1
|
Abstract
The cellular prion protein, PrPC, is a small, cell surface glycoprotein with a function that is currently somewhat ill defined. It is also the key molecule involved in the family of neurodegenerative disorders called transmissible spongiform encephalopathies, which are also known as prion diseases. The misfolding of PrPC to a conformationally altered isoform, designated PrPTSE, is the main molecular process involved in pathogenesis and appears to precede many other pathologic and clinical manifestations of disease, including neuronal loss, astrogliosis, and cognitive loss. PrPTSE is also believed to be the major component of the infectious "prion," the agent responsible for disease transmission, and preparations of this protein can cause prion disease when inoculated into a naïve host. Thus, understanding the biochemical and biophysical properties of both PrPC and PrPTSE, and ultimately the mechanisms of their interconversion, is critical if we are to understand prion disease biology. Although entire books could be devoted to research pertaining to the protein, herein we briefly review the state of knowledge of prion biochemistry, including consideration of prion protein structure, function, misfolding, and dysfunction.
Collapse
Affiliation(s)
- Andrew C Gill
- School of Chemistry, Joseph Banks Laboratories, University of Lincoln, Lincoln, United Kingdom; Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| | - Andrew R Castle
- Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Taguchi Y, Lu L, Marrero-Winkens C, Otaki H, Nishida N, Schatzl HM. Disulfide-crosslink scanning reveals prion-induced conformational changes and prion strain-specific structures of the pathological prion protein PrP Sc. J Biol Chem 2018; 293:12730-12740. [PMID: 29934306 PMCID: PMC6102138 DOI: 10.1074/jbc.ra117.001633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/15/2018] [Indexed: 11/06/2022] Open
Abstract
Prions are composed solely of the pathological isoform (PrPSc) of the normal cellular prion protein (PrPC). Identification of different PrPSc structures is crucially important for understanding prion biology because the pathogenic properties of prions are hypothesized to be encoded in the structures of PrPSc However, these structures remain yet to be identified, because of the incompatibility of PrPSc with conventional high-resolution structural analysis methods. Previously, we reported that the region between the first and the second α-helix (H1∼H2) of PrPC might cooperate with the more C-terminal side region for efficient interactions with PrPSc From this starting point, we created a series of PrP variants with two cysteine substitutions (C;C-PrP) forming a disulfide-crosslink between H1∼H2 and the distal region of the third helix (Ctrm). We then assessed the conversion capabilities of the C;C-PrP variants in N2a cells infected with mouse-adapted scrapie prions (22L-ScN2a). Specifically, Cys substitutions at residues 165, 166, or 168 in H1∼H2 were combined with cysteine scanning along Ctrm residues 220-229. We found that C;C-PrPs are expressed normally with glycosylation patterns and subcellular localization similar to WT PrP, albeit differing in expression levels. Interestingly, some C;C-PrPs converted to protease-resistant isoforms in the 22L-ScN2a cells, but not in Fukuoka1 prion-infected cells. Crosslink patterns of convertible C;C-PrPs indicated a positional change of H1∼H2 toward Ctrm in PrPSc-induced conformational conversion. Given the properties of the C;C-PrPs reported here, we propose that these PrP variants may be useful tools for investigating prion strain-specific structures and structure-phenotype relationships of PrPSc.
Collapse
Affiliation(s)
- Yuzuru Taguchi
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; Department of Molecular Microbiology and Immunology, Division of Cellular and Molecular Biology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan.
| | - Li Lu
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada
| | - Cristobal Marrero-Winkens
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada
| | - Hiroki Otaki
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Noriyuki Nishida
- Department of Molecular Microbiology and Immunology, Division of Cellular and Molecular Biology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Hermann M Schatzl
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; Calgary Prion Research Unit, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
3
|
Kanata E, Arsenakis M, Sklaviadis T. Caprine PrP variants harboring Asp-146, His-154 and Gln-211 alleles display reduced convertibility upon interaction with pathogenic murine prion protein in scrapie infected cells. Prion 2017; 10:391-408. [PMID: 27537339 DOI: 10.1080/19336896.2016.1199312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Scrapie, the prion disease of sheep and goats, is a devastating malady of small ruminants. Due to its infectious nature, epidemic outbreaks may occur in flocks/herds consisting of highly susceptible animals. Field studies identified scrapie-protective caprine PrP variants, harboring specific single amino acid changes (Met-142, Arg-143, Asp-146, Ser-146, His-154, Gln-211 and Lys-222). Their effects are under further evaluation, and aim to determine the most protective allele. We assessed some of these variants (Asp-146, His-154, Gln-211 and Lys-222), after their exogenous expression as murine-caprine chimeras in a scrapie- infected murine cell line. We report that exogenously expressed PrPs undergo conformational conversion upon interaction with the endogenous pathological murine prion protein (PrPSC), which results in the detection of goat-specific and partially PK-resistant moieties. These moieties display a PK-resistance pattern distinct from the one detected in natural goat scrapie cases. Within this cellular model, distinct conformational conversion potentials were assigned to the tested variants. Molecules carrying the Asp-146, His-154 and Gln-211 alleles showed significantly lower conversion levels compared to wild type, confirming their protective effects against scrapie. Although we utilized a heterologous conversion system, this is to our knowledge, the first study of caprine PrP variants in a cellular context of scrapie, that confirms the protective effects of some of the studied alleles.
Collapse
Affiliation(s)
- Eirini Kanata
- a Department of Genetics , Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki , Thessaloniki , Greece.,b School of Pharmacy , Aristotle University of Thessaloniki , Thessaloniki , Greece
| | - Minas Arsenakis
- a Department of Genetics , Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki , Thessaloniki , Greece
| | - Theodoros Sklaviadis
- b School of Pharmacy , Aristotle University of Thessaloniki , Thessaloniki , Greece
| |
Collapse
|
4
|
Taguchi Y, Nishida N. Secondary-structure prediction revisited: Theoretical β-sheet propensity and coil propensity represent structures of amyloids and aid in elucidating phenomena involved in interspecies transmission of prions. PLoS One 2017; 12:e0171974. [PMID: 28199368 PMCID: PMC5310760 DOI: 10.1371/journal.pone.0171974] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/27/2017] [Indexed: 01/18/2023] Open
Abstract
Prions are unique infectious agents, consisting solely of abnormally-folded prion protein (PrPSc). However, they possess virus-like features, including strain diversity, the ability to adapt to new hosts and to be altered evolutionarily. Because prions lack genetic material (DNA and RNA), these biological phenomena have been attributed to the structural properties of PrPSc. Therefore, many structural models of the structure of PrPSc have been proposed based on the limited structural information available, regardless of the incompatibility with high-resolution structural analysis. Recently hypothesized models consist solely of β-sheets and intervening loops/kinks; i.e. parallel in-register β-sheet and β-solenoid models. Owing to the relative simplicity of these structural models of PrPSc, we hypothesized that numerical conversion of the primary structures with a relevant algorithm would enable quantitative comparison between PrPs of distinct primary structures. We therefore used the theoretical values of β-sheet (Pβ) and random-coil (Pc) propensity calculated by secondary structure prediction with a neural network, to analyze interspecies transmission of prions. By reviewing experiments in the literature, we ascertained the biological relevance of Pβ and Pc and found that these classical parameters surprisingly carry substantial information of amyloid structures. We also demonstrated how these parameters could aid in interpreting and explaining phenomena in interspecies transmissions. Our approach can lead to the development of a versatile tool for investigating not only prions but also other amyloids.
Collapse
Affiliation(s)
- Yuzuru Taguchi
- Division of Cellular and Molecular Biology, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, JAPAN
- * E-mail:
| | - Noriyuki Nishida
- Division of Cellular and Molecular Biology, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, JAPAN
| |
Collapse
|