1
|
Agarwal K, Mehta SK, Mondal PK. Unveiling nutrient flow-mediated stress in plant roots using an on-chip phytofluidic device. LAB ON A CHIP 2024; 24:3775-3789. [PMID: 38952240 DOI: 10.1039/d4lc00180j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The initial emergence of the primary root from a germinating seed is a pivotal phase that influences a plant's survival. Abiotic factors such as pH, nutrient availability, and soil composition significantly affect root morphology and architecture. Of particular interest is the impact of nutrient flow on thigmomorphogenesis, a response to mechanical stimulation in early root growth, which remains largely unexplored. This study explores the intricate factors influencing early root system development, with a focus on the cooperative correlation between nutrient uptake and its flow dynamics. Using a physiologically as well as ecologically relevant, portable, and cost-effective microfluidic system for the controlled fluid environments offering hydraulic conductivity comparable to that of the soil, this study analyzes the interplay between nutrient flow and root growth post-germination. Emphasizing the relationship between root growth and nitrogen uptake, the findings reveal that nutrient flow significantly influences early root morphology, leading to increased length and improved nutrient uptake, varying with the flow rate. The experimental findings are supported by mechanical and plant stress-related fluid flow-root interaction simulations and quantitative determination of nitrogen uptake using the total Kjeldahl nitrogen (TKN) method. The microfluidic approach offers novel insights into plant root dynamics under controlled flow conditions, filling a critical research gap. By providing a high-resolution platform, this study contributes to the understanding of how fluid-flow-assisted nutrient uptake and pressure affect root cell behavior, which, in turn, induces mechanical stress leading to thigmomorphogenesis. The findings hold implications for comprehending root responses to changing environmental conditions, paving the way for innovative agricultural and environmental management strategies.
Collapse
Affiliation(s)
- Kaushal Agarwal
- School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Sumit Kumar Mehta
- Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, India
| | - Pranab Kumar Mondal
- School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Guwahati-781039, India.
- Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, India
| |
Collapse
|
2
|
Oh J, Choi JW, Jang S, Kim SW, Heo JO, Yoon EK, Kim SH, Lim J. Transcriptional control of hydrogen peroxide homeostasis regulates ground tissue patterning in the Arabidopsis root. FRONTIERS IN PLANT SCIENCE 2023; 14:1242211. [PMID: 37670865 PMCID: PMC10475948 DOI: 10.3389/fpls.2023.1242211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/01/2023] [Indexed: 09/07/2023]
Abstract
In multicellular organisms, including higher plants, asymmetric cell divisions (ACDs) play a crucial role in generating distinct cell types. The Arabidopsis root ground tissue initially has two layers: endodermis (inside) and cortex (outside). In the mature root, the endodermis undergoes additional ACDs to produce the endodermis itself and the middle cortex (MC), located between the endodermis and the pre-existing cortex. In the Arabidopsis root, gibberellic acid (GA) deficiency and hydrogen peroxide (H2O2) precociously induced more frequent ACDs in the endodermis for MC formation. Thus, these findings suggest that GA and H2O2 play roles in regulating the timing and extent of MC formation. However, details of the molecular interaction between GA signaling and H2O2 homeostasis remain elusive. In this study, we identified the PEROXIDASE 34 (PRX34) gene, which encodes a class III peroxidase, as a molecular link to elucidate the interconnected regulatory network involved in H2O2- and GA-mediated MC formation. Under normal conditions, prx34 showed a reduced frequency of MC formation, whereas the occurrence of MC in prx34 was restored to nearly WT levels in the presence of H2O2. Our results suggest that PRX34 plays a role in H2O2-mediated MC production. Furthermore, we provide evidence that SCARECROW-LIKE 3 (SCL3) regulates H2O2 homeostasis by controlling transcription of PRX34 during root ground tissue maturation. Taken together, our findings provide new insights into how H2O2 homeostasis is achieved by SCL3 to ensure correct radial tissue patterning in the Arabidopsis root.
Collapse
Affiliation(s)
- Jiyeong Oh
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Ji Won Choi
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Sejeong Jang
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Seung Woo Kim
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Jung-Ok Heo
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Eun Kyung Yoon
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Soo-Hwan Kim
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Jun Lim
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Cui H. NAC1 goes TOPLESS to manage cortex proliferation. MOLECULAR PLANT 2023; 16:804-805. [PMID: 37016581 DOI: 10.1016/j.molp.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 05/04/2023]
Affiliation(s)
- Hongchang Cui
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
4
|
Xie C, Li C, Wang F, Zhang F, Liu J, Wang J, Zhang X, Kong X, Ding Z. NAC1 regulates root ground tissue maturation by coordinating with the SCR/SHR-CYCD6;1 module in Arabidopsis. MOLECULAR PLANT 2023; 16:709-725. [PMID: 36809880 DOI: 10.1016/j.molp.2023.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/04/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Precise spatiotemporal control of the timing and extent of asymmetric cell divisions (ACDs) is essential for plant development. In the Arabidopsis root, ground tissue maturation involves an additional ACD of the endodermis that maintains the inner cell layer as the endodermis and generates the middle cortex to the outside. Through regulation of the cell cycle regulator CYCLIND6;1 (CYCD6;1), the transcription factors SCARECROW (SCR) and SHORT-ROOT (SHR) play critical roles in this process. In the present study, we found that loss of function of NAC1, a NAC transcription factor family gene, causes markedly increased periclinal cell divisions in the root endodermis. Importantly, NAC1 directly represses the transcription of CYCD6;1 by recruiting the co-repressor TOPLESS (TPL), creating a fine-tuned mechanism to maintain proper root ground tissue patterning by limiting production of middle cortex cells. Biochemical and genetic analyses further showed that NAC1 physically interacts with SCR and SHR to restrict excessive periclinal cell divisions in the endodermis during root middle cortex formation. Although NAC1-TPL is recruited to the CYCD6;1 promoter and represses its transcription in an SCR-dependent manner, NAC1 and SHR antagonize each other to regulate the expression of CYCD6;1. Collectively, our study provides mechanistic insights into how the NAC1-TPL module integrates with the master transcriptional regulators SCR and SHR to control root ground tissue patterning by fine-tuning spatiotemporal expression of CYCD6;1 in Arabidopsis.
Collapse
Affiliation(s)
- Chuantian Xie
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Cuiling Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Fengxia Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Feng Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Jiajia Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Junxia Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Xiansheng Zhang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xiangpei Kong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong 266237, China.
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
5
|
Bagautdinova ZZ, Omelyanchuk N, Tyapkin AV, Kovrizhnykh VV, Lavrekha VV, Zemlyanskaya EV. Salicylic Acid in Root Growth and Development. Int J Mol Sci 2022; 23:ijms23042228. [PMID: 35216343 PMCID: PMC8875895 DOI: 10.3390/ijms23042228] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/18/2022] Open
Abstract
In plants, salicylic acid (SA) is a hormone that mediates a plant’s defense against pathogens. SA also takes an active role in a plant’s response to various abiotic stresses, including chilling, drought, salinity, and heavy metals. In addition, in recent years, numerous studies have confirmed the important role of SA in plant morphogenesis. In this review, we summarize data on changes in root morphology following SA treatments under both normal and stress conditions. Finally, we provide evidence for the role of SA in maintaining the balance between stress responses and morphogenesis in plant development, and also for the presence of SA crosstalk with other plant hormones during this process.
Collapse
Affiliation(s)
- Zulfira Z. Bagautdinova
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Z.Z.B.); (N.O.); (A.V.T.); (V.V.K.); (V.V.L.)
| | - Nadya Omelyanchuk
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Z.Z.B.); (N.O.); (A.V.T.); (V.V.K.); (V.V.L.)
| | - Aleksandr V. Tyapkin
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Z.Z.B.); (N.O.); (A.V.T.); (V.V.K.); (V.V.L.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Vasilina V. Kovrizhnykh
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Z.Z.B.); (N.O.); (A.V.T.); (V.V.K.); (V.V.L.)
| | - Viktoriya V. Lavrekha
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Z.Z.B.); (N.O.); (A.V.T.); (V.V.K.); (V.V.L.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Elena V. Zemlyanskaya
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Z.Z.B.); (N.O.); (A.V.T.); (V.V.K.); (V.V.L.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
6
|
Wang C, Li M, Zhao Y, Liang N, Li H, Li P, Yang L, Xu M, Bian X, Wang M, Wu S, Niu X, Wang M, Li X, Sang Y, Dong W, Wang E, Gallagher KL, Wu S. SHORT-ROOT paralogs mediate feedforward regulation of D-type cyclin to promote nodule formation in soybean. Proc Natl Acad Sci U S A 2022; 119:e2108641119. [PMID: 35022232 PMCID: PMC8784155 DOI: 10.1073/pnas.2108641119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 11/05/2021] [Indexed: 12/02/2022] Open
Abstract
Nitrogen fixation in soybean takes place in root nodules that arise from de novo cell divisions in the root cortex. Although several early nodulin genes have been identified, the mechanism behind the stimulation of cortical cell division during nodulation has not been fully resolved. Here we provide evidence that two paralogs of soybean SHORT-ROOT (GmSHR) play vital roles in soybean nodulation. Expression of GmSHR4 and GmSHR5 (GmSHR4/5) is induced in cortical cells at the beginning of nodulation, when the first cell divisions occur. The expression level of GmSHR4/5 is positively associated with cortical cell division and nodulation. Knockdown of GmSHR5 inhibits cell division in outer cortical layers during nodulation. Knockdown of both paralogs disrupts the cell division throughout the cortex, resulting in poorly organized nodule primordia with delayed vascular tissue formation. GmSHR4/5 function by enhancing cytokinin signaling and activating early nodulin genes. Interestingly, D-type cyclins act downstream of GmSHR4/5, and GmSHR4/5 form a feedforward loop regulating D-type cyclins. Overexpression of D-type cyclins in soybean roots also enhanced nodulation. Collectively, we conclude that the GmSHR4/5-mediated pathway represents a vital module that triggers cytokinin signaling and activates D-type cyclins during nodulation in soybean.
Collapse
Affiliation(s)
- Chunhua Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meng Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yang Zhao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nengsong Liang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haiyang Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pengxue Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liling Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengyuan Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinxin Bian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengxue Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shasha Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xufang Niu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengyao Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinxin Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Sang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wentao Dong
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ertao Wang
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | - Shuang Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
7
|
Fu J, Zhang X, Liu J, Gao X, Bai J, Hao Y, Cui H. A mechanism coordinating root elongation, endodermal differentiation, redox homeostasis and stress response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1029-1039. [PMID: 34056773 DOI: 10.1111/tpj.15361] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Root growth relies on both cell division and cell elongation, which occur in the meristem and elongation zones, respectively. SCARECROW (SCR) and SHORT-ROOT (SHR) are GRAS family genes essential for root growth and radial patterning in the Arabidopsis root. Previous studies showed that SCR and SHR promote root growth by suppressing cytokinin response in the meristem, but there is evidence that SCR expressed beyond the meristem is also required for root growth. Here we report a previously unknown role for SCR in promoting cell elongation. Consistent with this, we found that the scr mutant accumulated a higher level of reactive oxygen species (ROS) in the elongation zone, which is probably due to decreased expression of peroxidase gene 3, which consumes hydrogen peroxide in a reaction leading to Casparian strip formation. When the oxidative stress response was blocked in the scr mutant by mutation in ABSCISIC ACID 2 (ABA2) or when the redox status was ameliorated by the upbeat 1 (upb1) mutant, the root became significantly longer, with longer cells and a larger and more mitotically active meristem. Remarkably, however, the stem cell and radial patterning defects in the double mutants still persisted. Since ROS and peroxidases are essential for endodermal differentiation, these results suggest that SCR plays a role in coordinating cell elongation, endodermal differentiation, redox homeostasis and oxidative stress response in the root. We also provide evidence that this role of SCR is independent of SHR, even though they function similarly in other aspects of root growth and development.
Collapse
Affiliation(s)
- Jing Fu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xinglin Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiaming Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xudong Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Juan Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yueling Hao
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Hongchang Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| |
Collapse
|
8
|
Peralta JM, Travaglia CN, Romero-Puertas MC, Furlan A, Castro S, Bianucci E. Unraveling the impact of arsenic on the redox response of peanut plants inoculated with two different Bradyrhizobium sp. strains. CHEMOSPHERE 2020; 259:127410. [PMID: 32615455 DOI: 10.1016/j.chemosphere.2020.127410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Arsenic (As) can be present naturally in groundwater from peanut fields, constituting a serious problem, as roots can accumulate and mobilize the metalloid to their edible parts. Understanding the redox changes in the legume exposed to As may help to detect potential risks to human health and recognize tolerance mechanisms. Thirty-days old peanut plants inoculated with Bradyrhizobium sp. strains (SEMIA6144 or C-145) were exposed to a realistic arsenate concentration, in order to unravel the redox response and characterize the oxidative stress indexes. Thus, root anatomy, reactive oxygen species detection by fluorescence microscopy and, ROS histochemical staining along with the NADPH oxidase activity were analyzed. Besides, photosynthetic pigments and damage to lipids and proteins were determined as oxidative stress indicators. Results showed that at 3 μM AsV, the cross-section areas of peanut roots were augmented; NADPH oxidase activity was significantly increased and O2˙¯and H2O2 accumulated in leaves and roots. Likewise, an increase in the lipid peroxidation and protein carbonyls was also observed throughout the plant regardless the inoculated strain, while chlorophylls and carotenes were increased only in those inoculated with Bradyrhizobium sp. C-145. Interestingly, the oxidative burst, mainly induced by the NADPH oxidase activity, and the consequent oxidative stress was strain-dependent and organ-differential. Additionally, As modifies the root anatomy, acting as a possibly first defense mechanism against the metalloid entry. All these findings allowed us to conclude that the redox response of peanut is conditioned by the rhizobial strain, which contributes to the importance of effectively formulating bioinoculants for this crop.
Collapse
Affiliation(s)
- Juan Manuel Peralta
- Instituto de Investigaciones Agrobiotecnológicas - Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Ruta 36, Km 601, X5800, Río Cuarto, Córdoba, Argentina; Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008, Granada, Spain
| | - Claudia N Travaglia
- Instituto de Investigaciones Agrobiotecnológicas - Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Ruta 36, Km 601, X5800, Río Cuarto, Córdoba, Argentina
| | - María C Romero-Puertas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008, Granada, Spain
| | - Ana Furlan
- Instituto de Investigaciones Agrobiotecnológicas - Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Ruta 36, Km 601, X5800, Río Cuarto, Córdoba, Argentina
| | - Stella Castro
- Instituto de Investigaciones Agrobiotecnológicas - Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Ruta 36, Km 601, X5800, Río Cuarto, Córdoba, Argentina
| | - Eliana Bianucci
- Instituto de Investigaciones Agrobiotecnológicas - Consejo Nacional de Investigaciones Científicas y Técnicas (INIAB-CONICET), Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Ruta 36, Km 601, X5800, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
9
|
Chen WQ, Drapek C, Li DX, Xu ZH, Benfey PN, Bai SN. Histone Deacetylase HDA19 Affects Root Cortical Cell Fate by Interacting with SCARECROW. PLANT PHYSIOLOGY 2019; 180:276-288. [PMID: 30737268 PMCID: PMC6501111 DOI: 10.1104/pp.19.00056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/27/2019] [Indexed: 05/27/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) root epidermis is a simple model for investigating cell fate specification and pattern formation. In addition to regulatory networks consisting of transcription factors, histone deacetylases are also involved in the formation of cellular patterns. Here, we report thatHistone Deacetylase19 (HDA19) affects the root epidermal cellular pattern through regulation of cortical cell fate by interacting with SCARECROW (SCR). HDA19 binds to the DNA sequence upstream of SCR, as well as to those of several of SCR's target genes, and regulates their expression. Mutant lines of several SCR target genes show impaired patterns of epidermal differentiation and cortical cell division, similar to that of hda19 This work presents HDA19 and SCR as two further players in the regulation of cortical and epidermal cell specification and describes an additional function for SCR.
Collapse
Affiliation(s)
- Wen-Qian Chen
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Colleen Drapek
- Department of Biology and Howard Hughes Medical Institute, Duke University, Durham, North Carolina 27708
| | - Dong-Xu Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zhi-Hong Xu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Philip N Benfey
- Department of Biology and Howard Hughes Medical Institute, Duke University, Durham, North Carolina 27708
| | - Shu-Nong Bai
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
Hao Y, Ma C, Zhang Z, Song Y, Cao W, Guo J, Zhou G, Rui Y, Liu L, Xing B. Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 232:123-136. [PMID: 28947315 DOI: 10.1016/j.envpol.2017.09.024] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/14/2017] [Accepted: 09/09/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study was to compare the toxicity effects of carbon nanomaterials (CNMs), namely fullerene (C60), reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs), on a mini-ecosystem of rice grown in a loamy potted soil. We measured plant physiological and biochemical parameters and examined bacterial community composition in the CNMs-treated plant-soil system. After 30 days of exposure, all the three CNMs negatively affected the shoot height and root length of rice, significantly decreased root cortical cells diameter and resulted in shrinkage and deformation of cells, regardless of exposure doses (50 or 500 mg/kg). Additionally, at the high exposure dose of CNM, the concentrations of four phytohormones, including auxin, indoleacetic acid, brassinosteroid and gibberellin acid 4 in rice roots significantly increased as compared to the control. At the high exposure dose of MWCNTs and C60, activities of the antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD) in roots increased significantly. High-throughput sequencing showed that three typical CNMs had little effect on shifting the predominant soil bacterial species, but the presence of CNMs significantly altered the composition of the bacterial community. Our results indicate that different CNMs indeed resulted in environmental toxicity to rice and soil bacterial community in the rhizosphere and suggest that CNMs themselves and their incorporated products should be reasonably used to control their release/discharge into the environment to prevent their toxic effects on living organisms and the potential risks to food safety.
Collapse
Affiliation(s)
- Yi Hao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Chuanxin Ma
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA 01003, United States; Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Zetian Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Youhong Song
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Weidong Cao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Beijing 100081, China
| | - Jing Guo
- Dow Pharma and Food Solution, The Dow Chemical Company, 1801 Larkin Center Dr. Midland, MI 48642, United States
| | - Guopeng Zhou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Beijing 100081, China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Stockbridge School of Agriculture, University of Massachusetts Amherst, MA 01003, United States.
| | - Liming Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA 01003, United States
| |
Collapse
|
11
|
Choi JW, Lim J. Control of Asymmetric Cell Divisions during Root Ground Tissue Maturation. Mol Cells 2016; 39:524-9. [PMID: 27306644 PMCID: PMC4959016 DOI: 10.14348/molcells.2016.0105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 12/13/2022] Open
Abstract
Controlling the production of diverse cell/tissue types is essential for the development of multicellular organisms such as animals and plants. The Arabidopsis thaliana root, which contains distinct cells/tissues along longitudinal and radial axes, has served as an elegant model to investigate how genetic programs and environmental signals interact to produce different cell/tissue types. In the root, a series of asymmetric cell divisions (ACDs) give rise to three ground tissue layers at maturity (endodermis, middle cortex, and cortex). Because the middle cortex is formed by a periclinal (parallel to the axis) ACD of the endodermis around 7 to 14 days post-germination, middle cortex formation is used as a parameter to assess maturation of the root ground tissue. Molecular, genetic, and physiological studies have revealed that the control of the timing and extent of middle cortex formation during root maturation relies on the interaction of plant hormones and transcription factors. In particular, abscisic acid and gibberellin act synergistically to regulate the timing and extent of middle cortex formation, unlike their typical antagonism. The SHORT-ROOT, SCARECROW, SCARECROW-LIKE 3, and DELLA transcription factors, all of which belong to the plant-specific GRAS family, play key roles in the regulation of middle cortex formation. Recently, two additional transcription factors, SEUSS and GA- AND ABA-RESPONSIVE ZINC FINGER, have also been characterized during ground tissue maturation. In this review, we provide a detailed account of the regulatory networks that control the timing and extent of middle cortex formation during post-embryonic root development.
Collapse
Affiliation(s)
- Ji Won Choi
- Department of Systems Biotechnology, Konkuk University, Seoul 05029,
Korea
| | - Jun Lim
- Department of Systems Biotechnology, Konkuk University, Seoul 05029,
Korea
| |
Collapse
|
12
|
Cui H. Middle Cortex Formation in the Root: An Emerging Picture of Integrated Regulatory Mechanisms. MOLECULAR PLANT 2016; 9:771-773. [PMID: 27212386 DOI: 10.1016/j.molp.2016.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/12/2016] [Accepted: 05/15/2016] [Indexed: 06/05/2023]
Affiliation(s)
- Hongchang Cui
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
13
|
Lee SA, Jang S, Yoon EK, Heo JO, Chang KS, Choi JW, Dhar S, Kim G, Choe JE, Heo JB, Kwon C, Ko JH, Hwang YS, Lim J. Interplay between ABA and GA Modulates the Timing of Asymmetric Cell Divisions in the Arabidopsis Root Ground Tissue. MOLECULAR PLANT 2016; 9:870-84. [PMID: 26970019 DOI: 10.1016/j.molp.2016.02.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 02/14/2016] [Accepted: 02/23/2016] [Indexed: 05/21/2023]
Abstract
In multicellular organisms, controlling the timing and extent of asymmetric cell divisions (ACDs) is crucial for correct patterning. During post-embryonic root development in Arabidopsis thaliana, ground tissue (GT) maturation involves an additional ACD of the endodermis, which generates two different tissues: the endodermis (inner) and the middle cortex (outer). It has been reported that the abscisic acid (ABA) and gibberellin (GA) pathways are involved in middle cortex (MC) formation. However, the molecular mechanisms underlying the interaction between ABA and GA during GT maturation remain largely unknown. Through transcriptome analyses, we identified a previously uncharacterized C2H2-type zinc finger gene, whose expression is regulated by GA and ABA, thus named GAZ (GA- AND ABA-RESPONSIVE ZINC FINGER). Seedlings ectopically overexpressing GAZ (GAZ-OX) were sensitive to ABA and GA during MC formation, whereas GAZ-SRDX and RNAi seedlings displayed opposite phenotypes. In addition, our results indicated that GAZ was involved in the transcriptional regulation of ABA and GA homeostasis. In agreement with previous studies that ABA and GA coordinate to control the timing of MC formation, we also confirmed the unique interplay between ABA and GA and identified factors and regulatory networks bridging the two hormone pathways during GT maturation of the Arabidopsis root.
Collapse
Affiliation(s)
- Shin Ae Lee
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Sejeong Jang
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Eun Kyung Yoon
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Jung-Ok Heo
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Kwang Suk Chang
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Ji Won Choi
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Souvik Dhar
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Gyuree Kim
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Jeong-Eun Choe
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Jae Bok Heo
- Department of Molecular Biotechnology, Dong-A University, Busan 49201, Korea
| | - Chian Kwon
- Department of Molecular Biology, Dankook University, Yongin 16890, Korea
| | - Jae-Heung Ko
- Department of Plant and Environmental New Resources, Kyung Hee University, Yongin 17104, Korea
| | - Yong-Sic Hwang
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Jun Lim
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
14
|
Cui H, Kong D, Wei P, Hao Y, Torii KU, Lee JS, Li J. SPINDLY, ERECTA, and its ligand STOMAGEN have a role in redox-mediated cortex proliferation in the Arabidopsis root. MOLECULAR PLANT 2014; 7:1727-39. [PMID: 25267734 PMCID: PMC4261839 DOI: 10.1093/mp/ssu106] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Reactive oxygen species (ROS) are harmful to all living organisms and therefore they must be removed to ensure normal growth and development. ROS are also signaling molecules, but so far little is known about the mechanisms of ROS perception and developmental response in plants. We here report that hydrogen peroxide induces cortex proliferation in the Arabidopsis root and that SPINDLY (SPY), an O-linked glucosamine acetyltransferase, regulates cortex proliferation by maintaining cellular redox homeostasis. We also found that mutation in the leucine-rich receptor kinase ERECTA and its putative peptide ligand STOMAGEN block the effect of hydrogen peroxide on root cortex proliferation. However, ERECTA and STOMAGEN are expressed in the vascular tissue, whereas extra cortex cells are produced from the endodermis, suggesting the involvement of intercellular signaling. SPY appears to act downstream of ERECTA, because the spy mutation still caused cortex proliferation in the erecta mutant background. We therefore have not only gained insight into the mechanism by which SPY regulates root development but also uncovered a novel pathway for ROS signaling in plants. The importance of redox-mediated cortex proliferation as a protective mechanism against oxidative stress is also discussed.
Collapse
Affiliation(s)
- Hongchang Cui
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| | - Danyu Kong
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| | - Pengcheng Wei
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA Present address: Biotechnical Group, Institute of Rice Research, Anhui Agricultural Academy of Science, 40#, Nongke South Road, Hefei, Anhui, 230031, China
| | - Yueling Hao
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| | - Keiko U Torii
- Howard Hughes Medical Institute, Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Jin Suk Lee
- Howard Hughes Medical Institute, Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Jie Li
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| |
Collapse
|
15
|
Gu J, Xu Y, Dong X, Wang H, Wang Z. Root diameter variations explained by anatomy and phylogeny of 50 tropical and temperate tree species. TREE PHYSIOLOGY 2014; 34:415-25. [PMID: 24695727 DOI: 10.1093/treephys/tpu019] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Root diameter, a critical indicator of root physiological function, varies greatly among tree species, but the underlying mechanism of this high variability is unclear. Here, we sampled 50 tree species across tropical and temperate zones in China, and measured root morphological and anatomical traits along the first five branch orders in each species. Our objectives were (i) to reveal the relationships between root diameter, cortical thickness and stele diameter among tree species in tropical and temperate forests, and (ii) to investigate the relationship of both root morphological and anatomical traits with divergence time during species radiation. The results showed that root diameter was strongly affected by cortical thickness but less by stele diameter in both tropical and temperate species. Changes in cortical thickness explained over 90% of variation in root diameter for the first order, and ∼74-87% for the second and third orders. Thicker roots displayed greater cortical thickness and more cortical cell layers than thinner roots. Phylogenetic analysis demonstrated that root diameter, cortical thickness and number of cortical cell layers significantly correlated with divergence time at the family level, showing similar variation trends in geological time. The results also suggested that trees tend to decrease their root cortical thickness rather than stele diameter during species radiation. The close linkage of variations in root morphology and anatomy to phylogeny as demonstrated by the data from the 50 tree species should provide some insights into the mechanism of root diameter variability among tree species.
Collapse
Affiliation(s)
- Jiacun Gu
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | | | | | | | | |
Collapse
|
16
|
Pauluzzi G, Divol F, Puig J, Guiderdoni E, Dievart A, Périn C. Surfing along the root ground tissue gene network. Dev Biol 2012; 365:14-22. [PMID: 22349629 DOI: 10.1016/j.ydbio.2012.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 01/31/2012] [Accepted: 02/06/2012] [Indexed: 11/19/2022]
Abstract
Organization of tissues in Arabidopsis thaliana root is made of, from outside in, epidermis, cortex, middle cortex, endodermis, pericycle and vascular tissues. Cortex, middle cortex and endodermis form the ground tissue (GT) system. Functional and molecular characterization of GT patterning mutants' properties has greatly increased our understanding of fundamental processes of plant root development. These studies have demonstrated GT is an elegant model that can be used to study how different cell types and cell fates are specified. This review analyzes GT mutants to provide a detailed account of the molecular network that regulates GT formation in A. thaliana. The most recent results indicate an unexpectedly complex network of transcription factors, epigenetic and hormonal controls that play crucial roles in GT development. Major differences exist between GT formation in dicots and monocots, particularly in the model plant rice, opening the way for evo-devo of GT formation in angiosperm. In rice, adaptation to submergence relies on a multilayered cortex. Moreover, variation in the number of cortex cell layers is also observed between the five root types. A mechanism of control for cortical cell number should then exist in rice and it remains to be determined if any of the Arabidopsis thaliana identified GT network members are also involved in this process in rice. Alternatively, a totally different network may have been invented. However, first available results suggest functional conservation in rice of at least two transcription factors, SHORT ROOT (SHR) and SCARECROW (SCR), involved in ground tissue formation in Arabidopsis.
Collapse
Affiliation(s)
- G Pauluzzi
- CIRAD, UMR AGAP, F-34398 Montpellier, France
| | | | | | | | | | | |
Collapse
|
17
|
Vielba JM, Díaz-Sala C, Ferro E, Rico S, Lamprecht M, Abarca D, Ballester A, Sánchez C. CsSCL1 is differentially regulated upon maturation in chestnut microshoots and is specifically expressed in rooting-competent cells. TREE PHYSIOLOGY 2011; 31:1152-60. [PMID: 21964478 DOI: 10.1093/treephys/tpr086] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The Castanea sativa SCL1 gene (CsSCL1) has previously been shown to be induced by auxin during adventitious root (AR) formation in rooting-competent microshoots. However, its expression has not previously been analyzed in rooting-incompetent shoots. This study focuses on the regulation of CsSCL1 during maturation and the role of the gene in the formation of AR. The expression of CsSCL1 in rooting-incompetent microshoots and other tissues was investigated by quantitative reverse transcriptase--polymerase chain reaction. The analysis was complemented by in situ hybridization of the basal segments of rooting-competent and --incompetent microshoots during AR induction, as well as in AR and lateral roots. It was found that CsSCL1 is upregulated by auxin in a cell-type- and phase-dependent manner during the induction of AR. In root-forming shoots, CsSCL1 mRNA was specifically located in the cambial zone and derivative cells, which are rooting-competent cells, whereas in rooting-incompetent shoots the hybridization signal was more diffuse and evenly distributed through the phloem and parenchyma. CsSCL1 expression was also detected in lateral roots and axillary buds. The different CsSCL1 expression patterns in rooting-competent and -incompetent microshoots, together with the specific location of transcripts in cell types involved in root meristem initiation and in the root primordia of AR and lateral roots, indicate an important role for the gene in determining whether certain cells will enter the root differentiation pathway and its involvement in meristem maintenance.
Collapse
Affiliation(s)
- Jesús M Vielba
- Department of Plant Physiology, Instituto de Investigaciones Agrobiológicas de Galicia (IIAG-CSIC), Apartado 122, 15780 Santiago de Compostela, Spain
| | | | | | | | | | | | | | | |
Collapse
|