1
|
Shai SE, Lai YL, Hung YW, Hsieh CW, Su KC, Wang CH, Chao TH, Chiu YT, Wu CC, Hung SC. Long-Term Survival and Regeneration Following Transplantation of 3D-Printed Biodegradable PCL Tracheal Grafts in Large-Scale Porcine Models. Bioengineering (Basel) 2024; 11:832. [PMID: 39199790 PMCID: PMC11351403 DOI: 10.3390/bioengineering11080832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Polycaprolactone (PCL) implants in large animals show great promise for tracheal transplantation. However, the longest survival time achieved to date is only about three weeks. To meet clinical application standards, it is essential to extend the survival time and ensure the complete integration and functionality of the implant. Our study investigates the use of three-dimensional (3D)-printed, biodegradable, PCL-based tracheal grafts for large-scale porcine tracheal transplantation, assessing the feasibility and early structural integrity crucial for long-term survival experiments. A biodegradable PCL tracheal graft was fabricated using a BIOX bioprinter and transplanted into large-scale porcine models. The grafts, measuring 20 × 20 × 1.5 mm, were implanted following a 2 cm circumferential resection of the porcine trachea. The experiment design was traditionally implanted in eight porcines to replace four-ring tracheal segments, only two of which survived more than three months. Data were collected on the graft construction and clinical outcomes. The 3D-printed biosynthetic grafts replicated the native organ with high fidelity. The implantations were successful, without immediate complications. At two weeks, bronchoscopy revealed significant granulation tissue around the anastomosis, which was managed with laser ablation. The presence of neocartilage, neoglands, and partial epithelialization near the anastomosis was verified in the final pathology findings. Our study demonstrates in situ regenerative tissue growth with intact cartilage following transplantation, marked by neotissue formation on the graft's exterior. The 90-day survival milestone was achieved due to innovative surgical strategies, reinforced with strap muscle attached to the distal trachea. Further improvements in graft design and granulation tissue management are essential to optimize outcomes.
Collapse
Affiliation(s)
- Sen-Ei Shai
- Department of Thoracic Surgery, Taichung Veterans General Hospital, Taichung 407219, Taiwan;
- Department of Applied Chemistry, National Chi Nan University, Nantou 545301, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei 112304, Taiwan
| | - Yi-Ling Lai
- Department of Thoracic Surgery, Taichung Veterans General Hospital, Taichung 407219, Taiwan;
| | - Yi-Wen Hung
- Animal Radiation Therapy Research Center, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan;
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung 404327, Taiwan
| | - Chi-Wei Hsieh
- School of Medicine, National Cheng Kung University, Tainan 701401, Taiwan; (C.-W.H.); (C.-C.W.)
| | - Kuo-Chih Su
- Department of Medical Research, Three Dimensional Printing Research and Development Group, Taichung Veterans General Hospital, Taichung 407219, Taiwan; (K.-C.S.); (C.-H.W.)
| | - Chun-Hsiang Wang
- Department of Medical Research, Three Dimensional Printing Research and Development Group, Taichung Veterans General Hospital, Taichung 407219, Taiwan; (K.-C.S.); (C.-H.W.)
| | - Te-Hsin Chao
- Division of Colon and Rectal Surgery, Department of Surgery, Chiayi and Wangiao Branch, Taichung Veterans General Hospital, Chiayi 600573, Taiwan;
| | - Yung-Tsung Chiu
- Department of Medical Research and Education, Taichung Veterans General Hospital, Taichung 407219, Taiwan;
| | - Chia-Ching Wu
- School of Medicine, National Cheng Kung University, Tainan 701401, Taiwan; (C.-W.H.); (C.-C.W.)
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Shih-Chieh Hung
- Integrative Stem Cell Center, China Medical University Hospital, Taichung 404327, Taiwan;
- Institute of New Drug Development, China Medical University, Taichung 404328, Taiwan
| |
Collapse
|
2
|
Milián L, Oliver-Ferrándiz M, Peregrín I, Sancho-Tello M, Martín-de-Llano JJ, Martínez-Ramos C, Carda C, Mata M. Alginate Improves the Chondrogenic Capacity of 3D PCL Scaffolds In Vitro: A Histological Approach. Curr Issues Mol Biol 2024; 46:3563-3578. [PMID: 38666953 PMCID: PMC11048942 DOI: 10.3390/cimb46040223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/27/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Polycaprolactone (PCL) scaffolds have demonstrated an effectiveness in articular cartilage regeneration due to their biomechanical properties. On the other hand, alginate hydrogels generate a 3D environment with great chondrogenic potential. Our aim is to generate a mixed PCL/alginate scaffold that combines the chondrogenic properties of the two biomaterials. Porous PCL scaffolds were manufactured using a modified salt-leaching method and embedded in a culture medium or alginate in the presence or absence of chondrocytes. The chondrogenic capacity was studied in vitro. Type II collagen and aggrecan were measured by immunofluorescence, cell morphology by F-actin fluorescence staining and gene expression of COL1A1, COL2A1, ACAN, COL10A1, VEGF, RUNX1 and SOX6 by reverse transcription polymerase chain reaction (RT-PCR). The biocompatibility of the scaffolds was determined in vivo using athymic nude mice and assessed by histopathological and morphometric analysis. Alginate improved the chondrogenic potential of PCL in vitro by increasing the expression of type II collagen and aggrecan, as well as other markers related to chondrogenesis. All scaffolds showed good biocompatibility in the in vivo model. The presence of cells in the scaffolds induced an increase in vascularization of the PCL/alginate scaffolds. The results presented here reinforce the benefits of the combined use of PCL and alginate for the regeneration of articular cartilage.
Collapse
Affiliation(s)
- Lara Milián
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Blasco Ibáñez Avenue, 15, 46010 Valencia, Spain
- INCLIVA Biomedical Research Institute, Menéndez y Pelayo Street, 4, 46010 Valencia, Spain
| | - María Oliver-Ferrándiz
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Blasco Ibáñez Avenue, 15, 46010 Valencia, Spain
| | - Ignacio Peregrín
- INCLIVA Biomedical Research Institute, Menéndez y Pelayo Street, 4, 46010 Valencia, Spain
- IMED Hospital, 46100 Valencia, Spain
| | - María Sancho-Tello
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Blasco Ibáñez Avenue, 15, 46010 Valencia, Spain
- INCLIVA Biomedical Research Institute, Menéndez y Pelayo Street, 4, 46010 Valencia, Spain
| | - José Javier Martín-de-Llano
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Blasco Ibáñez Avenue, 15, 46010 Valencia, Spain
- INCLIVA Biomedical Research Institute, Menéndez y Pelayo Street, 4, 46010 Valencia, Spain
| | - Cristina Martínez-Ramos
- Centro de Biomateriales e Ingeniería Tisular (CBIT), Universitat Politècnica de València, Camino de Vera, s/n Ciudad Politécnica de la Innovación, Edificio 8E. Acceso F. Nivel 1, 46022 Valencia, Spain
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Carmen Carda
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Blasco Ibáñez Avenue, 15, 46010 Valencia, Spain
- INCLIVA Biomedical Research Institute, Menéndez y Pelayo Street, 4, 46010 Valencia, Spain
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Manuel Mata
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Blasco Ibáñez Avenue, 15, 46010 Valencia, Spain
- INCLIVA Biomedical Research Institute, Menéndez y Pelayo Street, 4, 46010 Valencia, Spain
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
3
|
Bergman M, Harwood J, Liu L, Dharmadikhari S, Shontz KM, Chiang T. Optimization of Chondrocyte Viability in Partially Decellularized Tracheal Grafts. Otolaryngol Head Neck Surg 2023; 169:1241-1246. [PMID: 37313949 PMCID: PMC10792494 DOI: 10.1002/ohn.404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/07/2023] [Accepted: 03/31/2023] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Advancements in tissue-engineered tracheal replacement (TETR) show promise for the use of partially decellularized tracheal grafts (PDTG) to address critical gaps in airway management and reconstruction. In this study, aiming to leverage the immunoprivileged nature of cartilage to preserve tracheal biomechanics, we optimize PDTG for retention of native chondrocytes. STUDY DESIGN Comparison in vivo murine study. SETTING Research Institute affiliated with Tertiary Pediatric Hospital. METHODS PDTG were created per a shortened decellularization protocol using sodium dodecyl sulfate, then biobanked via cryopreservation technique. Decellularization efficiency was characterized by DNA assay and histology. Viability and apoptosis of chondrocytes in preimplanted PDTG and biobanked native trachea (control) was assessed with live/dead and apoptosis assays. PDTG (N = 5) and native trachea (N = 6) were orthotopically implanted in syngeneic recipients for 1-month. At the endpoint, microcomputed tomography (micro-CT) was employed to interrogate graft patency and radiodensity in vivo. Vascularization and epithelialization were qualitatively analyzed using histology images following explant. RESULTS PDTG exhibited complete decellularization of all extra-cartilaginous cells and reduced DNA content compared to control. Chondrocyte viability and nonapoptotic cell populations were improved utilizing biobanking and shorter decellularization time. All grafts remained patent. Evaluation of graft radiodensity at 1 month revealed elevation of Hounsfield units in both PDTG and native compared to host, with PDTG showing higher radiodensity than native. PDTG supported complete epithelialization and functional reendothelialization 1-month postimplantation. CONCLUSION Optimizing PDTG chondrocyte viability is a key component to successful tracheal replacement. Ongoing research seeks to evaluate the acute and chronic immunogenicity of PDTG.
Collapse
Affiliation(s)
- Maxwell Bergman
- Department of Otolaryngology–Head & Neck Surgery, The Ohio State University Medical Center, Columbus, Ohio, USA
- Department of Pediatric Otolaryngology, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Jacqueline Harwood
- Department of Pediatric Otolaryngology, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Lumei Liu
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Sayali Dharmadikhari
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Kimberly M. Shontz
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Tendy Chiang
- Department of Pediatric Otolaryngology, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
| |
Collapse
|
4
|
Zeng N, Chen Y, Wu Y, Zang M, Largo RD, Chang EI, Schaverien MV, Yu P, Zhang Q. Pre-epithelialized cryopreserved tracheal allograft for neo-trachea flap engineering. Front Bioeng Biotechnol 2023; 11:1196521. [PMID: 37214293 PMCID: PMC10198577 DOI: 10.3389/fbioe.2023.1196521] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
Background: Tracheal reconstruction presents a challenge because of the difficulty in maintaining the rigidity of the trachea to ensure an open lumen and in achieving an intact luminal lining that secretes mucus to protect against infection. Methods: On the basis of the finding that tracheal cartilage has immune privilege, researchers recently started subjecting tracheal allografts to "partial decellularization" (in which only the epithelium and its antigenicity are removed), rather than complete decellularization, to maintain the tracheal cartilage as an ideal scaffold for tracheal tissue engineering and reconstruction. In the present study, we combined a bioengineering approach and a cryopreservation technique to fabricate a neo-trachea using pre-epithelialized cryopreserved tracheal allograft (ReCTA). Results: Our findings in rat heterotopic and orthotopic implantation models confirmed that tracheal cartilage has sufficient mechanical properties to bear neck movement and compression; indicated that pre-epithelialization with respiratory epithelial cells can prevent fibrosis obliteration and maintain lumen/airway patency; and showed that a pedicled adipose tissue flap can be easily integrated with a tracheal construct to achieve neovascularization. Conclusion: ReCTA can be pre-epithelialized and pre-vascularized using a 2-stage bioengineering approach and thus provides a promising strategy for tracheal tissue engineering.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peirong Yu
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Qixu Zhang
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
5
|
Chan C, Liu L, Dharmadhikari S, Shontz KM, Tan ZH, Bergman M, Shaffer T, Tram NK, Breuer CK, Stacy MR, Chiang T. A Multimodal Approach to Quantify Chondrocyte Viability for Airway Tissue Engineering. Laryngoscope 2023; 133:512-520. [PMID: 35612419 PMCID: PMC9691794 DOI: 10.1002/lary.30206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES/HYPOTHESIS Partially decellularized tracheal scaffolds have emerged as a potential solution for long-segment tracheal defects. These grafts have exhibited regenerative capacity and the preservation of native mechanical properties resulting from the elimination of all highly immunogenic cell types while sparing weakly immunogenic cartilage. With partial decellularization, new considerations must be made about the viability of preserved chondrocytes. In this study, we propose a multimodal approach for quantifying chondrocyte viability for airway tissue engineering. METHODS Tracheal segments (5 mm) were harvested from C57BL/6 mice, and immediately stored in phosphate-buffered saline at -20°C (PBS-20) or biobanked via cryopreservation. Stored and control (fresh) tracheal grafts were implanted as syngeneic tracheal grafts (STG) for 3 months. STG was scanned with micro-computed tomography (μCT) in vivo. STG subjected to different conditions (fresh, PBS-20, or biobanked) were characterized with live/dead assay, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and von Kossa staining. RESULTS Live/dead assay detected higher chondrocyte viability in biobanked conditions compared to PBS-20. TUNEL staining indicated that storage conditions did not alter the proportion of apoptotic cells. Biobanking exhibited a lower calcification area than PBS-20 in 3-month post-implanted grafts. Higher radiographic density (Hounsfield units) measured by μCT correlated with more calcification within the tracheal cartilage. CONCLUSIONS We propose a strategy to assess chondrocyte viability that integrates with vivo imaging and histologic techniques, leveraging their respective strengths and weaknesses. These techniques will support the rational design of partially decellularized tracheal scaffolds. LEVEL OF EVIDENCE N/A Laryngoscope, 133:512-520, 2023.
Collapse
Affiliation(s)
- Coreena Chan
- College of Medicine, The Ohio State University, Columbus, Ohio, U.S.A
| | - Lumei Liu
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, U.S.A
- Department of Pediatric Otolaryngology, Nationwide Children's Hospital, Columbus, Ohio, U.S.A
| | - Sayali Dharmadhikari
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, U.S.A
- Department of Pediatric Otolaryngology, Nationwide Children's Hospital, Columbus, Ohio, U.S.A
| | - Kimberly M Shontz
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, U.S.A
| | - Zheng Hong Tan
- College of Medicine, The Ohio State University, Columbus, Ohio, U.S.A
| | - Maxwell Bergman
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Medical Center, Columbus, Ohio, U.S.A
| | - Terri Shaffer
- Small Animal Imaging Facility, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, U.S.A
| | - Nguyen K Tram
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, U.S.A
| | - Christopher K Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, U.S.A
- Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, Ohio, U.S.A
| | - Mitchel R Stacy
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, U.S.A
| | - Tendy Chiang
- Center for Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, U.S.A
- Department of Pediatric Otolaryngology, Nationwide Children's Hospital, Columbus, Ohio, U.S.A
| |
Collapse
|
6
|
Milian L, Sancho-Tello M, Roig-Soriano J, Foschini G, Martínez-Hernández NJ, Más-Estellés J, Ruiz-Sauri A, Zurriaga J, Carda C, Mata M. Optimization of a decellularization protocol of porcine tracheas. Long-term effects of cryopreservation. A histological study. Int J Artif Organs 2021; 44:998-1012. [PMID: 33863248 DOI: 10.1177/03913988211008912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The aim of this study was to optimize a decellularization protocol in the trachea of Sus scrofa domestica (pig) as well as to study the effects of long-term cryopreservation on the extracellular matrix of decellularized tracheas. METHODS Porcine tracheas were decellularized using Triton X-100, SDC, and SDS alone or in combination. The effect of these detergents on the extracellular matrix characteristics of decellularized porcine tracheas was evaluated at the histological, biomechanical, and biocompatibility level. Morphometric approaches were used to estimate the effect of detergents on the collagen and elastic fibers content as well as on the removal of chondrocytes from decellularized organs. Moreover, the long-term structural, ultrastructural, and biomechanical effect of cryopreservation of decellularized tracheas were also estimated. RESULTS Two percent SDS was the most effective detergent tested concerning cell removal and preservation of the histological and biomechanical properties of the tracheal wall. However, long-term cryopreservation had no an appreciable effect on the structure, ultrastructure, and biomechanics of decellularized tracheal rings. CONCLUSION The results presented here reinforce the use of SDS as a valuable decellularizing agent for porcine tracheas. Furthermore, a cryogenic preservation protocol is described, which has minimal impact on the histological and biomechanical properties of decellularized porcine tracheas.
Collapse
Affiliation(s)
- Lara Milian
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
- Research Foundation of the Clinical Hospital of the Comunidad Valenciana (INCLIVA), Valencia, Spain
| | - María Sancho-Tello
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
- Research Foundation of the Clinical Hospital of the Comunidad Valenciana (INCLIVA), Valencia, Spain
| | - Joan Roig-Soriano
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
| | | | | | - Jorge Más-Estellés
- Biomaterials Center, Universitat Politècnica de València, València, Spain
| | - Amparo Ruiz-Sauri
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
- Research Foundation of the Clinical Hospital of the Comunidad Valenciana (INCLIVA), Valencia, Spain
| | - Javier Zurriaga
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
| | - Carmen Carda
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
- Research Foundation of the Clinical Hospital of the Comunidad Valenciana (INCLIVA), Valencia, Spain
- Center for Biomedical Research Network in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - Manuel Mata
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
- Research Foundation of the Clinical Hospital of the Comunidad Valenciana (INCLIVA), Valencia, Spain
- Center for Biomedical Research Network of Respiratory Diseases, Madrid, Spain
| |
Collapse
|
7
|
Shai SE, Lai YL, Huang BJ, Yu KJ, Hsieh CW, Chen YS, Hung SC. Feasibility of in situ chondrogenesis for the entire umbilical cord in preliminary preparation for tracheal graft. Am J Transl Res 2021; 13:1307-1321. [PMID: 33841658 PMCID: PMC8014388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND There remains a scarcity of both autografts and allografts for tracheal transplantation after long-segmental resection. Subsequently, tissue engineering has become a promising alternative for tracheal transplantation, which requires successful in vitro chondrogenesis. METHODS To optimize the protocol for in situ chondrogenesis using the pig-derived whole Umbilical Cord (UC) as the starting material, it must be performed without using the UC-multipotent stromal cell (MSCs) isolation procedure. Nevertheless, chondrogenic induction is performed under a variety of conditions; with or without TGF-β1 at different concentrations, and also in combination with either a rotatory or hollow organ bioreactor. The engineered explant sections were analyzed using various histochemical and immunohistochemical stains to assess the expression of chondrocyte markers. Cell viability was determined through use of the APO-BrdU TUNEL assay kit. RESULTS The results showed that culture conditions induced heterogeneous chondrogenesis in various compartments of the UC. Moreover, explants cultured with 10 ng/ml TGF-β1 under hypoxic (1% O2) in combination with a bioreactor, significantly enhanced the expression of aggrecan and type II collagen, but were lacking in the production of Glycosaminoglycans (GAGs), as evidenced by alcian blue staining. We speculated that whole segment UCs allowed for the differentiation into premature chondrocytes in our tissue-engineered environments. CONCLUSION This study has provided exciting preliminary evidence showing that a stem cell-rich UC wrapped around an anatomical tracheal scaffold and implanted in vivo can induce nodes of new cartilage growth into a structurally functional tissue for the repairing of long-segmental tracheal stenosis.
Collapse
Affiliation(s)
- Sen-Ei Shai
- Department of Thoracic Surgery, Taichung Veterans General HospitalTaichung, Taiwan
- Institute of Clinical Medicine, National Yang-Ming UniversityTaipei, Taiwan
- National Chi Nan UniversityNantou, Taiwan
| | - Yi-Ling Lai
- Department of Thoracic Surgery, Taichung Veterans General HospitalTaichung, Taiwan
| | - Brian J Huang
- Institute of New Drug Development, China Medical UniversityTaichung, Taiwan
- Integrative Stem Cell Center, China Medical University HospitalTaichung, Taiwan
| | - Kai-Jen Yu
- Mathematical Gifted Class, Taichung Municipal First Senior High SchoolTaichung, Taiwan
| | - Chi-Wei Hsieh
- Mathematical Gifted Class, Taichung Municipal First Senior High SchoolTaichung, Taiwan
| | - Yu-Shin Chen
- Mathematical Gifted Class, Taichung Municipal First Senior High SchoolTaichung, Taiwan
| | - Shih-Chieh Hung
- Institute of Clinical Medicine, National Yang-Ming UniversityTaipei, Taiwan
- Institute of New Drug Development, China Medical UniversityTaichung, Taiwan
- Integrative Stem Cell Center, China Medical University HospitalTaichung, Taiwan
| |
Collapse
|
8
|
Ghorbani F, Feizabadi M, Farzanegan R, Vaziri E, Samani S, Lajevardi S, Moradi L, Shadmehr MB. An Investigation of Topics and Trends of Tracheal Replacement Studies Using Co-Occurrence Analysis. TISSUE ENGINEERING PART B-REVIEWS 2016; 23:118-127. [PMID: 27758155 DOI: 10.1089/ten.teb.2016.0254] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study evaluated tracheal regeneration studies using scientometric and co-occurrence analysis to identify the most important topics and assess their trends over time. To provide the adequate search options, PubMed, Scopus, and Web of Science (WOS) were used to cover various categories such as keywords, countries, organizations, and authors. Search results were obtained by employing Bibexcel. Co-occurrence analysis was applied to evaluate the publications. Finally, scientific maps, author's network, and country contributions were depicted using VOSviewer and NetDraw. Furthermore, the first 25 countries and 130 of the most productive authors were determined. Regarding the trend analysis, 10 co-occurrence terms out of highly frequent words were examined at 5-year intervals. Our findings indicated that the field of trachea regeneration has tested different approaches over the time. In total, 65 countries have contributed to scientific progress both in experimental and clinical fields. Special keywords such as tissue engineering and different types of stem cells have been increasingly used since 1995. Studies have addressed topics such as angiogenesis, decellularization methods, extracellular matrix, and mechanical properties since 2011. These findings will offer evidence-based information about the current status and trends of tracheal replacement research topics over time, as well as countries' contributions.
Collapse
Affiliation(s)
- Fariba Ghorbani
- 1 Tracheal Diseases Research Center (TDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Mansoureh Feizabadi
- 2 Sabzevar University of Medical Sciences, Faculty of Medicine, Sabzevar, Iran
| | - Roya Farzanegan
- 1 Tracheal Diseases Research Center (TDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Esmaeil Vaziri
- 3 University of Zabol, Faculty of Humanities, Department of Information Science and Knowledge Studies, Zabol, Iran
| | - Saeed Samani
- 4 Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies in Medicine , Tehran, Iran
| | | | - Lida Moradi
- 4 Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies in Medicine , Tehran, Iran
| | - Mohammad Behgam Shadmehr
- 1 Tracheal Diseases Research Center (TDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences , Tehran, Iran
| |
Collapse
|
9
|
Candas F, Gorur R, Haholu A, Yildizhan A, Yucel O, Ay H, Memis A, Isitmangil T. Is Tracheal Transplantation Possible With Cryopreserved Tracheal Allograft and Hyperbaric Oxygen Therapy? An Experimental Study. Ann Thorac Surg 2015; 101:1139-44. [PMID: 26518377 DOI: 10.1016/j.athoracsur.2015.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 08/31/2015] [Accepted: 09/10/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Allografts have achieved prominence for tracheal reconstruction because of their natural physiologic and anatomic structure, which preserves respiratory tract flexibility and lumen patency. The immunomodulatory effects of cryopreservation prevent tracheal allograft rejection. In addition, hyperbaric oxygen therapy (HBOT) accelerates wound healing by promoting epithelization and neovascularization. This experimental study investigated the early and late effects of HBOT on cryopreserved tracheal allografts (CTAs). METHODS The study used 33 outbred Wistar rats weighing 300 to 350 g as allograft transplantation donors and recipients. Among these, 22 recipient rats were randomly assigned to the HBOT (n = 11) and control (n = 11) groups. Rats in the HBOT group were treated with 100% oxygen for 60 minutes at 2.5 atmospheres of absolute pressure for 7 days. Recipient rats in both groups were euthanized at 1 week (n = 5) and 4 weeks (n = 6) after transplantation, defined as the early and late periods, respectively. RESULTS In the early period, no significant histopathologic differences were observed between groups (p > 0.05). However, microscopic evaluation of the control group during the late period showed low epithelization of the CTA. In contrast, microscopic evaluation of the HBOT group during this same period revealed epithelium covering the transplanted CTA lumen. Significant epithelization and vascularization and significantly reduced inflammation and fibrosis were found in the HBOT group compared with the control group (p < 0.05). CONCLUSIONS HBOT may be effective in tracheal reconstruction by increasing epithelization and neovascularization after extended tracheal resection. HBOT, therefore, should be considered in CTA transplantation.
Collapse
Affiliation(s)
- Fatih Candas
- Department of Thoracic Surgery, GATA Haydarpasa Training Hospital, Istanbul, Turkey.
| | - Rauf Gorur
- Department of Thoracic Surgery, GATA Haydarpasa Training Hospital, Istanbul, Turkey
| | - Aptullah Haholu
- Department of Pathology, GATA Haydarpasa Training Hospital, Istanbul, Turkey
| | - Akin Yildizhan
- Department of Thoracic Surgery, GATA Haydarpasa Training Hospital, Istanbul, Turkey
| | - Orhan Yucel
- Department of Thoracic Surgery, GATA Haydarpasa Training Hospital, Istanbul, Turkey
| | - Hakan Ay
- Department of Underwater and Hyperbaric Medicine, GATA Haydarpasa Training Hospital, Istanbul, Turkey
| | - Ali Memis
- Department of Underwater and Hyperbaric Medicine, GATA Haydarpasa Training Hospital, Istanbul, Turkey
| | - Turgut Isitmangil
- Department of Thoracic Surgery, GATA Haydarpasa Training Hospital, Istanbul, Turkey
| |
Collapse
|
10
|
Bone marrow-derived mesenchymal stem cells enhance cryopreserved trachea allograft epithelium regeneration and vascular endothelial growth factor expression. Transplantation 2011; 92:620-6. [PMID: 21804442 DOI: 10.1097/tp.0b013e31822a4082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Epithelium regeneration and revascularization of tracheal implants are challenging issues to be solved in tracheal transplantation research. Bone marrow-derived mesenchymal stem cells (BMSCs) can migrate to the damaged tissue and promote functional restoration. Here, we applied intravenous transplantation of BMSCs combined with a cryopreserved allograft to investigate the role of BMSCs in enhancing implant survival, tracheal epithelium regeneration and revascularization. METHODS After transplantation with cryopreserved allografts, PKH-26 labeled 3 to 5 passage BMSCs were injected into recipient rats through the tail vein. Rats in the control groups were injected with a comparable amount of phosphate-buffered saline. We observed the histology of the tracheal allograft and measured vascular endothelial growth factor (VEGF) protein levels in the epithelium to evaluate the effect of BMSCs on epithelium regeneration and revascularization. RESULTS Histologic observation of the rats from the BMSCs injection groups showed that the tracheal lumen was covered by pseudostriated ciliated columnar epithelium. The cartilage structure was intact. There were no signs of denaturation or necrosis. PKH-26 labeled BMSCs migrated to the implant site and exhibited red fluorescence, with the brightest red fluorescence at the anastomotic site. VEGF protein levels in the allograft epithelium of the BMSCs injection group were higher than the levels in the phosphate-buffered saline injection group. CONCLUSIONS Our results indicate that given systemic administration, BMSCs may enhance epithelium regeneration and revascularization by upregulating VEGF expression.
Collapse
|