1
|
Zeng H, He K, He Q, Xu L, Zhang W, Lu X, Tang Y, Zhu X, Yin J, He M, Chen X, Li W. Exogenous Indole-3-Acetic Acid Suppresses Rice Infection of Magnaporthe oryzae by Affecting Plant Resistance and Fungal Growth. PHYTOPATHOLOGY 2024; 114:1050-1056. [PMID: 38709298 DOI: 10.1094/phyto-10-23-0365-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Auxin is an important phytohormone that regulates diverse biologic processes, including plant growth and immunity. Indole-3-acetic acid (IAA), known as one of the main forms of auxin, is able to activate plant immunity. However, it is unknown whether IAA enhances plant resistance and/or suppresses the growth of the fungal pathogen Magnaporthe oryzae. Here, we found that IAA could induce expression levels of pathogenesis-related genes to enhance disease resistance and could control the development of blast disease through inhibiting M. oryzae infection. Exogenous IAA suppressed mycelial growth and delayed spore germination by inhibiting fungal endogenous IAA biosynthesis and impairing redox homeostasis, respectively. When applied to a field test, two IAA analogues, 1-naphthaleneacetic acid and 2,4-dichlorophenoxy acetic acid, can effectively control rice blast disease. Our study advances the understanding of IAA in controlling rice blast disease through suppressing pathogen growth and enhancing plant resistance.
Collapse
Affiliation(s)
- Hongling Zeng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Kaiwei He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qin He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Liting Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiang Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yongyan Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Weitao Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
2
|
Nagarajan N, Khan M, Djamei A. Manipulation of Auxin Signaling by Smut Fungi during Plant Colonization. J Fungi (Basel) 2023; 9:1184. [PMID: 38132785 PMCID: PMC10744876 DOI: 10.3390/jof9121184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
A common feature of many plant-colonizing organisms is the exploitation of plant signaling and developmental pathways to successfully establish and proliferate in their hosts. Auxins are central plant growth hormones, and their signaling is heavily interlinked with plant development and immunity responses. Smuts, as one of the largest groups in basidiomycetes, are biotrophic specialists that successfully manipulate their host plants and cause fascinating phenotypes in so far largely enigmatic ways. This review gives an overview of the growing understanding of how and why smut fungi target the central and conserved auxin growth signaling pathways in plants.
Collapse
Affiliation(s)
| | | | - Armin Djamei
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53115 Bonn, Germany; (N.N.); (M.K.)
| |
Collapse
|
3
|
Symbiotic interplay of Piriformospora indica and Azotobacter chroococcum augments crop productivity and biofortification of Zinc and Iron. Microbiol Res 2022; 262:127075. [DOI: 10.1016/j.micres.2022.127075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 11/21/2022]
|
4
|
Pathi KM, Rink P, Budhagatapalli N, Betz R, Saado I, Hiekel S, Becker M, Djamei A, Kumlehn J. Engineering Smut Resistance in Maize by Site-Directed Mutagenesis of LIPOXYGENASE 3. FRONTIERS IN PLANT SCIENCE 2020; 11:543895. [PMID: 33193477 PMCID: PMC7609844 DOI: 10.3389/fpls.2020.543895] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/22/2020] [Indexed: 05/23/2023]
Abstract
Biotic stresses caused by microbial pathogens impair crop yield and quality if not restricted by expensive and often ecologically problematic pesticides. For a sustainable agriculture of tomorrow, breeding or engineering of pathogen-resistant crop varieties is therefore a major cornerstone. Maize is one of the four most important cereal crops in the world. The biotrophic fungal pathogen Ustilago maydis causes galls on all aerial parts of the maize plant. Biotrophic pathogens like U. maydis co-evolved with their host plant and depend during their life cycle on successful manipulation of the host's cellular machinery. Therefore, removing or altering plant susceptibility genes is an effective and usually durable way to obtain resistance in plants. Transcriptional time course experiments in U. maydis-infected maize revealed numerous maize genes being upregulated upon establishment of biotrophy. Among these genes is the maize LIPOXYGENASE 3 (LOX3) previously shown to be a susceptibility factor for other fungal genera as well. Aiming to engineer durable resistance in maize against U. maydis and possibly other pathogens, we took a Cas endonuclease technology approach to generate loss of function mutations in LOX3. lox3 maize mutant plants react with an enhanced PAMP-triggered ROS burst implicating an enhanced defense response. Based on visual assessment of disease symptoms and quantification of relative fungal biomass, homozygous lox3 mutant plants exposed to U. maydis show significantly decreased susceptibility. U. maydis infection assays using a transposon mutant lox3 maize line further substantiated that LOX3 is a susceptibility factor for this important maize pathogen.
Collapse
Affiliation(s)
- Krishna Mohan Pathi
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Philipp Rink
- Biotrophy & Immunity, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Nagaveni Budhagatapalli
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ruben Betz
- Biotrophy & Immunity, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Indira Saado
- Biotrophy & Immunity, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Stefan Hiekel
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Martin Becker
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Armin Djamei
- Biotrophy & Immunity, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Jochen Kumlehn
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
5
|
Wei K, Ruan L, Wang L, Cheng H. Auxin-Induced Adventitious Root Formation in Nodal Cuttings of Camellia sinensis. Int J Mol Sci 2019; 20:E4817. [PMID: 31569758 PMCID: PMC6801801 DOI: 10.3390/ijms20194817] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/12/2019] [Accepted: 09/26/2019] [Indexed: 02/01/2023] Open
Abstract
Adventitious root (AR) formation is essential for the successful propagation of Camellia sinensis and auxins play promotive effects on this process. Nowadays, the mechanism of auxin-induced AR formation in tea cuttings is widely studied. However, a lack of global view of the underlying mechanism has largely inhibited further studies. In this paper, recent advances including endogenous hormone changes, nitric oxide (NO) and hydrogen peroxide (H2O2) signals, secondary metabolism, cell wall reconstruction, and mechanisms involved in auxin signaling are reviewed. A further time course analysis of transcriptome changes in tea cuttings during AR formation is also suggested to deepen our understanding. The purpose of this paper is to offer an overview on the most recent developments especially on those key aspects affected by auxins and that play important roles in AR formation in tea plants.
Collapse
Affiliation(s)
- Kang Wei
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China.
| | - Li Ruan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China.
| | - Liyuan Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China.
| | - Hao Cheng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China.
| |
Collapse
|
6
|
Indole-3-acetic acid has long-term effects on long non-coding RNA gene methylation and growth in Populus tomentosa. Mol Genet Genomics 2019; 294:1511-1525. [DOI: 10.1007/s00438-019-01593-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 07/05/2019] [Indexed: 01/07/2023]
|
7
|
Xu L, Wu C, Oelmüller R, Zhang W. Role of Phytohormones in Piriformospora indica-Induced Growth Promotion and Stress Tolerance in Plants: More Questions Than Answers. Front Microbiol 2018; 9:1646. [PMID: 30140257 PMCID: PMC6094092 DOI: 10.3389/fmicb.2018.01646] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/02/2018] [Indexed: 11/18/2022] Open
Abstract
Phytohormones play vital roles in the growth and development of plants as well as in interactions of plants with microbes such as endophytic fungi. The endophytic root-colonizing fungus Piriformospora indica promotes plant growth and performance, increases resistance of colonized plants to pathogens, insects and abiotic stress. Here, we discuss the roles of the phytohormones (auxins, cytokinin, gibberellins, abscisic acid, ethylene, salicylic acid, jasmonates, and brassinosteroids) in the interaction of P. indica with higher plant species, and compare available data with those from other (beneficial) microorganisms interacting with roots. Crosstalks between different hormones in balancing the plant responses to microbial signals is an emerging topic in current research. Furthermore, phytohormones play crucial roles in systemic signal propagation as well as interplant communication. P. indica interferes with plant hormone synthesis and signaling to stimulate growth, flowering time, differentiation and local and systemic immune responses. Plants adjust their hormone levels in the roots in response to the microbes to control colonization and fungal propagation. The available information on the roles of phytohormones in beneficial root-microbe interactions opens new questions of how P. indica manipulates the plant hormone metabolism to promote the benefits for both partners in the symbiosis.
Collapse
Affiliation(s)
- Le Xu
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, China
| | - Chu Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Ralf Oelmüller
- Matthias-Schleiden-Institute, Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
8
|
Lee MW, Huffaker A, Crippen D, Robbins RT, Goggin FL. Plant elicitor peptides promote plant defences against nematodes in soybean. MOLECULAR PLANT PATHOLOGY 2018; 19:858-869. [PMID: 28600875 PMCID: PMC6638146 DOI: 10.1111/mpp.12570] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/23/2017] [Accepted: 06/07/2017] [Indexed: 05/19/2023]
Abstract
Plant elicitor peptides (Peps) are widely distributed among angiosperms, and have been shown to amplify immune responses in multiple plant families. Here, we characterize three Peps from soybean (Glycine max) and describe their effects on plant defences against two damaging agricultural pests, the root-knot nematode (Meloidogyne incognita) and the soybean cyst nematode (Heterodera glycines). Seed treatments with exogenous GmPep1, GmPep2 or GmPep3 significantly reduced the reproduction of both nematodes. Pep treatment also protected plants from the inhibitory effects of root-knot nematodes on above-ground growth, and up-regulated basal expression levels of nematode-responsive defence genes. GmPep1 induced the expression of its propeptide precursor (GmPROPEP1), a nucleotide-binding site leucine-rich repeat protein (NBS-LRR), a pectin methylesterase inhibitor (PMEI), Respiratory Burst Oxidase Protein D (RBOHD) and the accumulation of reactive oxygen species (ROS) in leaves. In addition, GmPep2 and GmPep3 seed treatments up-regulated RBOHD expression and ROS accumulation in roots and leaves. These results suggest that GmPeps activate plant defences through systemic transcriptional reprogramming and ROS signalling, and that Pep seed treatments represent a potential strategy for nematode management.
Collapse
Affiliation(s)
- Min Woo Lee
- Department of EntomologyUniversity of ArkansasFayettevilleAR 72701USA
| | - Alisa Huffaker
- Section of Cell and Developmental BiologyUniversity of California San DiegoLa JollaCA 92903USA
| | - Devany Crippen
- Department of Plant PathologyUniversity of ArkansasFayettevilleAR 72701USA
| | - Robert T. Robbins
- Department of Plant PathologyUniversity of ArkansasFayettevilleAR 72701USA
| | - Fiona L. Goggin
- Department of EntomologyUniversity of ArkansasFayettevilleAR 72701USA
| |
Collapse
|
9
|
Bjornson M, Dandekar A, Dehesh K. Determinants of timing and amplitude in the plant general stress response. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:119-26. [PMID: 26108530 DOI: 10.1111/jipb.12373] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/22/2015] [Indexed: 05/06/2023]
Abstract
Plants have evolved intricate signaling cascades to rapidly and effectively respond to biotic and abiotic challenges. The precise timing of these responses enables optimal resource reallocation to maintain the balance between stress adaptation and growth. Thus, an in-depth understanding of the immediate and long-term mechanisms regulating resource allocation is critical in deciphering how plants withstand environmental challenges. To date however, understanding of this tradeoff has focused on the amplitude of long-term responses, rather than the timing of rapid stress responses. This review presents current knowledge on kinetics of secondary messengers involved in regulation of rapid and general stress responses, followed by rapid stress responsive transduction machinery, and finally the transcriptional response of a functional general stress responsive cis-element. Within this context we discuss the role of timing of initial peak activation and later oscillating peak responses, and explore hormonal and stress signaling crosstalk confounding greater understanding of these cascades.
Collapse
Affiliation(s)
- Marta Bjornson
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Abhaya Dandekar
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Katayoon Dehesh
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
10
|
Lahrmann U, Strehmel N, Langen G, Frerigmann H, Leson L, Ding Y, Scheel D, Herklotz S, Hilbert M, Zuccaro A. Mutualistic root endophytism is not associated with the reduction of saprotrophic traits and requires a noncompromised plant innate immunity. THE NEW PHYTOLOGIST 2015; 207:841-57. [PMID: 25919406 DOI: 10.1111/nph.13411] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/07/2015] [Indexed: 05/04/2023]
Abstract
During a compatible interaction, the sebacinoid root-associated fungi Piriformospora indica and Sebacina vermifera induce modification of root morphology and enhance shoot growth in Arabidopsis thaliana. The genomic traits common in these two fungi were investigated and compared with those of other root-associated fungi and saprotrophs. The transcriptional responses of the two sebacinoid fungi and of Arabidopsis roots to colonization at three different symbiotic stages were analyzed by custom-designed microarrays. We identified key genomic features characteristic of sebacinoid fungi, such as expansions for gene families involved in hydrolytic activities, carbohydrate-binding and protein-protein interaction. Additionally, we show that colonization of Arabidopsis correlates with the induction of salicylic acid catabolism and accumulation of jasmonate and glucosinolates (GSLs). Genes involved in root developmental processes were specifically induced by S. vermifera at later stages during interaction. Using different Arabidopsis indole-GSLs mutants and measurement of secondary metabolites, we demonstrate the importance of the indolic glucosinolate pathway in the growth restriction of P. indica and S. vermifera and we identify indole-phytoalexins and specifically indole-carboxylic acids derivatives as potential key players in the maintenance of a mutualistic interaction with root endophytes.
Collapse
Affiliation(s)
- Urs Lahrmann
- Max Planck Institute for Terrestrial Microbiology, D-35043, Marburg, Germany
| | - Nadine Strehmel
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, D-06120, Halle, Germany
| | - Gregor Langen
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674, Cologne, Germany
| | - Henning Frerigmann
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674, Cologne, Germany
| | - Lisa Leson
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674, Cologne, Germany
| | - Yi Ding
- Max Planck Institute for Terrestrial Microbiology, D-35043, Marburg, Germany
| | - Dierk Scheel
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, D-06120, Halle, Germany
| | - Siska Herklotz
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, D-06120, Halle, Germany
| | - Magdalena Hilbert
- Max Planck Institute for Terrestrial Microbiology, D-35043, Marburg, Germany
| | - Alga Zuccaro
- Max Planck Institute for Terrestrial Microbiology, D-35043, Marburg, Germany
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674, Cologne, Germany
| |
Collapse
|
11
|
Ludwig-Müller J. Bacteria and fungi controlling plant growth by manipulating auxin: balance between development and defense. JOURNAL OF PLANT PHYSIOLOGY 2015; 172:4-12. [PMID: 25456606 DOI: 10.1016/j.jplph.2014.01.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/15/2014] [Accepted: 01/17/2014] [Indexed: 05/03/2023]
Abstract
Plant diseases cause huge losses by changing the quality and quantity of harvested crops. Many disease symptoms caused by bacteria or fungi rely on the involvement of plant hormones, while other plant hormones act as defense signals in the plant. In this review the role of auxins in these processes will be evaluated. Some growth promoting plant hormones cause disease symptoms. For example auxins stimulate cell division and cell elongation in a healthy plant, but tumor formation after bacterial infection. Thus, control of auxin levels and auxin signaling pathways significantly contribute to the defense network in plants. Auxin can also act directly as defense molecule with antimicrobial activity. Since much research has been done in the recent years on auxin as a pathogenicity factor for many diseases, several examples will be presented to highlight the complexity between normal plant growth, which is regulated by auxin, and processes determining resistance or susceptibility, triggered by the same class of molecules.
Collapse
Affiliation(s)
- Jutta Ludwig-Müller
- Technische Universität Dresden, Institut für Botanik, 01062 Dresden, Germany.
| |
Collapse
|
12
|
Zuccaro A, Lahrmann U, Langen G. Broad compatibility in fungal root symbioses. CURRENT OPINION IN PLANT BIOLOGY 2014; 20:135-45. [PMID: 24929298 DOI: 10.1016/j.pbi.2014.05.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/22/2014] [Accepted: 05/16/2014] [Indexed: 05/13/2023]
Abstract
Plants associate with a wide range of beneficial fungi in their roots which facilitate plant mineral nutrient uptake in exchange for carbohydrates and other organic metabolites. These associations play a key role in shaping terrestrial ecosystems and are widely believed to have promoted the evolution of land plants. To establish compatibility with their host, root-associated fungi have evolved diverse colonization strategies with distinct morphological, functional and genomic specializations as well as different degrees of interdependence. They include obligate biotrophic arbuscular mycorrhizal (AM), and facultative biotrophic ectomycorrhizal (ECM) interactions but are not restricted to these well-characterized symbioses. There is growing evidence that root endophytic associations, which due to their inconspicuous nature have been often overlooked, can be of mutualistic nature and represent important players in natural and managed environments. Recent research into the biology and genomics of root associations revealed fascinating insight into the phenotypic and trophic plasticity of these fungi and underlined genomic traits associated with biotrophy and saprotrophy. In this review we will consider the commonalities and differences of AM and ECM associations and contrast them with root endophytes.
Collapse
Affiliation(s)
- Alga Zuccaro
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany; University of Cologne, Botanical Institute, Cluster of Excellence on Plant Science (CEPLAS), Cologne, Germany.
| | - Urs Lahrmann
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Gregor Langen
- Justus Liebig University, Research Centre for Biosystems, Land Use and Nutrition (IFZ), Giessen, Germany
| |
Collapse
|
13
|
Khan AL, Waqas M, Kang SM, Al-Harrasi A, Hussain J, Al-Rawahi A, Al-Khiziri S, Ullah I, Ali L, Jung HY, Lee IJ. Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol 2014; 52:689-95. [PMID: 24994010 DOI: 10.1007/s12275-014-4002-7] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 05/12/2014] [Accepted: 05/14/2014] [Indexed: 11/27/2022]
Abstract
Plant growth promoting endophytic bacteria have been identified as potential growth regulators of crops. Endophytic bacterium, Sphingomonas sp. LK11, was isolated from the leaves of Tephrosia apollinea. The pure culture of Sphingomonas sp. LK11 was subjected to advance chromatographic and spectroscopic techniques to extract and isolate gibberellins (GAs). Deuterated standards of [17, 17-(2)H2]-GA4, [17, 17-(2)H2]-GA9 and [17, 17-(2)H2]-GA20 were used to quantify the bacterial GAs. The analysis of the culture broth of Sphingomonas sp. LK11 revealed the existence of physiologically active gibberellins (GA4: 2.97 ± 0.11 ng/ml) and inactive GA9 (0.98 ± 0.15 ng/ml) and GA20 (2.41 ± 0.23). The endophyte also produced indole acetic acid (11.23 ± 0.93 μM/ml). Tomato plants inoculated with endophytic Sphingomonas sp. LK11 showed significantly increased growth attributes (shoot length, chlorophyll contents, shoot, and root dry weights) compared to the control. This indicated that such phyto-hormones-producing strains could help in increasing crop growth.
Collapse
Affiliation(s)
- Abdul Latif Khan
- Department of Biological Sciences and Chemistry, University of Nizwa, Nizwa, Oman
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Dong S, Tian Z, Chen PJ, Senthil Kumar R, Shen CH, Cai D, Oelmüllar R, Yeh KW. The maturation zone is an important target of Piriformospora indica in Chinese cabbage roots. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4529-40. [PMID: 24006423 PMCID: PMC3808330 DOI: 10.1093/jxb/ert265] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The mutualistic symbiont Piriformospora indica exhibits a great potential in agriculture. The interaction between P. indica and Chinese cabbage (Brassica campestris cv. Chinensis) results in growth and biomass promotion of the host plant and in particular in root hair development. The resulting highly bushy root phenotype of colonized Chinese cabbage seedlings differs substantially from reports of other plant species, which prompted the more detailed study of this symbiosis. A large-scale expressed sequence tag (EST) data set was obtained from a double-subtractive EST library, by subtracting the cDNAs of Chinese cabbage root tissue and of P. indica mycelium from those of P. indica-colonized root tissue. The analysis revealed ~700 unique genes rooted in 141 clusters and 559 singles. A total of 66% of the sequences could be annotated in the NCBI GenBank. Genes which are stimulated by P. indica are involved in various types of transport, carbohydrate metabolism, auxin signalling, cell wall metabolism, and root development, including the root hair-forming phosphoinositide phosphatase 4. For 20 key genes, induction by fungal colonization was confirmed kinetically during the interaction by real-time reverse transcription-PCR. Moreover, the auxin concentration increases transiently after exposure of the roots to P. indica. Microscopic analyses demonstrated that the development of the root maturation zone is the major target of P. indica in Chinese cabbage. Taken together, the symbiotic interaction between Chinese cabbage and P. indica is a novel model to study root growth promotion which, in turn, is important for agriculture and plant biotechnology.
Collapse
Affiliation(s)
- Sheqin Dong
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China
- * These authors contributed equally to this work
| | - Zhihong Tian
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China
- * These authors contributed equally to this work
| | - Peng Jen Chen
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Rajendran Senthil Kumar
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chin Hui Shen
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Daguang Cai
- Institute of Molecular Phytopathology, University of Kiel, Germany
| | - Ralf Oelmüllar
- Department of General Botany and Plant Physiology, Friedrich-Schiller University, Jena, Germany
- To whom correspondence should be addressed. E-mail: or
| | - Kai Wun Yeh
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
- To whom correspondence should be addressed. E-mail: or
| |
Collapse
|