1
|
Liu H, Chong P, Yan S, Liu Z, Bao X, Tan B. Transcriptome and Proteome Association Analysis to Screen Candidate Genes Related to Salt Tolerance in Reaumuria soongorica Leaves under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3542. [PMID: 37896006 PMCID: PMC10609793 DOI: 10.3390/plants12203542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023]
Abstract
This work aims at studying the molecular mechanisms underlying the response of Reaumuria soongorica to salt stress. We used RNA sequencing (RNA-Seq) and Tandem Mass Tag (TMT) techniques to identify differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) in R. soongorica leaves treated with 0, 200, and 500 mM NaCl for 72 h. The results indicated that compared with the 0 mM NaCl treatment group, 2391 and 6400 DEGs were identified in the 200 and 500 mM NaCl treatment groups, respectively, while 47 and 177 DEPs were also identified. Transcriptome and proteome association analysis was further performed on R. soongorica leaves in the 0/500 mM NaCl treatment group, and 32 genes with consistent mRNA and protein expression trends were identified. SYP71, CS, PCC13-62, PASN, ZIFL1, CHS2, and other differential genes are involved in photosynthesis, vesicle transport, auxin transport, and other functions of plants, and might play a key role in the salt tolerance of R. soongorica. In this study, transcriptome and proteome association techniques were used to screen candidate genes associated with salt tolerance in R. soongorica, which provides an important theoretical basis for understanding the molecular mechanism of salt tolerance in R. soongorica and breeding high-quality germplasm resources.
Collapse
Affiliation(s)
- Hanghang Liu
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (H.L.); (Z.L.); (X.B.); (B.T.)
| | - Peifang Chong
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (H.L.); (Z.L.); (X.B.); (B.T.)
| | - Shipeng Yan
- School of Forestry Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China;
| | - Zehua Liu
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (H.L.); (Z.L.); (X.B.); (B.T.)
| | - Xinguang Bao
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (H.L.); (Z.L.); (X.B.); (B.T.)
| | - Bingbing Tan
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (H.L.); (Z.L.); (X.B.); (B.T.)
| |
Collapse
|
2
|
Arruebarrena Di Palma A, Perk EA, Carboni ME, García‐Mata C, Budak H, Tör M, Laxalt AM. The isothiocyanate sulforaphane induces respiratory burst oxidase homologue D-dependent reactive oxygen species production and regulates expression of stress response genes. PLANT DIRECT 2022; 6:e437. [PMID: 36091879 PMCID: PMC9448665 DOI: 10.1002/pld3.437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/15/2022] [Accepted: 07/31/2022] [Indexed: 05/28/2023]
Abstract
Sulforaphane (SFN) is an isothiocyanate-type phytomolecule present in crucifers, which is mainly synthesized in response to biotic stress. In animals, SFN incorporated in the diet has anticancer properties among others. The mechanism of action and signaling are well described in animals; however, little is known in plants. The goal in the present study is to elucidate components of the SFN signaling pathway, particularly the production of reactive oxygen species (ROS), and its effect on the transcriptome. Our results showed that in Arabidopsis, SFN causes ROS production exclusively through the action of the NADPH oxidase RBOH isoform D that requires calcium as a signaling component for the ROS production. To add to this, we also analyzed the effect of SFN on the transcriptome by RNAseq. We observed the highest expression increase for heat shock proteins (HSP) genes and also for genes associated with the response to oxidative stress. The upregulation of several genes linked to the biotic stress response confirms the interplay between SFN and this stress. In addition, SFN increases the levels of transcripts related to the response to abiotic stress, as well as phytohormones. Taken together, these results indicate that SFN induces an oxidative burst leading to signaling events. This oxidative burst may cause the increase of the expression of genes such as heat shock proteins to restore cellular homeostasis and genes that codify possible components of the signaling pathway and putative effectors.
Collapse
Affiliation(s)
| | - Enzo A. Perk
- Instituto de Investigaciones BiológicasCONICET ‐ Universidad Nacional de Mar del PlataMar del PlataArgentina
| | - Martín E. Carboni
- Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICETBuenos AiresArgentina
| | - Carlos García‐Mata
- Instituto de Investigaciones BiológicasCONICET ‐ Universidad Nacional de Mar del PlataMar del PlataArgentina
| | | | - Mahmut Tör
- Department of Biology, School of Science and the EnvironmentUniversity of WorcesterWorcesterUK
| | - Ana M. Laxalt
- Instituto de Investigaciones BiológicasCONICET ‐ Universidad Nacional de Mar del PlataMar del PlataArgentina
| |
Collapse
|
3
|
Meena V, Sharma S, Kaur G, Singh B, Pandey AK. Diverse Functions of Plant Zinc-Induced Facilitator-like Transporter for Their Emerging Roles in Crop Trait Enhancement. PLANTS 2021; 11:plants11010102. [PMID: 35009105 PMCID: PMC8747725 DOI: 10.3390/plants11010102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022]
Abstract
The major facilitator superfamily (MFS) is a large and diverse group of secondary transporters found across all kingdoms of life. Zinc-induced facilitator-like (ZIFL) transporters are the MFS family members that function as exporters driven by the antiporter-dependent processes. The presence of multiple ZIFL transporters was shown in various plant species, as well as in bryophytes. However, only a few ZIFLs have been functionally characterized in plants, and their localization has been suggested to be either on tonoplast or at the plasma membrane. A subset of the plant ZIFLs were eventually characterized as transporters due to their specialized role in phytosiderophores efflux and auxin homeostasis, and they were also proven to impart tolerance to micronutrient deficiency. The emerging functions of ZIFL proteins highlight their role in addressing important traits in crop species. This review aims to provide insight into and discuss the importance of plant ZIFL in various tissue-specific functions. Furthermore, a spotlight is placed on their role in mobilizing essential micronutrients, including iron and zinc, from the rhizosphere to support plant survival. In conclusion, in this paper, we discuss the functional redundancy of ZIFL transporters to understand their roles in developing specific traits in crop.
Collapse
Affiliation(s)
- Varsha Meena
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar 140306, India; (V.M.); (S.S.); (G.K.)
- Regional Centre for Biotechnology, Faridabad 121001, India
| | - Shivani Sharma
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar 140306, India; (V.M.); (S.S.); (G.K.)
| | - Gazaldeep Kaur
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar 140306, India; (V.M.); (S.S.); (G.K.)
| | - Bhupinder Singh
- Centre for Environment Science and Climate Resilient Agriculture, ICAR-IARI, New Delhi 110002, India;
| | - Ajay Kumar Pandey
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar 140306, India; (V.M.); (S.S.); (G.K.)
- Correspondence: or ; Tel.: +91-1724990124
| |
Collapse
|
4
|
Liu L, Tang Z, Liu F, Mao F, Yujuan G, Wang Z, Zhao X. Normal, novel or none: versatile regulation from alternative splicing. PLANT SIGNALING & BEHAVIOR 2021; 16:1917170. [PMID: 33882794 PMCID: PMC8205018 DOI: 10.1080/15592324.2021.1917170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Pre-mRNA splicing is a vital step in the posttranscriptional regulation of gene expression. Splicing is catalyzed by the spliceosome, a multidalton RNA-protein complex, through two successive transesterifications to yield mature mRNAs. In Arabidopsis, more than 61% of all transcripts from intron-containing genes are alternatively spliced, thereby resulting in transcriptome and subsequent proteome diversities for cellular processes. Moreover, it is estimated that more alternative splicing (AS) events induced by adverse stimuli occur to confer stress tolerance. Recently, increasing AS variants encoding normal or novel proteins, or degraded by nonsense-mediated decay (NMD) and their corresponding splicing factors or regulators acting at the posttranscriptional level have been functionally characterized. This review comprehensively summarizes and highlights the advances in our understanding of the biological functions and underlying mechanisms of AS events and their regulators in Arabidopsis and provides prospects for further research on AS in crops.
Collapse
Affiliation(s)
- Lei Liu
- Jiangsu Key Laboratory for Eco-agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’anChina
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’anChina
| | - Ziwei Tang
- Jiangsu Key Laboratory for Eco-agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’anChina
| | - Fuxia Liu
- Jiangsu Key Laboratory for Eco-agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’anChina
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’anChina
| | - Feng Mao
- Jiangsu Key Laboratory for Eco-agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’anChina
| | - Gu Yujuan
- Jiangsu Key Laboratory for Eco-agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’anChina
| | - Zhijuan Wang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, WuhanChina
| | - Xiangxiang Zhao
- Jiangsu Key Laboratory for Eco-agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huai’anChina
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environment Protection, Huaiyin Normal University, Huai’anChina
| |
Collapse
|
5
|
Zhang S, Tajima H, Nambara E, Blumwald E, Bassil E. Auxin Homeostasis and Distribution of the Auxin Efflux Carrier PIN2 Require Vacuolar NHX-Type Cation/H + Antiporter Activity. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1311. [PMID: 33023035 PMCID: PMC7601841 DOI: 10.3390/plants9101311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/17/2020] [Accepted: 09/29/2020] [Indexed: 11/24/2022]
Abstract
The Arabidopsis vacuolar Na+/H+ transporters (NHXs) are important regulators of intracellular pH, Na+ and K+ homeostasis and necessary for normal plant growth, development, and stress acclimation. Arabidopsis contains four vacuolar NHX isoforms known as AtNHX1 to AtNHX4. The quadruple knockout nhx1nhx2nhx3nhx4, lacking any vacuolar NHX-type antiporter activity, displayed auxin-related phenotypes including loss of apical dominance, reduced root growth, impaired gravitropism and less sensitivity to exogenous IAA and NAA, but not to 2,4-D. In nhx1nhx2nhx3nhx4, the abundance of the auxin efflux carrier PIN2, but not PIN1, was drastically reduced at the plasma membrane and was concomitant with an increase in PIN2 labeled intracellular vesicles. Intracellular trafficking to the vacuole was also delayed in the mutant. Measurements of free IAA content and imaging of the auxin sensor DII-Venus, suggest that auxin accumulates in root tips of nhx1nhx2nhx3nhx4. Collectively, our results indicate that vacuolar NHX dependent cation/H+ antiport activity is needed for proper auxin homeostasis, likely by affecting intracellular trafficking and distribution of the PIN2 efflux carrier.
Collapse
Affiliation(s)
- Shiqi Zhang
- Boyce Thompson Institute, Ithaca, NY 14850, USA;
| | - Hiromi Tajima
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (H.T.); (E.B.)
| | - Eiji Nambara
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 1A1, Canada;
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (H.T.); (E.B.)
| | - Elias Bassil
- Horticultural Sciences Department, Tropical Research and Education Center, University of Florida, Homestead, FL 33031, USA
| |
Collapse
|
6
|
Mirdar Mansuri R, Shobbar ZS, Babaeian Jelodar N, Ghaffari MR, Nematzadeh GA, Asari S. Dissecting molecular mechanisms underlying salt tolerance in rice: a comparative transcriptional profiling of the contrasting genotypes. RICE (NEW YORK, N.Y.) 2019; 12:13. [PMID: 30830459 PMCID: PMC6399358 DOI: 10.1186/s12284-019-0273-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/22/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Salinity expansion in arable land is a threat to crop plants. Rice is the staple food crop across several countries worldwide; however, its salt sensitive nature severely affects its growth under excessive salinity. FL478 is a salt tolerant indica recombinant inbred line, which can be a good source of salt tolerance at the seedling stage in rice. To learn about the genetic basis of its tolerance to salinity, we compared transcriptome profiles of FL478 and its sensitive parent (IR29) using RNA-seq technique. RESULTS A total of 1714 and 2670 genes were found differentially expressed (DEGs) under salt stress compared to normal conditions in FL478 and IR29, respectively. Gene ontology analysis revealed the enrichment of transcripts involved in salinity response, regulation of gene expression, and transport in both genotypes. Comparative transcriptome analysis revealed that 1063 DEGs were co-expressed, while 338/252 and 572/908 DEGs were exclusively up/down-regulated in FL478 and IR29, respectively. Further, some biological processes (e.g. iron ion transport, response to abiotic stimulus, and oxidative stress) and molecular function terms (e.g. zinc ion binding and cation transmembrane transporter activity) were specifically enriched in FL478 up-regulated transcripts. Based on the metabolic pathways analysis, genes encoding transport and major intrinsic proteins transporter superfamily comprising aquaporin subfamilies and genes involved in MAPK signaling and signaling receptor kinases were specifically enriched in FL478. A total of 1135 and 1894 alternative splicing events were identified in transcripts of FL478 and IR29, respectively. Transcripts encoding two potassium transporters and two major facilitator family transporters were specifically up-regulated in FL478 under salt stress but not in the salt sensitive genotype. Remarkably, 11 DEGs were conversely regulated in the studied genotypes; for example, OsZIFL, OsNAAT, OsGDSL, and OsELIP genes were up-regulated in FL478, while they were down-regulated in IR29. CONCLUSIONS The achieved results suggest that FL478 employs more efficient mechanisms (especially in signal transduction of salt stress, influx and transport of k+, ionic and osmotic homeostasis, as well as ROS inhibition) to respond to the salt stress compared to its susceptible parent.
Collapse
Affiliation(s)
- Raheleh Mirdar Mansuri
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), PO Box 31535-1897, Karaj, Iran
- Department of Plant breeding and Biotechnology, Faculty of Crop Science, Sari Agricultural Science and Natural Resources University, Sari, Mazandaran, 578, Iran
| | - Zahra-Sadat Shobbar
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), PO Box 31535-1897, Karaj, Iran.
| | - Nadali Babaeian Jelodar
- Department of Plant breeding and Biotechnology, Faculty of Crop Science, Sari Agricultural Science and Natural Resources University, Sari, Mazandaran, 578, Iran
| | - Mohammad Reza Ghaffari
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), PO Box 31535-1897, Karaj, Iran
| | - Ghorban-Ali Nematzadeh
- Department of Plant breeding and Biotechnology, Faculty of Crop Science, Sari Agricultural Science and Natural Resources University, Sari, Mazandaran, 578, Iran
| | - Saeedeh Asari
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), PO Box 31535-1897, Karaj, Iran
| |
Collapse
|
7
|
Remy E, Cabrito TR, Batista RA, Teixeira MC, Sá-Correia I, Duque P. The Major Facilitator Superfamily Transporter ZIFL2 Modulates Cesium and Potassium Homeostasis in Arabidopsis. ACTA ACUST UNITED AC 2014; 56:148-62. [DOI: 10.1093/pcp/pcu157] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
8
|
Remy E, Duque P. Beyond cellular detoxification: a plethora of physiological roles for MDR transporter homologs in plants. Front Physiol 2014; 5:201. [PMID: 24910617 PMCID: PMC4038776 DOI: 10.3389/fphys.2014.00201] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/09/2014] [Indexed: 12/31/2022] Open
Abstract
Higher plants possess a multitude of Multiple Drug Resistance (MDR) transporter homologs that group into three distinct and ubiquitous families—the ATP-Binding Cassette (ABC) superfamily, the Major Facilitator Superfamily (MFS), and the Multidrug And Toxic compound Extrusion (MATE) family. As in other organisms, such as fungi, mammals, and bacteria, MDR transporters make a primary contribution to cellular detoxification processes in plants, mainly through the extrusion of toxic compounds from the cell or their sequestration in the central vacuole. This review aims at summarizing the currently available information on the in vivo roles of MDR transporters in plant systems. Taken together, these data clearly indicate that the biological functions of ABC, MFS, and MATE carriers are not restricted to xenobiotic and metal detoxification. Importantly, the activity of plant MDR transporters also mediates biotic stress resistance and is instrumental in numerous physiological processes essential for optimal plant growth and development, including the regulation of ion homeostasis and polar transport of the phytohormone auxin.
Collapse
Affiliation(s)
- Estelle Remy
- Instituto Gulbenkian de Ciência Oeiras, Portugal
| | - Paula Duque
- Instituto Gulbenkian de Ciência Oeiras, Portugal
| |
Collapse
|