1
|
Ishikawa K, Xie X, Osaki Y, Miyawaki A, Numata K, Kodama Y. Bilirubin is produced nonenzymatically in plants to maintain chloroplast redox status. SCIENCE ADVANCES 2023; 9:eadh4787. [PMID: 37285441 DOI: 10.1126/sciadv.adh4787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/01/2023] [Indexed: 06/09/2023]
Abstract
Bilirubin, a potent antioxidant, is a product of heme catabolism in heterotrophs. Heterotrophs mitigate oxidative stress resulting from free heme by catabolism into bilirubin via biliverdin. Although plants also convert heme to biliverdin, they are generally thought to be incapable of producing bilirubin because they lack biliverdin reductase, the enzyme responsible for bilirubin biosynthesis in heterotrophs. Here, we demonstrate that bilirubin is produced in plant chloroplasts. Live-cell imaging using the bilirubin-dependent fluorescent protein UnaG revealed that bilirubin accumulated in chloroplasts. In vitro, bilirubin was produced nonenzymatically through a reaction between biliverdin and reduced form of nicotinamide adenine dinucleotide phosphate at concentrations comparable to those in chloroplasts. In addition, increased bilirubin production led to lower reactive oxygen species levels in chloroplasts. Our data refute the generally accepted pathway of heme degradation in plants and suggest that bilirubin contributes to the maintenance of redox status in chloroplasts.
Collapse
Affiliation(s)
- Kazuya Ishikawa
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Xiaonan Xie
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan
| | - Yasuhide Osaki
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Saitama 351-0198, Japan
- Biotechnological Optics Research Team, RIKEN Center for Advanced Photonics; Saitama, 351-0198, Japan
| | - Keiji Numata
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University; Kyoto, 615-8246, Japan
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| |
Collapse
|
2
|
Singh N, Bhatla SC. Heme oxygenase-nitric oxide crosstalk-mediated iron homeostasis in plants under oxidative stress. Free Radic Biol Med 2022; 182:192-205. [PMID: 35247570 DOI: 10.1016/j.freeradbiomed.2022.02.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 12/22/2022]
Abstract
Plant growth under abiotic stress conditions significantly enhances intracellular generation of reactive oxygen species (ROS). Oxidative status of plant cells is directly affected by the modulation of iron homeostasis. Among mammals and plants, heme oxygenase-1 (HO-1) is a well-known antioxidant enzyme. It catalyzes oxygenation of heme, thereby producing Fe2+, CO and biliverdin as byproducts. The antioxidant potential of HO-1 is primarily due to its catalytic reaction byproducts. Biliverdin and bilirubin possess conjugated π-electrons which escalate the ability of these biomolecules to scavenge free radicals. CO also enhances the ROS scavenging ability of plants cells by upregulating catalase and peroxidase activity. Enhanced expression of HO-1 in plants under oxidative stress accompanies sequestration of iron in specialized iron storage proteins localized in plastids and mitochondria, namely ferritin for Fe3+ storage and frataxin for storage of Fe-S clusters, respectively. Nitric oxide (NO) crosstalks with HO-1 at multiple levels, more so in plants under oxidative stress, in order to maintain intracellular iron status. Formation of dinitrosyl-iron complexes (DNICs) significantly prevents Fenton reaction during oxidative stress. DNICs also release NO upon dissociation in target cells over long distance in plants. They also function as antioxidants against superoxide anions and lipidic free radicals. A number of NO-modulated transcription factors also facilitate iron homeostasis in plant cells. Plants facing oxidative stress exhibit modulation of lateral root formation by HO-1 through NO and auxin-dependent pathways. The present review provides an in-depth analysis of the structure-function relationship of HO-1 in plants and mammals, correlating them with their adaptive mechanisms of survival under stress.
Collapse
Affiliation(s)
- Neha Singh
- Department of Botany, Gargi College, University of Delhi, India.
| | - Satish C Bhatla
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
3
|
Rao Y, Xu N, Li S, Hu J, Jiao R, Hu P, Lin H, Lu C, Lin X, Dai Z, Zhang Y, Zhu X, Wang Y. PE-1, Encoding Heme Oxygenase 1, Impacts Heading Date and Chloroplast Development in Rice ( Oryza sativa L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7249-7257. [PMID: 31244201 DOI: 10.1021/acs.jafc.9b01676] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The duration of the rice growth phase has always been an important target trait. The identification of mutations in rice that alter these processes and result in a shorter growth phase could have potential benefits for crop production. In this study, we isolated an early aging rice mutant, pe-1, with light green leaves, using γ-mutated indica rice cultivar and subsequent screening methods, which is known as the phytochrome synthesis factor Se5 that controls rice flowering. The pe-1 plant is accompanied by a decreased chlorophyll content, an enhanced photosynthesis, and a decreased pollen fertility. PE-1, a close homologue of HY1, is localized in the chloroplast. Expression pattern analysis indicated that PE-1 was mainly expressed in roots, stems, leaves, leaf sheaths, and young panicles. The knockout of PE-1 using the CRISPR/Cas9 system decreased the chlorophyll content and downregulated the expression of PE-1-related genes. Furthermore, the chloroplasts of pe-1 were filled with many large-sized starch grains, and the number of osmiophilic granules (a chloroplast lipid reservoir) was significantly decreased. Altogether, our findings suggest that PE-1 functions as a master regulator to mediate in chlorophyll biosynthesis and photosynthetic pathways.
Collapse
Affiliation(s)
- Yuchun Rao
- College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua , Zhejiang 321004 , People's Republic of China
| | - Na Xu
- College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua , Zhejiang 321004 , People's Republic of China
| | - Sanfeng Li
- State Key Laboratory of Rice Biology , China National Rice Research Institute , Hangzhou , Zhejiang 310006 , People's Republic of China
| | - Juan Hu
- College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua , Zhejiang 321004 , People's Republic of China
| | - Ran Jiao
- College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua , Zhejiang 321004 , People's Republic of China
| | - Ping Hu
- State Key Laboratory of Rice Biology , China National Rice Research Institute , Hangzhou , Zhejiang 310006 , People's Republic of China
| | - Han Lin
- College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua , Zhejiang 321004 , People's Republic of China
| | - Caolin Lu
- State Key Laboratory of Rice Biology , China National Rice Research Institute , Hangzhou , Zhejiang 310006 , People's Republic of China
| | - Xue Lin
- College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua , Zhejiang 321004 , People's Republic of China
| | - Zhijun Dai
- College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua , Zhejiang 321004 , People's Republic of China
| | - Yilan Zhang
- College of Chemistry and Life Sciences , Zhejiang Normal University , Jinhua , Zhejiang 321004 , People's Republic of China
| | - Xudong Zhu
- State Key Laboratory of Rice Biology , China National Rice Research Institute , Hangzhou , Zhejiang 310006 , People's Republic of China
| | - Yuexing Wang
- State Key Laboratory of Rice Biology , China National Rice Research Institute , Hangzhou , Zhejiang 310006 , People's Republic of China
| |
Collapse
|
4
|
Affiliation(s)
- Jon Y. Takemoto
- Department of BiologyUtah State University, Logan Utah 84322-5305 U.S.A
| | - Cheng‐Wei T. Chang
- Department of Chemistry and BiochemistryUtah State University Logan, Utah 84322-0300 U.S.A
| | - Dong Chen
- Department of Biological EngineeringUtah State University Logan, Utah 843122 U.S.A
| | - Garrett Hinton
- Department of BiologyUtah State University Logan, Utah 84322-5305 U.S.A
| |
Collapse
|
5
|
Rivero J, Álvarez D, Flors V, Azcón-Aguilar C, Pozo MJ. Root metabolic plasticity underlies functional diversity in mycorrhiza-enhanced stress tolerance in tomato. THE NEW PHYTOLOGIST 2018; 220:1322-1336. [PMID: 29982997 DOI: 10.1111/nph.15295] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 05/30/2018] [Indexed: 05/07/2023]
Abstract
Arbuscular mycorrhizal (AM) symbioses can improve plant tolerance to multiple stresses. We compared three AM fungi (AMF) from different genera, one of them isolated from a dry and saline environment, in terms of their ability to increase tomato tolerance to moderate or severe drought or salt stress. Plant physiological parameters and metabolic profiles were compared in order to find the molecular mechanisms underlying plant protection against stress. Mycorrhizal growth response was determined, and ultrahigh-performance LC-MS was used to compare the metabolic profile of plants under the different treatments. All AMF increased plant tolerance to stress, and the positive effects of the symbiosis were correlated with the severity of the stress. The AMF isolated from the stressful environment was the most effective in improving plant tolerance to salt stress. Differentially accumulated compounds were identified and the antistress properties of some of them were confirmed. We demonstrate that AM symbioses increase plant metabolic plasticity to cope with stress. Some responses were common to all AMF tested, while others were specifically related to particular isolates. Important metabolism reprograming was evidenced upon salt stress, and we identified metabolic pathways and compounds differentially accumulated in mycorrhizas that may underlie their enhanced tolerance to stress.
Collapse
Affiliation(s)
- Javier Rivero
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, Granada, 18008, Spain
| | - Domingo Álvarez
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, Granada, 18008, Spain
| | - Víctor Flors
- Metabolic Integration and Cell Signaling Laboratory, CSIC Associated Unit, Plant Physiology Section, Department of Agricultural and Environmental Sciences, Universitat Jaume I (UJI), Campus del Riu Sec, Castellón de la Plana 12071, Spain
| | - Concepción Azcón-Aguilar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, Granada, 18008, Spain
| | - María J Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, Granada, 18008, Spain
| |
Collapse
|
6
|
Deng H, Cheema J, Zhang H, Woolfenden H, Norris M, Liu Z, Liu Q, Yang X, Yang M, Deng X, Cao X, Ding Y. Rice In Vivo RNA Structurome Reveals RNA Secondary Structure Conservation and Divergence in Plants. MOLECULAR PLANT 2018; 11:607-622. [PMID: 29409859 PMCID: PMC5886760 DOI: 10.1016/j.molp.2018.01.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/11/2018] [Accepted: 01/25/2018] [Indexed: 05/07/2023]
Abstract
RNA secondary structure plays a critical role in gene regulation. Rice (Oryza sativa) is one of the most important food crops in the world. However, RNA structure in rice has scarcely been studied. Here, we have successfully generated in vivo Structure-seq libraries in rice. We found that the structural flexibility of mRNAs might associate with the dynamics of biological function. Higher N6-methyladenosine (m6A) modification tends to have less RNA structure in 3' UTR, whereas GC content does not significantly affect in vivo mRNA structure to maintain efficient biological processes such as translation. Comparative analysis of RNA structurome between rice and Arabidopsis revealed that higher GC content does not lead to stronger structure and less RNA structural flexibility. Moreover, we found a weak correlation between sequence and structure conservation of the orthologs between rice and Arabidopsis. The conservation and divergence of both sequence and in vivo RNA structure corresponds to diverse and specific biological processes. Our results indicate that RNA secondary structure might offer a separate layer of selection to the sequence between monocot and dicot. Therefore, our study implies that RNA structure evolves differently in various biological processes to maintain robustness in development and adaptational flexibility during angiosperm evolution.
Collapse
Affiliation(s)
- Hongjing Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jitender Cheema
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Hang Zhang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Hugh Woolfenden
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Matthew Norris
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Zhenshan Liu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Qi Liu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Xiaofei Yang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Minglei Yang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
7
|
|
8
|
Hsu YY, Chao YY, Kao CH. Cobalt chloride-induced lateral root formation in rice: the role of heme oxygenase. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1075-81. [PMID: 23566873 DOI: 10.1016/j.jplph.2013.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/13/2013] [Accepted: 03/13/2013] [Indexed: 05/04/2023]
Abstract
Lateral roots (LRs) perform the essential tasks of providing water, nutrients, and physical support to plants. Therefore, understanding the regulation of LR development is of agronomic importance. Recent findings suggest that heme oxygenase (HO) plays an important role in LR development. In this study, we examined the effect of cobalt chloride (CoCl2) on LR formation and HO expression in rice. Treatment with CoCl2 induced LR formation and HO activity. We further observed that CoCl2 could induce the expression of OsHO1 but not OsHO2. CoCl2-increased HO activity occurred before LR formation. Zinc protoporphyrin IX (ZnPPIX, the specific inhibitor of HO) and hemoglobin (the carbon monoxide/nitric oxide scavenger) reduced LR formation, HO activity, and OsHO1 expression. Application of biliverdin, a product of HO-catalyzed reaction, to CoCl2-treated rice seedlings reversed the ZnPPIX-inhibited LR formation and ZnPPIX-decreased HO activity. CoCl2 had no effect on H2O2 content and nitric oxide production. Moreover, application of ascorbate, a H2O2 scavenger, failed to affect CoCl2-promoted LR formation and HO activity. It is concluded that HO is required for CoCl2-promoted LR formation in rice.
Collapse
Affiliation(s)
- Yun Yen Hsu
- Department of Agronomy, National Taiwan University, Taipei, Taiwan, ROC
| | | | | |
Collapse
|
9
|
Chen YH, Chao YY, Hsu YY, Kao CH. Heme oxygenase is involved in H(2)O (2)-induced lateral root formation in apocynin-treated rice. PLANT CELL REPORTS 2013; 32:219-26. [PMID: 23076168 DOI: 10.1007/s00299-012-1356-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 09/24/2012] [Accepted: 10/07/2012] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE : Apocynin is a natural organic compound structurally related to vanillin. We demonstrated that hydrogen peroxide and heme oxygenase participated in apocynin-induced lateral root formation in rice. Apocynin, also known as acetovanillone, is a natural organic compound structurally related to vanillin. Information concerning the effect of apocynin on plants is limited. In this study, we examined the effect of apocynin on lateral root (LR) formation in rice. Treatment with apocynin induced LR formation and increased H(2)O(2) production, but had no effect on nitric oxide production. Diphenyleneiodonium chloride, an inhibitor of H(2)O(2) generating NADPH oxidase, was effective in reducing apocynin-induced H(2)O(2) production and LR formation. Apocynin treatment also increased superoxide dismutase activity and decreased catalase activity. H(2)O(2) application was able to increase the number of LRs. Moreover, H(2)O(2) production caused by H(2)O(2) and apocynin was localized in the root area corresponding to the LR emergence. Treatment with H(2)O(2) and apocynin also increased heme oxygenase (HO) activity and induced OsHO1 mRNA expression. Lateral root formation and HO activity induced by H(2)O(2) and apocynin were reduced by Zn protoporphyrin IX (the specific inhibitor of HO). Our data suggest that both H(2)O(2) and HO are required for apocynin-induced LR formation in rice.
Collapse
Affiliation(s)
- Yi-Hsuan Chen
- Department of Agronomy, National Taiwan University, Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|