediated transduction of green fluorescent protein was much more efficient in dissociated MM cells than in intact mesenchyme, and the nephrogenic competence of transduced drMM progenitor cells was preserved. Moreover, drMM cells transduced with viral vectors mediating Lhx1 knockdown were excluded from the nephric tubules, whereas cells transduced with control vectors were incorporated. In summary, these techniques allow reproducible cellular and molecular examinations of the mechanisms behind nephrogenesis and kidney organogenesis in an ex vivo organ culture/organoid setting.
Collapse
Affiliation(s)
- Sanna Junttila
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Ulla Saarela
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Kimmo Halt
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Aki Manninen
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Heikki Pärssinen
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - M Rita Lecca
- Functional Genomics Center Zurich, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - André W Brändli
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany; and
| | - Sunder Sims-Lucas
- Rangos Research Center, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Ilya Skovorodkin
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Seppo J Vainio
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland;
| |
Collapse
|
8
|
Chen TL, Wang HL, Liu YH, Fang Y, Tan RZ, Zhou PH, Zhou Q, Lv XY. Highly effective ex vivo gene manipulation to study kidney development using self-complementary adenoassociated viruses. ScientificWorldJournal 2014; 2014:682189. [PMID: 25133251 PMCID: PMC4123690 DOI: 10.1155/2014/682189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/28/2014] [Accepted: 06/12/2014] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Ex vivo culture of intact embryonic kidney has become a powerful system for studying renal development. However, few methods have been available for gene manipulation and have impeded the identification and investigation of genes in this developmental process. RESULTS Here we systemically compared eight different serotypes of pseudotyped self-complementary adenoassociated viruses (scAAVs) transduction in cultured embryonic kidney with a modified culture procedure. We demonstrated that scAAV was highly effective in delivering genes into and expressing in compacted tissues. scAAV serotypes 2 and 8 exhibited higher efficiency of transduction compared to others. Expression kinetics assay revealed that scAAV can be used for gene manipulation at the study of UB branching and nephrogenesis. Repressing WT1 in cultured kidney using shRNA impairs tubule formation. We for the first time employed and validated scAAV as a gene delivery tool in cultured kidney. CONCLUSIONS These findings are expected to expedite the use of the ex vivo embryonic kidney cultures for kidney development research. For other ex vivo cultured organ models, scAAV could also be a promising tool for organogenesis study.
Collapse
Affiliation(s)
- Tie-Lin Chen
- Core Facility of Genetically Engineered Mice, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hong-Lian Wang
- Core Facility of Genetically Engineered Mice, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yun-Hong Liu
- Core Facility of Genetically Engineered Mice, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yin Fang
- Core Facility of Genetically Engineered Mice, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rui-Zhi Tan
- Core Facility of Genetically Engineered Mice, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Pu-Hui Zhou
- College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Qin Zhou
- Core Facility of Genetically Engineered Mice, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiao-Yan Lv
- Departments of Dermatology, West China Hospital, Sichuan University, Sichuan 610041, China
| |
Collapse
|
9
|
Umemori Y, Kuribayashi K, Nirasawa S, Kondoh T, Tanaka M, Kobayashi D, Watanabe N. Protein kinase C ζ regulates survivin expression and inhibits apoptosis in colon cancer. Int J Oncol 2014; 45:1043-50. [PMID: 24920238 DOI: 10.3892/ijo.2014.2489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/02/2014] [Indexed: 11/06/2022] Open
Abstract
The phosphatidylinositol 3-kinase pathway transduces cell survival signals in different malignancies. Protein kinase C ζ (PKCζ) is one of the molecules involved in this pathway. In this study, we investigated the role of PKCζ in apoptosis. Short interfering RNA against PKCζ (siPKCζ) sensitized HCT116 and SW480 colon cancer cells to TRAIL‑induced apoptosis. Among anti-apoptotic proteins, survivin protein and mRNA expression levels decreased after siPKCζ transfection while protein half-life did not change. The expression levels of survivin and PKCζ were correlated in 18 colon cancer specimens (r=0.72, P=3.01x10‑4). Chemosensitivity to 5-FU was enhanced by siPKCζ in HCT116 and SW480 cells. These results indicate that PKCζ regulates survivin expression levels and inhibits apoptosis in colon cancer cells. This study provides a rationale for targeting PKCζ in combination with chemotherapy for colon cancer treatment.
Collapse
Affiliation(s)
- Yoshifumi Umemori
- Department of Clinical Laboratory Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan
| | - Kageaki Kuribayashi
- Department of Clinical Laboratory Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan
| | - Shinya Nirasawa
- Department of Clinical Laboratory Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan
| | - Takashi Kondoh
- Department of Clinical Laboratory Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan
| | - Maki Tanaka
- Department of Clinical Laboratory Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan
| | - Daisuke Kobayashi
- Department of Clinical Laboratory Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan
| | - Naoki Watanabe
- Department of Clinical Laboratory Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan
| |
Collapse
|
10
|
Bueters RR, Klaasen A, van den Heuvel LP, Schreuder MF. Effect of NSAIDs and diuretics on nephrogenesis in an ex vivo embryogenic kidney model. ACTA ACUST UNITED AC 2014; 98:486-92. [PMID: 24408660 DOI: 10.1002/bdrb.21090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 12/04/2013] [Indexed: 11/06/2022]
Abstract
The kidney is one of the key organs in clearing foreign compounds. The effects of drugs on the developing kidney are relatively unknown. We studied the direct effect of furosemide, hydrochlorothiazide, ibuprofen, and indomethacin on kidney development in an ex vivo embryonic kidney model. At embryonic day 13, metanephroi were dissected from mice and cultured in control media or media supplemented with various clinically relevant concentrations of drugs. The ureteric tree was visualized by whole-mount staining and branching was evaluated by counting. Additionally, gene expression levels of Wt1, Sox9, Bmp7, Fgf8, and Gdnf were investigated. No distinct differences were noted on either ureteric tip development or gene expression analysis for each drug after 24 hr of exposure. Even though short-term exposure to clinically relevant concentrations seems not to disturb renal development, future research is needed to study prolonged or repeated exposures.
Collapse
Affiliation(s)
- Ruud Rg Bueters
- Department of Pediatric Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
11
|
Parker JC. Acute lung injury and pulmonary vascular permeability: use of transgenic models. Compr Physiol 2013; 1:835-82. [PMID: 23737205 DOI: 10.1002/cphy.c100013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acute lung injury is a general term that describes injurious conditions that can range from mild interstitial edema to massive inflammatory tissue destruction. This review will cover theoretical considerations and quantitative and semi-quantitative methods for assessing edema formation and increased vascular permeability during lung injury. Pulmonary edema can be quantitated directly using gravimetric methods, or indirectly by descriptive microscopy, quantitative morphometric microscopy, altered lung mechanics, high-resolution computed tomography, magnetic resonance imaging, positron emission tomography, or x-ray films. Lung vascular permeability to fluid can be evaluated by measuring the filtration coefficient (Kf) and permeability to solutes evaluated from their blood to lung clearances. Albumin clearances can then be used to calculate specific permeability-surface area products (PS) and reflection coefficients (σ). These methods as applied to a wide variety of transgenic mice subjected to acute lung injury by hyperoxic exposure, sepsis, ischemia-reperfusion, acid aspiration, oleic acid infusion, repeated lung lavage, and bleomycin are reviewed. These commonly used animal models simulate features of the acute respiratory distress syndrome, and the preparation of genetically modified mice and their use for defining specific pathways in these disease models are outlined. Although the initiating events differ widely, many of the subsequent inflammatory processes causing lung injury and increased vascular permeability are surprisingly similar for many etiologies.
Collapse
Affiliation(s)
- James C Parker
- Department of Physiology, University of South Alabama, Mobile, Alabama, USA.
| |
Collapse
|
12
|
Abstract
In principle, treatment of embryonic kidneys growing in organ culture with short interfering RNA (siRNA) offers a powerful means of investigating molecular function quickly and cheaply. Experiments using this approach have yielded significant new data, but they have also highlighted important limitations. Here, we briefly describe the published successes and limitations and present detailed instructions for two methods of siRNA treatment. The first method applies siRNA to intact cultured kidneys; this method is the quicker and easier of the two, but it is the one most affected by problems of siRNA uptake by certain renal tissues. The second method reduces kidney rudiments to a suspension of single cells, applies siRNA at that stage, when the cells are highly accessible, and then reaggregates the kidney; this method is more time-consuming but suffers less from problems of limited uptake. As well as proving instructions for the methods, we provide a brief discussion of necessary controls.
Collapse
Affiliation(s)
- Jamie A Davies
- University of Edinburgh, Hugh Robson Building, Edinburgh, UK.
| | | |
Collapse
|
13
|
Lee WC, Hough MT, Liu W, Ekiert R, Lindström NO, Hohenstein P, Davies JA. Dact2 is expressed in the developing ureteric bud/collecting duct system of the kidney and controls morphogenetic behavior of collecting duct cells. Am J Physiol Renal Physiol 2010; 299:F740-51. [DOI: 10.1152/ajprenal.00148.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The overall pattern of the developing kidney is set in large part by the developing ureteric bud/collecting duct system, and dysgenesis of this system accounts for a variety of clinically significant renal diseases. Understanding how the behavior of cells in the developing ureteric bud/collecting duct is controlled is therefore important to understanding the normal and abnormal kidney. Dact proteins have recently been identified as cytoplasmic regulators of intracellular signaling. Dact1 inhibits Wnt signaling, and Dact2 inhibits transforming growth factor (TGF)-β signaling. Here, we report that Dact2 is expressed in developing and adult mouse kidneys, specifically in the ureteric bud/collecting duct epithelium, a structure whose morphogenesis is controlled partially by TGF-β. When small interfering RNA is used to knock down Dact2 expression in collecting duct cells, they show some constitutive phospho-Smad2, undetectable in controls, and elevated phospho-Smad2 in response to TGF-β. They also show defective migration and, in a monolayer wound-healing assay, they fail to assemble a leading edge “cable” of actomyosin and advance instead as a disorganized mass of lamellipodium-bearing cells. This effect is seriously exacerbated by exogenous TGF-β, although control cells tolerate it well. In three-dimensional culture, Dact2 knockdown cells form cysts and branching tubules, but the outlines of the cysts made by knockdown cells are ragged rather than smooth and the branching tubules are decorated with many fine spikes not seen in controls. These data suggest Dact2 plays a role in regulating morphogenesis by renal collecting duct cells, probably by protecting cells from overly strong TGF-β pathway activation.
Collapse
Affiliation(s)
- Wen-Chin Lee
- Centre for Integrative Physiology, University of Edinburgh, and
| | | | - Weijia Liu
- Centre for Integrative Physiology, University of Edinburgh, and
| | - Robert Ekiert
- Centre for Integrative Physiology, University of Edinburgh, and
| | | | - Peter Hohenstein
- Medical Research Council Human Genetics Unit and Institute for Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
| | - Jamie A. Davies
- Centre for Integrative Physiology, University of Edinburgh, and
| |
Collapse
|
14
|
Effect of lentivirus-induced shRNA silencing CXCR4 gene on proliferation and apoptosis in human esophageal carcinoma cell line Eca109. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11805-010-0517-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Sebinger DDR, Unbekandt M, Ganeva VV, Ofenbauer A, Werner C, Davies JA. A novel, low-volume method for organ culture of embryonic kidneys that allows development of cortico-medullary anatomical organization. PLoS One 2010; 5:e10550. [PMID: 20479933 PMCID: PMC2866658 DOI: 10.1371/journal.pone.0010550] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 04/16/2010] [Indexed: 02/05/2023] Open
Abstract
Here, we present a novel method for culturing kidneys in low volumes of medium that offers more organotypic development compared to conventional methods. Organ culture is a powerful technique for studying renal development. It recapitulates many aspects of early development very well, but the established techniques have some disadvantages: in particular, they require relatively large volumes (1–3 mls) of culture medium, which can make high-throughput screens expensive, they require porous (filter) substrates which are difficult to modify chemically, and the organs produced do not achieve good cortico-medullary zonation. Here, we present a technique of growing kidney rudiments in very low volumes of medium–around 85 microliters–using silicone chambers. In this system, kidneys grow directly on glass, grow larger than in conventional culture and develop a clear anatomical cortico-medullary zonation with extended loops of Henle.
Collapse
Affiliation(s)
- David D. R. Sebinger
- Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden, Dresden, Germany
| | - Mathieu Unbekandt
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, Scotland
| | - Veronika V. Ganeva
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, Scotland
| | - Andreas Ofenbauer
- Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden, Dresden, Germany
| | - Carsten Werner
- Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden, Dresden, Germany
| | - Jamie A. Davies
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, Scotland
- * E-mail:
| |
Collapse
|
16
|
Dissociation of embryonic kidneys followed by reaggregation allows the formation of renal tissues. Kidney Int 2009; 77:407-16. [PMID: 20016472 DOI: 10.1038/ki.2009.482] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Here we describe a novel method in which embryonic kidneys are dissociated into single-cell suspensions and then reaggregated to form organotypic renal structures. Kidney cell reaggregates were transiently cultured with small-molecule Rho kinase inhibitors, which caused ureteric bud structures to form and induced formation of nephrons. These structures displayed normal morphology, expressed appropriate differentiation markers, and were connected at their distal ends to the ureteric buds, thus forming artificial tissues very similar to those found in normal embryonic kidneys. Using this culture method, it was straightforward to make fine-grained chimeras by mixing different cell types or by mixing cells transfected with different constructs before reaggregation. Chimeric renal cultures were formed using mixtures of unmarked normal host embryonic kidney cells and CellTracker-marked WT1 siRNA-carrying cells to test the hypothesis that WT1 is important to a cell's ability to contribute to nephron formation. We found a significant reduction in the ability of WT1 knockdown cells to contribute to nephron formation. This dissociation and reaggregation procedure can also be applied to embryonic lungs and to form coarse-grained hybrid tissues from mixtures of lung and kidney cells. Overall, our protocol allows very simple mixing of cells from different sources or cells subjected to different pretreatments to make fine-grained, highly dispersed chimera tissues.
Collapse
|
17
|
Juliano R, Bauman J, Kang H, Ming X. Biological barriers to therapy with antisense and siRNA oligonucleotides. Mol Pharm 2009; 6:686-95. [PMID: 19397332 DOI: 10.1021/mp900093r] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Attaining the full therapeutic utility of antisense and siRNA oligonucleotides will require understanding of the biological barriers that stand between initial administration of these drugs and their final actions within cells. This review examines some of the key barriers that affect the biodistribution of oligonucleotides both in molecular form and when they are associated with nanocarriers. An understanding of the biological processes underlying these barriers will aid in the design of more effective delivery systems.
Collapse
Affiliation(s)
- R Juliano
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | | | |
Collapse
|