1
|
Harrison PM. Optimizing strategy for the discovery of compositionally-biased or low-complexity regions in proteins. Sci Rep 2024; 14:680. [PMID: 38182699 PMCID: PMC10770407 DOI: 10.1038/s41598-023-50991-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024] Open
Abstract
Proteins can contain tracts dominated by a subset of amino acids and that have a functional significance. These are often termed 'low-complexity regions' (LCRs) or 'compositionally-biased regions' (CBRs). However, a wide spectrum of compositional bias is possible, and program parameters used to annotate these regions are often arbitrarily chosen. Also, investigators are sometimes interested in longer regions, or sometimes very short ones. Here, two programs for annotating LCRs/CBRs, namely SEG and fLPS, are investigated in detail across the whole expanse of their parameter spaces. In doing so, boundary behaviours are resolved that are used to derive an optimized systematic strategy for annotating LCRs/CBRs. Sets of parameters that progressively annotate or 'cover' more of protein sequence space and are optimized for a given target length have been derived. This progressive annotation can be applied to discern the biological relevance of CBRs, e.g., in parsing domains for experimental constructs and in generating hypotheses. It is also useful for picking out candidate regions of interest of a given target length and bias signature, and for assessing the parameter dependence of annotations. This latter application is demonstrated for a set of human intrinsically-disordered proteins associated with cancer.
Collapse
Affiliation(s)
- Paul M Harrison
- Department of Biology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Zhouravleva GA, Bondarev SA, Trubitsina NP. How Big Is the Yeast Prion Universe? Int J Mol Sci 2023; 24:11651. [PMID: 37511408 PMCID: PMC10380529 DOI: 10.3390/ijms241411651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The number of yeast prions and prion-like proteins described since 1994 has grown from two to nearly twenty. If in the early years most scientists working with the classic mammalian prion, PrPSc, were skeptical about the possibility of using the term prion to refer to yeast cytoplasmic elements with unusual properties, it is now clear that prion-like phenomena are widespread and that yeast can serve as a convenient model for studying them. Here we give a brief overview of the yeast prions discovered so far and focus our attention to the various approaches used to identify them. The prospects for the discovery of new yeast prions are also discussed.
Collapse
Affiliation(s)
- Galina A Zhouravleva
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Stanislav A Bondarev
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Nina P Trubitsina
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
3
|
Kambouris ME. Global Catastrophic Biological Risks in the Post-COVID-19 World: Time to Act Is Now. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:153-170. [PMID: 36946656 DOI: 10.1089/omi.2022.0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Global Catastrophic Biological Risks (GCBRs) refer to events with biological agents that can result in unprecedented or catastrophic disasters that are beyond the collective response-abilities of nation-states and the existing governance instruments of global governance and international affairs. This article offers a narrative review, with a view to new hypothesis development to rethink GCBRs after coronavirus disease 2019 (COVID-19) so as to better prepare for future pandemics and ecological crises, if not to completely prevent them. To determine GCBRs' spatiotemporal contexts, define causality, impacts, differentiate the risk and the event, would improve theorization of GCBRs compared to the impact-centric current definition. This could in turn lead to improvements in preparedness, response, allocation of resources, and possibly deterrence, while actively discouraging lack of due biosecurity diligence. Critical governance of GCBRs in ways that unpack the political power-related dimensions could be particularly valuable because the future global catastrophic events might be different in quality, scale, and actors. Theorization of GCBRs remains an important task going forward in the 21st century in ways that draw from experiences in the field, while integrating flexibility, versatility, and critically informed responses to GCBRs.
Collapse
|
4
|
Luo J, Harrison PM. Evolution of sequence traits of prion-like proteins linked to amyotrophic lateral sclerosis (ALS). PeerJ 2022; 10:e14417. [PMID: 36415860 PMCID: PMC9676014 DOI: 10.7717/peerj.14417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022] Open
Abstract
Prions are proteinaceous particles that can propagate an alternative conformation to further copies of the same protein. They have been described in mammals, fungi, bacteria and archaea. Furthermore, across diverse organisms from bacteria to eukaryotes, prion-like proteins that have similar sequence characters are evident. Such prion-like proteins have been linked to pathomechanisms of amyotrophic lateral sclerosis (ALS) in humans, in particular TDP43, FUS, TAF15, EWSR1 and hnRNPA2. Because of the desire to study human disease-linked proteins in model organisms, and to gain insights into the functionally important parts of these proteins and how they have changed across hundreds of millions of years of evolution, we analyzed how the sequence traits of these five proteins have evolved across eukaryotes, including plants and metazoa. We discover that the RNA-binding domain architecture of these proteins is deeply conserved since their emergence. Prion-like regions are also deeply and widely conserved since the origination of the protein families for FUS, TAF15 and EWSR1, and since the last common ancestor of metazoa for TDP43 and hnRNPA2. Prion-like composition is uncommon or weak in any plant orthologs observed, however in TDP43 many plant proteins have equivalent regions rich in other amino acids (namely glycine and tyrosine and/or serine) that may be linked to stress granule recruitment. Deeply conserved low-complexity domains are identified that likely have functional significance.
Collapse
|
5
|
Hu J, Wang X. Alzheimer’s Disease: From Pathogenesis to Mesenchymal Stem Cell Therapy – Bridging the Missing Link. Front Cell Neurosci 2022; 15:811852. [PMID: 35197824 PMCID: PMC8859419 DOI: 10.3389/fncel.2021.811852] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease worldwide. With the increasing trend of population aging, the estimated number of AD continues to climb, causing enormous medical, social and economic burden to the society. Currently, no drug is available to cure the disease or slow down its progression. There is an urgent need to improve our understanding on the pathogenesis of AD and develop novel therapy to combat it. Despite the two well-known pathological hallmarks (extracellular amyloid plaques and intracellular Neurofibrillary Tangles), the exact mechanisms for selective degeneration and loss of neurons and synapses in AD remain to be elucidated. Cumulative studies have shown neuroinflammation plays a central role in pathogenesis of AD. Neuroinflammation is actively involved both in the onset and the subsequent progression of AD. Microglia are the central player in AD neuroinflammation. In this review, we first introduced the different theories proposed for the pathogenesis of AD, focusing on neuroinflammation, especially on microglia, systemic inflammation, and peripheral and central immune system crosstalk. We explored the possible mechanisms of action of stem cell therapy, which is the only treatment modality so far that has pleiotropic effects and can target multiple mechanisms in AD. Mesenchymal stem cells are currently the most widely used stem cell type in AD clinical trials. We summarized the ongoing major mesenchymal stem cell clinical trials in AD and showed how translational stem cell therapy is bridging the gap between basic science and clinical intervention in this devastating disorder.
Collapse
Affiliation(s)
- Jingqiong Hu
- Stem Cell Center, Department of Cell Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jingqiong Hu,
| | - Xiaochuan Wang
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Dixson JD, Azad RK. A Protocol for Prion Discovery in Plants. Methods Mol Biol 2022; 2396:215-226. [PMID: 34786686 DOI: 10.1007/978-1-0716-1822-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently a likely prion was found in the proteome of Arabidopsis thaliana based on inclusive compositional similarity to known yeast prion-like domains (PrLDs) and gene ontology analysis. A total of 474 proteins in the Arabidopsis thaliana proteome showed significant compositional similarity to known PrLDs in yeast warranting further analysis. In this chapter, we describe the use and limitations of the PLAAC (Prion-Like Amino Acid Composition) software for the identification of prions, specifically as it has recently been applied to identifying the first prion in plants. Our interest in this method, though presented from a plant-based perspective here, is broad and is primarily in using the method for comparative assessment with novel prion identification algorithms currently under development in our lab. This chapter is not meant to serve as a replete description of the architecture and use of HMM in prion prediction in general but is intended to serve as a reference for implementation and interpretation of output from PLAAC and its application to plant proteomes.
Collapse
Affiliation(s)
- Jamie D Dixson
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, USA
| | - Rajeev K Azad
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, USA.
- Department of Mathematics, University of North Texas, Denton, TX, USA.
| |
Collapse
|
7
|
Harrison PM. fLPS 2.0: rapid annotation of compositionally-biased regions in biological sequences. PeerJ 2021; 9:e12363. [PMID: 34760378 PMCID: PMC8557692 DOI: 10.7717/peerj.12363] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
Compositionally-biased (CB) regions in biological sequences are enriched for a subset of sequence residue types. These can be shorter regions with a concentrated bias (i.e., those termed ‘low-complexity’), or longer regions that have a compositional skew. These regions comprise a prominent class of the uncharacterized ‘dark matter’ of the protein universe. Here, I report the latest version of the fLPS package for the annotation of CB regions, which includes added consideration of DNA sequences, to label the eight possible biased regions of DNA. In this version, the user is now able to restrict analysis to a specified subset of residue types, and also to filter for previously annotated domains to enable detection of discontinuous CB regions. A ‘thorough’ option has been added which enables the labelling of subtler biases, typically made from a skew for several residue types. In the output, protein CB regions are now labelled with bias classes reflecting the physico-chemical character of the biasing residues. The fLPS 2.0 package is available from: https://github.com/pmharrison/flps2 or in a Supplemental File of this paper.
Collapse
Affiliation(s)
- Paul M Harrison
- Department of Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
8
|
Wells C, Brennan S, Keon M, Ooi L. The role of amyloid oligomers in neurodegenerative pathologies. Int J Biol Macromol 2021; 181:582-604. [PMID: 33766600 DOI: 10.1016/j.ijbiomac.2021.03.113] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/18/2021] [Accepted: 03/19/2021] [Indexed: 11/25/2022]
Abstract
Many neurodegenerative diseases are rooted in the activities of amyloid-like proteins which possess conformations that spread to healthy proteins. These include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). While their clinical manifestations vary, their protein-level mechanisms are remarkably similar. Aberrant monomeric proteins undergo conformational shifts, facilitating aggregation and formation of solid fibrils. However, there is growing evidence that intermediate oligomeric stages are key drivers of neuronal toxicity. Analysis of protein dynamics is complicated by the fact that nucleation and growth of amyloid-like proteins is not a linear pathway. Feedback within this pathway results in exponential acceleration of aggregation, but activities exerted by oligomers and fibrils can alter cellular interactions and the cellular environment as a whole. The resulting cascade of effects likely contributes to the late onset and accelerating progression of amyloid-like protein disorders and the widespread effects they have on the body. In this review we explore the amyloid-like proteins associated with AD, PD, HD and ALS, as well as the common mechanisms of amyloid-like protein nucleation and aggregation. From this, we identify core elements of pathological progression which have been targeted for therapies, and which may become future therapeutic targets.
Collapse
Affiliation(s)
- Cameron Wells
- GenieUs Genomics, Sydney, NSW 2010, Australia; University of New South Wales, Sydney, NSW 2052, Australia
| | | | - Matt Keon
- GenieUs Genomics, Sydney, NSW 2010, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; School of Chemistry and Molecular Bioscience, and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia; GenieUs Genomics, Sydney, NSW 2010, Australia
| |
Collapse
|
9
|
Ritchie DL, Barria MA. Prion Diseases: A Unique Transmissible Agent or a Model for Neurodegenerative Diseases? Biomolecules 2021; 11:biom11020207. [PMID: 33540845 PMCID: PMC7912988 DOI: 10.3390/biom11020207] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
The accumulation and propagation in the brain of misfolded proteins is a pathological hallmark shared by many neurodegenerative diseases such as Alzheimer's disease (Aβ and tau), Parkinson's disease (α-synuclein), and prion disease (prion protein). Currently, there is no epidemiological evidence to suggest that neurodegenerative disorders are infectious, apart from prion diseases. However, there is an increasing body of evidence from experimental models to suggest that other pathogenic proteins such as Aβ and tau can propagate in vivo and in vitro in a prion-like mechanism, inducing the formation of misfolded protein aggregates such as amyloid plaques and neurofibrillary tangles. Such similarities have raised concerns that misfolded proteins, other than the prion protein, could potentially transmit from person-to-person as rare events after lengthy incubation periods. Such concerns have been heightened following a number of recent reports of the possible inadvertent transmission of Aβ pathology via medical and surgical procedures. This review will provide a historical perspective on the unique transmissible nature of prion diseases, examining their impact on public health and the ongoing concerns raised by this rare group of disorders. Additionally, this review will provide an insight into current evidence supporting the potential transmissibility of other pathogenic proteins associated with more common neurodegenerative disorders and the potential implications for public health.
Collapse
|
10
|
Wang Y, Yang HJ, Harrison PM. The relationship between protein domains and homopeptides in the Plasmodium falciparum proteome. PeerJ 2020; 8:e9940. [PMID: 33062426 PMCID: PMC7534687 DOI: 10.7717/peerj.9940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/24/2020] [Indexed: 12/03/2022] Open
Abstract
The proteome of the malaria parasite Plasmodium falciparum is notable for the pervasive occurrence of homopeptides or low-complexity regions (i.e., regions that are made from a small subset of amino-acid residue types). The most prevalent of these are made from residues encoded by adenine/thymidine (AT)-rich codons, in particular asparagine. We examined homopeptide occurrences within protein domains in P. falciparum. Homopeptide enrichments occur for hydrophobic (e.g., valine), or small residues (alanine or glycine) in short spans (<5 residues), but these enrichments disappear for longer lengths. We observe that short asparagine homopeptides (<10 residues long) have a dramatic relative depletion inside protein domains, indicating some selective constraint to keep them from forming. We surmise that this is possibly linked to co-translational protein folding, although there are specific protein domains that are enriched in longer asparagine homopeptides (≥10 residues) indicating a functional linkage for specific poly-asparagine tracts. Top gene ontology functional category enrichments for homopeptides associated with diverse protein domains include “vesicle-mediated transport”, and “DNA-directed 5′-3′ RNA polymerase activity”, with various categories linked to “binding” evidencing significant homopeptide depletions. Also, in general homopeptides are substantially enriched in the parts of protein domains that are near/in IDRs. The implications of these findings are discussed.
Collapse
|
11
|
Lauwers E, Lalli G, Brandner S, Collinge J, Compernolle V, Duyckaerts C, Edgren G, Haïk S, Hardy J, Helmy A, Ivinson AJ, Jaunmuktane Z, Jucker M, Knight R, Lemmens R, Lin IC, Love S, Mead S, Perry VH, Pickett J, Poppy G, Radford SE, Rousseau F, Routledge C, Schiavo G, Schymkowitz J, Selkoe DJ, Smith C, Thal DR, Theys T, Tiberghien P, van den Burg P, Vandekerckhove P, Walton C, Zaaijer HL, Zetterberg H, De Strooper B. Potential human transmission of amyloid β pathology: surveillance and risks. Lancet Neurol 2020; 19:872-878. [PMID: 32949547 DOI: 10.1016/s1474-4422(20)30238-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 01/05/2023]
Abstract
Studies in experimental animals show transmissibility of amyloidogenic proteins associated with prion diseases, Alzheimer's disease, Parkinson's disease, and other neurodegenerative diseases. Although these data raise potential concerns for public health, convincing evidence for human iatrogenic transmission only exists for prions and amyloid β after systemic injections of contaminated growth hormone extracts or dura mater grafts derived from cadavers. Even though these procedures are now obsolete, some reports raise the possibility of iatrogenic transmission of amyloid β through putatively contaminated neurosurgical equipment. Iatrogenic transmission of amyloid β might lead to amyloid deposition in the brain parenchyma and blood vessel walls, potentially resulting in cerebral amyloid angiopathy after several decades. Cerebral amyloid angiopathy can cause life-threatening brain haemorrhages; yet, there is no proof that the transmission of amyloid β can also lead to Alzheimer's dementia. Large, long-term epidemiological studies and sensitive, cost-efficient tools to detect amyloid are needed to better understand any potential routes of amyloid β transmission and to clarify whether other similar proteopathic seeds, such as tau or α-synuclein, can also be transferred iatrogenically.
Collapse
Affiliation(s)
- Elsa Lauwers
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Giovanna Lalli
- UK Dementia Research Institute, University College London, London, UK
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK; Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London National Health Service Foundation Trust, London, UK
| | - John Collinge
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London, UK
| | - Veerle Compernolle
- Blood Services, Belgian Red Cross-Flanders, Mechelen, Belgium; Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Charles Duyckaerts
- Institut du Cerveau et de la Moelle épinière, Sorbonne University, INSERM, CNRS UMR, Paris, France; Laboratoire de Neuropathologie Raymond Escourolle, Hôpital de la Pitié-Salpêtrière, Assistance Publique- Hôpitaux de Paris, Paris, France
| | - Gustaf Edgren
- Clinical Epidemiology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Department of Cardiology, Södersjukhuset, Stockholm, Sweden
| | - Stéphane Haïk
- Institut du Cerveau et de la Moelle épinière, Sorbonne University, INSERM, CNRS UMR, Paris, France; Laboratoire de Neuropathologie Raymond Escourolle, Hôpital de la Pitié-Salpêtrière, Assistance Publique- Hôpitaux de Paris, Paris, France; Cellule Nationale de Référence des maladies de Creutzfeldt-Jakob, Hôpital de la Pitié-Salpêtrière, Assistance Publique- Hôpitaux de Paris, Paris, France
| | - John Hardy
- UK Dementia Research Institute, University College London, London, UK; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK; Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, University College London, London, UK; National Institute for Health Research University College London Hospitals Biomedical Research Centre, London, UK; Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region, China
| | - Adel Helmy
- Department of Clinical Neuroscience, Division of Neurosurgery, University of Cambridge, Cambridge, UK
| | - Adrian J Ivinson
- UK Dementia Research Institute, University College London, London, UK
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK; Queen Square Brain Bank for Neurological Disorders, Queen Square Institute of Neurology, University College London, London, UK; Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London National Health Service Foundation Trust, London, UK
| | - Mathias Jucker
- Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Richard Knight
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK; National Creutzfeldt-Jakob Disease Research and Surveillance Unit, Western General Hospital, Edinburgh, UK
| | - Robin Lemmens
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium; Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - I-Chun Lin
- UK Dementia Research Institute, University College London, London, UK
| | - Seth Love
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Simon Mead
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London, UK
| | - V Hugh Perry
- UK Dementia Research Institute, University College London, London, UK
| | - James Pickett
- Alzheimer's Society, London, London, UK; Epilepsy Research UK, London, UK
| | - Guy Poppy
- Biological Sciences, University of Southampton, Southampton, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Frederic Rousseau
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium; Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | | | - Giampietro Schiavo
- UK Dementia Research Institute, University College London, London, UK; Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Joost Schymkowitz
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium; Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Dietmar R Thal
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium; Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Tom Theys
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Pierre Tiberghien
- Etablissement Français du Sang, La Plaine St Denis, France; Unité Mixte de Recherche, INSERM, Université de Franche-Comté, Besançon, France
| | - Peter van den Burg
- European Blood Alliance, Brussels, Belgium; Department of Transfusion Medicine, Sanquin, Amsterdam, Netherlands
| | - Philippe Vandekerckhove
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium; Blood Services, Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Clare Walton
- Alzheimer's Society, London, London, UK; Multiple Sclerosis International Federation, London, UK
| | - Hans L Zaaijer
- Department of Blood-borne Infections, Sanquin, Amsterdam, Netherlands
| | - Henrik Zetterberg
- UK Dementia Research Institute, University College London, London, UK; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK; Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bart De Strooper
- VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium; UK Dementia Research Institute, University College London, London, UK.
| |
Collapse
|
12
|
Catania M, Di Fede G. One or more β-amyloid(s)? New insights into the prion-like nature of Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:213-237. [PMID: 32958234 DOI: 10.1016/bs.pmbts.2020.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Misfolding and aggregation of proteins play a central role in the pathogenesis of several neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's and Lewy Body diseases, Frontotemporal Lobar Degeneration and prion diseases. Increasing evidence supports the view that Aβ and tau, which are the two main molecular players in AD, share with the prion protein several "prion-like" features that can be relevant for disease pathogenesis. These features essentially include structural/conformational/biochemical variations, resistance to degradation by endogenous proteases, seeding ability, attitude to form neurotoxic assemblies, spreading and propagation of toxic aggregates, transmissibility of tau- and Aβ-related pathology to animal models. Following this view, part of the recent scientific literature has generated a new reading frame for AD pathophysiology, based on the application of the prion paradigm to the amyloid cascade hypothesis in an attempt to definitely explain the key events causing the disease and inducing its occurrence under different clinical phenotypes.
Collapse
Affiliation(s)
- Marcella Catania
- Neurology 5 / Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giuseppe Di Fede
- Neurology 5 / Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| |
Collapse
|
13
|
Harrison PM. Variable absorption of mutational trends by prion-forming domains during Saccharomycetes evolution. PeerJ 2020; 8:e9669. [PMID: 32844065 PMCID: PMC7415223 DOI: 10.7717/peerj.9669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
Prions are self-propagating alternative states of protein domains. They are linked to both diseases and functional protein roles in eukaryotes. Prion-forming domains in Saccharomyces cerevisiae are typically domains with high intrinsic protein disorder (i.e., that remain unfolded in the cell during at least some part of their functioning), that are converted to self-replicating amyloid forms. S. cerevisiae is a member of the fungal class Saccharomycetes, during the evolution of which a large population of prion-like domains has appeared. It is still unclear what principles might govern the molecular evolution of prion-forming domains, and intrinsically disordered domains generally. Here, it is discovered that in a set of such prion-forming domains some evolve in the fungal class Saccharomycetes in such a way as to absorb general mutation biases across millions of years, whereas others do not, indicating a spectrum of selection pressures on composition and sequence. Thus, if the bias-absorbing prion formers are conserving a prion-forming capability, then this capability is not interfered with by the absorption of bias changes over the duration of evolutionary epochs. Evidence is discovered for selective constraint against the occurrence of lysine residues (which likely disrupt prion formation) in S. cerevisiae prion-forming domains as they evolve across Saccharomycetes. These results provide a case study of the absorption of mutational trends by compositionally biased domains, and suggest methodology for assessing selection pressures on the composition of intrinsically disordered regions.
Collapse
Affiliation(s)
- Paul M Harrison
- Department of Biology, McGill University, Monteal, Quebec, Canada
| |
Collapse
|
14
|
Gatti L, Tinelli F, Scelzo E, Arioli F, Di Fede G, Obici L, Pantoni L, Giaccone G, Caroppo P, Parati EA, Bersano A. Understanding the Pathophysiology of Cerebral Amyloid Angiopathy. Int J Mol Sci 2020; 21:ijms21103435. [PMID: 32414028 PMCID: PMC7279405 DOI: 10.3390/ijms21103435] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/04/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA), one of the main types of cerebral small vessel disease, is a major cause of spontaneous intracerebral haemorrhage and an important contributor to cognitive decline in elderly patients. Despite the number of experimental in vitro studies and animal models, the pathophysiology of CAA is still largely unknown. Although several pathogenic mechanisms including an unbalance between production and clearance of amyloid beta (Aβ) protein as well as ‘the prion hypothesis’ have been invoked as possible disease triggers, they do not explain completely the disease pathogenesis. This incomplete disease knowledge limits the implementation of treatments able to prevent or halt the clinical progression. The continuous increase of CAA patients makes imperative the development of suitable experimental in vitro or animal models to identify disease biomarkers and new pharmacological treatments that could be administered in the early disease stages to prevent irreversible changes and disease progression.
Collapse
Affiliation(s)
- Laura Gatti
- Neurobiology Laboratory, Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (L.G.); (F.T.); (F.A.)
| | - Francesca Tinelli
- Neurobiology Laboratory, Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (L.G.); (F.T.); (F.A.)
| | - Emma Scelzo
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.S.); (E.A.P.)
| | - Francesco Arioli
- Neurobiology Laboratory, Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (L.G.); (F.T.); (F.A.)
| | - Giuseppe Di Fede
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (G.D.F.); (G.G.); (P.C.)
| | - Laura Obici
- Amyloidosis Research and Treatment Centre, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Leonardo Pantoni
- “Luigi Sacco” Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy;
| | - Giorgio Giaccone
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (G.D.F.); (G.G.); (P.C.)
| | - Paola Caroppo
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (G.D.F.); (G.G.); (P.C.)
| | - Eugenio Agostino Parati
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.S.); (E.A.P.)
| | - Anna Bersano
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.S.); (E.A.P.)
- Correspondence: ; Tel.: +39-0223943310
| |
Collapse
|
15
|
Dixson JD, Azad RK. Prions: Roles in Development and Adaptive Evolution. J Mol Evol 2020; 88:427-434. [PMID: 32388713 DOI: 10.1007/s00239-020-09944-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/28/2020] [Indexed: 12/14/2022]
Abstract
Prions are often considered as anomalous proteins associated primarily with disease rather than as a fundamental source of diversity within biological proteomes. Whereas this longstanding viewpoint has its genesis in the discovery of the original namesake prions as causative agents of several complex diseases, the underlying assumption of a strict disease basis for prions could not be further from the truth. Prions and the spectrum of functions they comprise, likely represent one of the largest paradigm shifts concerning molecular-encoded phenotypic diversity since identification of DNA as the principle molecule of heredity. The ability of prions to recruit similar proteins to alternate conformations may engender a reservoir of diversity supplementing the genetic diversity resulting from stochastic mutations of DNA and subsequent natural selection. Here we present several currently known prions and how many of their functions as well as modes of transmission are intricately linked to adaptation from an evolutionary perspective. Further, the stability of some prion conformations across generations indicates that heritable prion-based adaptation is a reality.
Collapse
Affiliation(s)
- Jamie D Dixson
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| | - Rajeev K Azad
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA.
- Department of Mathematics, University of North Texas, Denton, TX, 76203, USA.
| |
Collapse
|
16
|
Su WC, Harrison PM. Deep conservation of prion-like composition in the eukaryotic prion-former Pub1/Tia1 family and its relatives. PeerJ 2020; 8:e9023. [PMID: 32337108 PMCID: PMC7169965 DOI: 10.7717/peerj.9023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
Pub1 protein is an important RNA-binding protein functional in stress granule assembly in budding yeast Saccharomyces cerevisiae and, as its co-ortholog Tia1, in humans. It is unique among proteins in evidencing prion-like aggregation in both its yeast and human forms. Previously, we noted that Pub1/Tia1 was the only protein linked to human disease that has prion-like character and and has demonstrated such aggregation in both species. Thus, we were motivated to probe further into the evolution of the Pub1/Tia1 family (and its close relative Nam8 and its orthologs) to gain a picture of how such a protein has evolved over deep evolutionary time since the last common ancestor of eukaryotes. Here, we discover that the prion-like composition of this protein family is deeply conserved across eukaryotes, as is the prion-like composition of its close relative Nam8/Ngr1. A sizeable minority of protein orthologs have multiple prion-like domains within their sequences (6-20% depending on criteria). The number of RNA-binding RRM domains is conserved at three copies over >86% of the Pub1 family (>71% of the Nam8 family), but proteins with just one or two RRM domains occur frequently in some clades, indicating that these are not due to annotation errors. Overall, our results indicate that a basic scaffold comprising three RNA-binding domains and at least one prion-like region has been largely conserved since the last common ancestor of eukaryotes, providing further evidence that prion-like aggregation may be a very ancient and conserved phenomenon for certain specific proteins.
Collapse
Affiliation(s)
- Wan-Chun Su
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Paul M Harrison
- Department of Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
17
|
Abstract
The description of prions as causal agents of Transmissible Spongiform Encephalopathies (TSE), is nowadays accepted as an important breakthrough in biology as revealed the existence of a completely new group of pathogens and a new way of transmission for biological information. A common feature of many neurodegenerative disorders is the presence of protein aggregates in the nervous system and as evidences highlighting the similarities of these proteins with TSE-causing prions increase, the line separating the infectious prions from other protein aggregates becomes thinner than previously thought. However, instead of encompassing all these amyloidogenic proteins under the umbrella term "prion", new terminology has raised including the terms prion-like, prionoid, quasi-prion or propagon. The International Prion Conference held in Santiago de Compostela in 2018, offered the perfect forum to discuss this topic and maybe set the basis for an agreed terminology. For that, a round table was organized with several experts on the field to discuss whether Aβ, tau, α-synuclein and others are prions, prion-like proteins, or should be named otherwise. This commentary intends to summarize the topics discussed at the round table and shed some light on this controverted topic, drawing together the opinions of many experts participating at the session.
Collapse
Affiliation(s)
- Hasier Eraña
- a Atlas Molecular Pharma , Parque Tecnológico de Bizkaia , Derio , Spain.,b CIC bioGUNE , Parque Tecnológico de Bizkaia , Derio , Spain
| |
Collapse
|
18
|
Abstract
Prions in eukaryotes have been linked to diseases, evolutionary capacitance, large-scale genetic control and long-term memory formation. In bacteria, constructed prion-forming proteins have been described, such as the prion-forming protein recently described for Clostridium botulinum transcription terminator Rho. Here, I analyzed the evolution of the Rho prion-forming domain across bacteria, and discovered that its conservation is sporadic both in the Clostridium genus and in bacteria generally. Nonetheless, it has an apparent evolutionary reach into eight or more different bacterial phyla. Motivated by these results, I investigated whether this pattern of wide-ranging evolutionary sporadicity is typical of bacterial prion-like domains. A measure of coverage of a domain (C) within its evolutionary range was derived, which is effectively a weighted fraction of the number of species in which the domain is found. I observe that occurrence across multiple phyla is not uncommon for bacterial prion-like protein domain families, but that they tend to sample of a low fraction of species within their evolutionary range, like Rho. The Rho prion-like domain family is one of the top three most widely distributed prion-like protein domain families in terms of number of phyla. There are >60 prion-like protein domain families that have at least the evolutionary coverage of Rho, and are found in multiple phyla. The implications of these findings for evolution and for experimental investigations into prion-forming proteins are discussed.
Collapse
Affiliation(s)
- Paul M. Harrison
- Department of Biology, McGill University, Montreal, QC, Canada
- * E-mail:
| |
Collapse
|
19
|
Wells C, Brennan SE, Keon M, Saksena NK. Prionoid Proteins in the Pathogenesis of Neurodegenerative Diseases. Front Mol Neurosci 2019; 12:271. [PMID: 31780895 PMCID: PMC6861308 DOI: 10.3389/fnmol.2019.00271] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
There is a growing body of evidence that prionoid protein behaviors are a core element of neurodegenerative diseases (NDs) that afflict humans. Common elements in pathogenesis, pathological effects and protein-level behaviors exist between Alzheimer's Disease (AD), Parkinson's Disease (PD), Huntington's Disease (HD) and Amyotrophic Lateral Sclerosis (ALS). These extend beyond the affected neurons to glial cells and processes. This results in a complicated system of disease progression, which often takes advantage of protective processes to promote the propagation of pathological protein aggregates. This review article provides a current snapshot of knowledge on these proteins and their intrinsic role in the pathogenesis and disease progression seen across NDs.
Collapse
|
20
|
Castellani RJ, Perry G. Tau Biology, Tauopathy, Traumatic Brain Injury, and Diagnostic Challenges. J Alzheimers Dis 2019; 67:447-467. [PMID: 30584140 PMCID: PMC6398540 DOI: 10.3233/jad-180721] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2018] [Indexed: 12/12/2022]
Abstract
There is considerable interest in the pathobiology of tau protein, given its potential role in neurodegenerative diseases and aging. Tau is an important microtubule associated protein, required for the assembly of tubulin into microtubules and maintaining structural integrity of axons. Tau has other diverse cellular functions involving signal transduction, cellular proliferation, developmental neurobiology, neuroplasticity, and synaptic activity. Alternative splicing results in tau isoforms with differing microtubule binding affinity, differing representation in pathological inclusions in certain disease states, and differing roles in developmental biology and homeostasis. Tau haplotypes confer differing susceptibility to neurodegeneration. Tau phosphorylation is a normal metabolic process, critical in controlling tau's binding to microtubules, and is ongoing within the brain at all times. Tau may be hyperphosphorylated, and may aggregate as detectable fibrillar deposits in tissues, in both aging and neurodegenerative disease. The hypothesis that p-tau is neurotoxic has prompted constructs related to isomers, low-n assembly intermediates or oligomers, and the "tau prion". Human postmortem studies have elucidated broad patterns of tauopathy, with tendencies for those patterns to differ as a function of disease phenotype. However, there is extensive overlap, not only between genuine neurodegenerative diseases, but also between aging and disease. Recent studies highlight uniqueness to pathological patterns, including a pattern attributed to repetitive head trauma, although clinical correlations have been elusive. The diagnostic process for tauopathies and neurodegenerative diseases in general is challenging in many respects, and may be particularly problematic for postmortem evaluation of former athletes and military service members.
Collapse
Affiliation(s)
- Rudy J. Castellani
- Departments of Pathology and Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - George Perry
- College of Sciences, University of Texas, San Antonio, San Antonio, TX, USA
| |
Collapse
|
21
|
Harrison PM. Compositionally Biased Dark Matter in the Protein Universe. Proteomics 2018; 18:e1800069. [PMID: 30260558 DOI: 10.1002/pmic.201800069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/29/2018] [Indexed: 01/01/2023]
Abstract
Compositionally biased regions (BRs) occur when a few amino-acid types are enriched in a protein segment. There are possibly BR types in the known protein universe that have not been characterized experimentally. The UniProt protein database has been surveyed for evidence of such compositionally ''dark matter''. A ''dark biased region'' (DBR) is defined as a biased region with low probability of being an individual structural domain or intrinsically disordered region. The bias annotation program fLPS is used to generate a list of >13 million BRs, which is then thoroughly filtered for structure and intrinsic disorder. About a third of BRs (31%) has both substantial intrinsic disorder and structure. After filtering, there are ≈0.9 million DBRs (≈7% of the original BRs in ≈1.4% of proteins). These DBRs are hugely enriched in eukaryotes and hugely depleted in bacteria. They tend to be more hydrophobic than other protein regions, but are made of less extreme combinations of hydrophobic/hydrophilic residues. Given varying assumptions, It has been estimated that how many DBRs there might be for the high bias levels examined (with p-values < 1 × 10-06 ), deriving a reasonable range of 0.7-7.2% of proteins having such DBRs. Hypotheses are examined about what such DBRs might be, that is, that they are from un- or undersampled domain/region categories or are unappreciated categories somewhat like existing ones.
Collapse
Affiliation(s)
- Paul M Harrison
- Department of Biology, McGill University, Montreal, QC, H3A 1B1, Canada
| |
Collapse
|
22
|
Mustafin RN, Khusnutdinova EK. INTERRELATION OF PRIONS WITH NON-CODING RNAS. Vavilovskii Zhurnal Genet Selektsii 2018. [DOI: 10.18699/vj18.377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prions are alternative infectious conformations for some cellular proteins. For the protein PrPC(PrP – prion protein, С – common), a prion conformation, called PrPSc(S – scrapie), is pathological. For example, in mammals the PrPScprion causes transmissible spongiform encephalopathies accumulating in the brain tissues of PrPScaggregates that have amyloid properties. MicroRNAs and long non-coding RNAs can be translated into functional peptides. These peptides can have a regulatory effect on genes from which their non-coding RNAs are transcribed. It has been assumed that prions, like peptides, due to the presence of specific domains, can also activate certain non-coding RNAs. Some of the activated non-coding RNAs can catalyze the formation of new prions from normal protein, playing their role in the pathogenesis of prion diseases. Confirmation of this assumption is the presence of the association of alleles of microRNA with the development of the disease, which indicates the role of the specific sequences of noncoding RNAs in the catalysis of prion formation. In the brain tissues of patients with prion diseases, as well as in exosomes containing an abnormal PrPScisoform, changes in the levels of microRNA have been observed. A possible cause is the interaction of the spatial domains of PrPScwith the sequences of the non-coding RNA genes, which causes a change in their expression. MicroRNAs, in turn, affect the synthesis of long non-coding RNAs. We hypothesize that long noncoding RNAs and possibly microRNAs can interact with PrPCcatalyzing its transformation into PrPSc. As a result, the number of PrPScincreases exponentially. In the brain of animals and humans, transposon activity has been observed, which has a regulatory effect on the differentiation of neuronal stem cells. Transposons form the basis of domain structures of long non-coding RNAs. In addition, they are important sources of microRNA. Since prion diseases can arise as sporadic and hereditary cases, and hereditary predisposition is important for the development of pathology, we hypothesize the role of individual features of activation of transposons in the pathogenesis of prion diseases. The activation of transposons in the brain at certain stages of development, as well as under the influence of stress, is reflected in the peculiarities of expression of specific non-coding RNAs that are capable of catalyzing the transition of the PrPCprotein to PrPSc. Research in this direction can be the basis for targeted anti-microRNA therapy of prion diseases.
Collapse
|
23
|
Harrison PM. fLPS: Fast discovery of compositional biases for the protein universe. BMC Bioinformatics 2017; 18:476. [PMID: 29132292 PMCID: PMC5684748 DOI: 10.1186/s12859-017-1906-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/01/2017] [Indexed: 12/03/2022] Open
Abstract
Background Proteins often contain regions that are compositionally biased (CB), i.e., they are made from a small subset of amino-acid residue types. These CB regions can be functionally important, e.g., the prion-forming and prion-like regions that are rich in asparagine and glutamine residues. Results Here I report a new program fLPS that can rapidly annotate CB regions. It discovers both single-residue and multiple-residue biases. It works through a process of probability minimization. First, contigs are constructed for each amino-acid type out of sequence windows with a low degree of bias; second, these contigs are searched exhaustively for low-probability subsequences (LPSs); third, such LPSs are iteratively assessed for merger into possible multiple-residue biases. At each of these stages, efficiency measures are taken to avoid or delay probability calculations unless/until they are necessary. On a current desktop workstation, the fLPS algorithm can annotate the biased regions of the yeast proteome (>5700 sequences) in <1 s, and of the whole current TrEMBL database (>65 million sequences) in as little as ~1 h, which is >2 times faster than the commonly used program SEG, using default parameters. fLPS discovers both shorter CB regions (of the sort that are often termed ‘low-complexity sequence’), and milder biases that may only be detectable over long tracts of sequence. Conclusions fLPS can readily handle very large protein data sets, such as might come from metagenomics projects. It is useful in searching for proteins with similar CB regions, and for making functional inferences about CB regions for a protein of interest. The fLPS package is available from: http://biology.mcgill.ca/faculty/harrison/flps.html, or https://github.com/pmharrison/flps, or is a supplement to this article. Electronic supplementary material The online version of this article (10.1186/s12859-017-1906-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paul M Harrison
- Department of Biology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
24
|
Urrea L, Ferrer I, Gavín R, del Río JA. The cellular prion protein (PrP C) as neuronal receptor for α-synuclein. Prion 2017; 11:226-233. [PMID: 28759332 PMCID: PMC5553301 DOI: 10.1080/19336896.2017.1334748] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 10/19/2022] Open
Abstract
The term 'prion-like' is used to define some misfolded protein species that propagate intercellularly, triggering protein aggregation in recipient cells. For cell binding, both direct plasma membrane interaction and membrane receptors have been described for particular amyloids. In this respect, emerging evidence demonstrates that several β-sheet enriched proteins can bind to the cellular prion protein (PrPC). Among other interactions, the physiological relevance of the binding between β-amyloid and PrPC has been a relevant focus of numerous studies. At the molecular level, published data point to the second charged cluster domain of the PrPC molecule as the relevant binding domain of the β-amyloid/PrPC interaction. In addition to β-amyloid, participation of PrPC in binding α-synuclein, responsible for neurodegenerative synucleopathies, has been reported. Although results indicate relevant participation of PrPC in the spreading of α-synuclein in living mice, the physiological relevance of the interaction remains elusive. In this comment, we focus our attention on summarizing current knowledge of PrPC as a receptor for amyloid proteins and its physiological significance, with particular focus on α-synuclein.
Collapse
Affiliation(s)
- Laura Urrea
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Isidro Ferrer
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
- Senior Consultant Neuropathology, Service of Pathology, Bellvitge University Hospital, Hospitalet de Llobregat, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Hospitalet de Llobregat, Spain
| | - Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - José Antonio del Río
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| |
Collapse
|
25
|
MacLea KS. What Makes a Prion: Infectious Proteins From Animals to Yeast. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 329:227-276. [PMID: 28109329 DOI: 10.1016/bs.ircmb.2016.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
While philosophers in ancient times had many ideas for the cause of contagion, the modern study of infective agents began with Fracastoro's 1546 proposal that invisible "spores" spread infectious disease. However, firm categorization of the pathogens of the natural world would need to await a mature germ theory that would not arise for 300 years. In the 19th century, the earliest pathogens described were bacteria and other cellular microbes. By the close of that century, the work of Ivanovsky and Beijerinck introduced the concept of a virus, an infective particle smaller than any known cell. Extending into the early-mid-20th century there was an explosive growth in pathogenic microbiology, with a cellular or viral cause identified for nearly every transmissible disease. A few occult pathogens remained to be discovered, including the infectious proteins (prions) proposed by Prusiner in 1982. This review discusses the prions identified in mammals, yeasts, and other organisms, focusing on the amyloid-based prions. I discuss the essential biochemical properties of these agents and the application of this knowledge to diseases of protein misfolding and aggregation, as well as the utility of yeast as a model organism to study prion and amyloid proteins that affect human and animal health. Further, I summarize the ideas emerging out of these studies that the prion concept may go beyond proteinaceous infectious particles and that prions may be a subset of proteins having general nucleating or seeding functions involved in noninfectious as well as infectious pathogenic protein aggregation.
Collapse
Affiliation(s)
- K S MacLea
- University of New Hampshire, Manchester, NH, United States.
| |
Collapse
|
26
|
Eraña H, Venegas V, Moreno J, Castilla J. Prion-like disorders and Transmissible Spongiform Encephalopathies: An overview of the mechanistic features that are shared by the various disease-related misfolded proteins. Biochem Biophys Res Commun 2016; 483:1125-1136. [PMID: 27590581 DOI: 10.1016/j.bbrc.2016.08.166] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/04/2016] [Accepted: 08/29/2016] [Indexed: 02/06/2023]
Abstract
Prion diseases or Transmissible Spongiform Encephalopathies (TSEs) are a group of fatal neurodegenerative disorders affecting several mammalian species. Its causative agent, disease-associated prion protein (PrPd), is a self-propagating β-sheet rich aberrant conformation of the cellular prion protein (PrPC) with neurotoxic and aggregation-prone properties, capable of inducing misfolding of PrPC molecules. PrPd is the major constituent of prions and, most importantly, is the first known example of a protein with infectious attributes. It has been suggested that similar molecular mechanisms could be shared by other proteins implicated in diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis or systemic amyloidoses. Accordingly, several terms have been proposed to collectively group all these disorders. Through the stringent evaluation of those aspects that characterise TSE-causing prions, in particular propagation and spread, strain variability or transmissibility, we will discuss whether terms such as "prion", "prion-like", "prionoid" or "propagon" can be used when referring to the aetiological agents of the above other disorders. Moreover, it will also be discussed whether the term "infectious", which defines a prion essential trait, is currently misused when referring to the other misfolded proteins.
Collapse
Affiliation(s)
- Hasier Eraña
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160, Derio, Spain
| | - Vanesa Venegas
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160, Derio, Spain
| | - Jorge Moreno
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160, Derio, Spain
| | - Joaquín Castilla
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160, Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, 48011, Bizkaia, Spain.
| |
Collapse
|
27
|
An L, Harrison PM. The evolutionary scope and neurological disease linkage of yeast-prion-like proteins in humans. Biol Direct 2016; 11:32. [PMID: 27457357 PMCID: PMC4960796 DOI: 10.1186/s13062-016-0134-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/14/2016] [Indexed: 11/12/2022] Open
Abstract
Background Prions are proteinaceous particles that propagate alternative protein conformations/states to further copies of the same proteins, and are transmitted from cell-to-cell, and organism-to-organism. Prions are usually made of the beta-sheet rich assemblies termed amyloid. The original prion protein PrP causes devastating neurodegenerative disorders in humans and other mammals. In the yeast Saccharomyces cerevisiae, many prion-forming proteins have been observed; a prominent feature of these proteins is an intrinsically disordered domain rich in glutamine (Q) and asparagine (N) residues. Several human proteins that are yeast-prion-like, in particular those with poly-glutamine (poly-Q) expansions, have been experimentally implicated in human neurodegenerative diseases. Results Here, we have constructed a comprehensive list of human yeast-prion-like proteins that are linked to human neurological disease. Surprisingly, different methods to annotate yeast-prion-like proteins in humans have limited intersection. However, independent of annotation method, we find that human yeast-prion-like proteins as a group have a statistically significant genetic linkage to neurological disease, that is caused specifically by linkage to neurodegenerative diseases. This is despite: (i) no especially high expression of yeast-prion-like proteins in the central nervous system, or (ii) no general enrichment of intrinsically disordered proteins in neurological/neurodegenerative diseases. Cytoskeletal proteins are significantly overrepresented in the set of human yeast-prion-like neurological proteins. Whether involved in neurological pathomechanisms or not, yeast-prion-like proteins in humans have very limited conservation outside of Deuterostomia (< ~10 %) with only a handful having prion-like character in both human and S. cerevisiae. The only such protein with a disease linkage is PUB1/TIA1, which functions as a stress granule component. Thus, the yeast-prion-like character of proteins linked to neurodegenerative diseases has not been conserved over the deep evolutionary time since the last common ancestor of yeasts and humans. Conclusion Our results provide a comprehensive picture of yeast-prion-like proteins in humans and contribute to the strategic basis for experimental investigation of the link between yeast-prion-like protein character and neurological disease. Reviewers Reviewed by Istvan Simon and Alexander Schleiffer. For the full reviews, please go to the Reviewers’ comments section. Electronic supplementary material The online version of this article (doi:10.1186/s13062-016-0134-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lu An
- Department of Biology, McGill University, Montreal, QC, Canada
| | - Paul M Harrison
- Department of Biology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
28
|
An L, Fitzpatrick D, Harrison PM. Emergence and evolution of yeast prion and prion-like proteins. BMC Evol Biol 2016; 16:24. [PMID: 26809710 PMCID: PMC4727409 DOI: 10.1186/s12862-016-0594-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/13/2016] [Indexed: 11/10/2022] Open
Abstract
Background Prions are transmissible, propagating alternative states of proteins, and are usually made from the fibrillar, beta-sheet-rich assemblies termed amyloid. Prions in the budding yeast Saccharomyces cerevisiae propagate heritable phenotypes, uncover hidden genetic variation, function in large-scale gene regulation, and can act like diseases. Almost all these amyloid prions have asparagine/glutamine-rich (N/Q–rich) domains. Other proteins, that we term here ‘prionogenic amyloid formers’ (PAFs), have been shown to form amyloid in vivo, and to have N/Q-rich domains that can propagate heritable states in yeast cells. Also, there are >200 other S.cerevisiae proteins with prion-like N/Q-rich sequence composition. Furthermore, human proteins with such N/Q-rich composition have been linked to the pathomechanisms of neurodegenerative amyloid diseases. Results Here, we exploit the increasing abundance of complete fungal genomes to examine the ancestry of prions/PAFs and other N/Q-rich proteins across the fungal kingdom. We find distinct evolutionary behavior for Q-rich and N-rich prions/PAFs; those of ancient ancestry (outside the budding yeasts, Saccharomycetes) are Q-rich, whereas N-rich cases arose early in Saccharomycetes evolution. This emergence of N-rich prion/PAFs is linked to a large-scale emergence of N-rich proteins during Saccharomycetes evolution, with Saccharomycetes showing a distinctive trend for population sizes of prion-like proteins that sets them apart from all the other fungi. Conversely, some clades, e.g. Eurotiales, have much fewer N/Q-rich proteins, and in some cases likely lose them en masse, perhaps due to greater amyloid intolerance, although they contain relatively more non-N/Q-rich predicted prions. We find that recent mutational tendencies arising during Saccharomycetes evolution (i.e., increased numbers of N residues and a tendency to form more poly-N tracts), contributed to the expansion/development of the prion phenomenon. Variation in these mutational tendencies in Saccharomycetes is correlated with the population sizes of prion-like proteins, thus implying that selection pressures on N/Q-rich protein sequences against amyloidogenesis are not generally maintained in budding yeasts. Conclusions These results help to delineate further the limits and origins of N/Q-rich prions, and provide insight as a case study of the evolution of compositionally-defined protein domains. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0594-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lu An
- Department of Biology, McGill University, Montreal, QC, Canada
| | - David Fitzpatrick
- Bioinformatics and Molecular Evolution Unit, NUI Maynooth, Maynooth, Ireland
| | - Paul M Harrison
- Department of Biology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW The present review discusses recent clinical data on diagnosis, new forms, and treatment of human prion diseases, and briefly summarizes research suggesting prion-like mechanisms in other neurodegenerative diseases. RECENT FINDINGS When proper sequences are performed, MRI has high diagnostic utility in prion disease, but there are issues with interpretation of images. The spectrum of MRI's utility for diagnosis and understanding human prion disease is still being explored. Two recent diffusion tensor imaging studies quantified changes in the gray and white matter in sporadic Jakob-Creutzfeldt disease, with unexpected results. The diagnostic utility of cerebrospinal fluid biomarkers has been controversial. A few studies showed that amplification methods can detect prions in either cerebrospinal fluid, olfactory epithelium, blood and/or urine in various human prion diseases. Additional cases of variably protease-sensitive prionopathy have led to a broader understanding of this novel sporadic prion disease. A few new mutations causing genetic prion disease, one with a very atypical presentation, have been identified. Although recent human prion disease treatment trials did not show benefit, they have improved our understanding, and led to better quantification, of the progression of these disorders. Lastly, we briefly summarize the increasing evidence that many nonprion neurodegenerative proteinopathies might spread in the brain by a prion-like mechanism. SUMMARY New prion detection methods appear promising, but need to be replicated with larger sample sizes. Identification of novel forms of human prion disease might better elucidate the full spectrum of prion diseases and expand our understanding of their pathogenesis.
Collapse
|
30
|
Propagation of tau pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies. Acta Neuropathol 2016; 131:27-48. [PMID: 26576562 DOI: 10.1007/s00401-015-1507-z] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 12/22/2022]
Abstract
Tau is a microtubule-associated protein and a key regulator of microtubule stabilization as well as the main component of neurofibrillary tangles-a principle neuropathological hallmark of Alzheimer's disease (AD)-as well as pleomorphic neuronal and glial inclusions in neurodegenerative tauopathies. Cross-sectional studies of neurofibrillary pathology in AD reveal a stereotypic spatiotemporal pattern of neuronal vulnerability that correlates with disease severity; however, the relationship of this pattern to disease progression is less certain and exceptions to the typical pattern have been described in a subset of AD patients. The basis for the selective vulnerability of specific populations of neurons to tau pathology and cell death is largely unknown, although there have been a number of hypotheses based upon shared properties of vulnerable neurons (e.g., degree of axonal myelination or synaptic plasticity). A recent hypothesis for selective vulnerability takes into account the emerging science of functional connectivity based upon resting state functional magnetic resonance imaging, where subsets of neurons that fire synchronously define patterns of degeneration similar to specific neurodegenerative disorders, including various tauopathies. In the past 6 years, the concept of tau propagation has emerged from numerous studies in cell and animal models suggesting that tau moves from cell-to-cell and that this may trigger aggregation and region-to-region spread of tau pathology within the brain. How the spread of tau pathology relates to functional connectivity is an area of active investigation. Observations of templated folding and propagation of tau have prompted comparisons of tau to prions, the pathogenic proteins in transmissible spongiform encephalopathies. In this review, we discuss the most compelling studies in the field, discuss their shortcomings and consider their implications with respect to human tauopathies as well as the controversy that tauopathies may be prion-like disorders.
Collapse
|
31
|
Affiliation(s)
- Kausik Si
- Stowers Institute for Medical Research, Kansas City, Missouri 64110;
| |
Collapse
|
32
|
Harbi D, Harrison PM. Interaction networks of prion, prionogenic and prion-like proteins in budding yeast, and their role in gene regulation. PLoS One 2014; 9:e100615. [PMID: 24972093 PMCID: PMC4074094 DOI: 10.1371/journal.pone.0100615] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/09/2014] [Indexed: 12/12/2022] Open
Abstract
Prions are transmissible, propagating alternative states of proteins. Prions in budding yeast propagate heritable phenotypes and can function in large-scale gene regulation, or in some cases occur as diseases of yeast. Other ‘prionogenic’ proteins are likely prions that have been determined experimentally to form amyloid in vivo, and to have prion-like domains that are able to propagate heritable states. Furthermore, there are over 300 additional ‘prion-like’ yeast proteins that have similar amino-acid composition to prions (primarily a bias for asparagines and glutamines). Here, we examine the protein functional and interaction networks that involve prion, prionogenic and prion-like proteins. Set against a marked overall preference for N/Q-rich prion-like proteins not to interact with each other, we observe a significant tendency of prion/prionogenic proteins to interact with other, N/Q-rich prion-like proteins. This tendency is mostly due to a small number of networks involving the proteins NUP100p, LSM4p and PUB1p. In general, different data analyses of functional and interaction networks converge to indicate a strong linkage of prionogenic and prion-like proteins, to stress-granule assembly and related biological processes. These results further elucidate how prions may impact gene regulation, and reveal a broader horizon for the functional relevance of N/Q-rich prion-like domains.
Collapse
Affiliation(s)
- Djamel Harbi
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Paul M. Harrison
- Department of Biology, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|