1
|
Hochmal AK, Schulze S, Trompelt K, Hippler M. Calcium-dependent regulation of photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:993-1003. [PMID: 25687895 DOI: 10.1016/j.bbabio.2015.02.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/05/2015] [Accepted: 02/07/2015] [Indexed: 01/03/2023]
Abstract
The understanding of calcium as a second messenger in plants has been growing intensively over the last decades. Recently, attention has been drawn to the organelles, especially the chloroplast but focused on the stromal Ca2+ transients in response to environmental stresses. Herein we will expand this view and discuss the role of Ca2+ in photosynthesis. Moreover we address of how Ca2+ is delivered to chloroplast stroma and thylakoids. Thereby, new light is shed on the regulation of photosynthetic electron flow and light-dependent metabolism by the interplay of Ca2+, thylakoid acidification and redox status. This article is part of a Special Issue entitled: Chloroplast biogenesis.
Collapse
Affiliation(s)
- Ana Karina Hochmal
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany
| | - Stefan Schulze
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany
| | - Kerstin Trompelt
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany.
| |
Collapse
|
2
|
Nomura H, Shiina T. Calcium signaling in plant endosymbiotic organelles: mechanism and role in physiology. MOLECULAR PLANT 2014; 7:1094-1104. [PMID: 24574521 DOI: 10.1093/mp/ssu020] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Recent studies have demonstrated that chloroplasts and mitochondria evoke specific Ca(2+) signals in response to biotic and abiotic stresses in a stress-dependent manner. The identification of Ca(2+) transporters and Ca(2+) signaling molecules in chloroplasts and mitochondria implies that they play roles in controlling not only intra-organellar functions, but also extra-organellar processes such as plant immunity and stress responses. It appears that organellar Ca(2+) signaling might be more important to plant cell functions than previously thought. This review briefly summarizes what is known about the molecular basis of Ca(2+) signaling in plant mitochondria and chloroplasts.
Collapse
Affiliation(s)
- Hironari Nomura
- Department of Health and Nutrition, Gifu Women's University, 80 Taromaru, Gifu 501-2592, Japan
| | - Takashi Shiina
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku Kyoto 606-8522, Japan
| |
Collapse
|
3
|
Cheemadan S, Ramadoss R, Bozdech Z. Role of calcium signaling in the transcriptional regulation of the apicoplast genome of Plasmodium falciparum. BIOMED RESEARCH INTERNATIONAL 2014; 2014:869401. [PMID: 24877144 PMCID: PMC4022301 DOI: 10.1155/2014/869401] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/17/2014] [Accepted: 02/17/2014] [Indexed: 12/19/2022]
Abstract
Calcium is a universal second messenger that plays an important role in regulatory processes in eukaryotic cells. To understand calcium-dependent signaling in malaria parasites, we analyzed transcriptional responses of Plasmodium falciparum to two calcium ionophores (A23187 and ionomycin) that cause redistribution of intracellular calcium within the cytoplasm. While ionomycin induced a specific transcriptional response defined by up- or downregulation of a narrow set of genes, A23187 caused a developmental arrest in the schizont stage. In addition, we observed a dramatic decrease of mRNA levels of the transcripts encoded by the apicoplast genome during the exposure of P. falciparum to both calcium ionophores. Neither of the ionophores caused any disruptions to the DNA replication or the overall apicoplast morphology. This suggests that the mRNA downregulation reflects direct inhibition of the apicoplast gene transcription. Next, we identify a nuclear encoded protein with a calcium binding domain (EF-hand) that is localized to the apicoplast. Overexpression of this protein (termed PfACBP1) in P. falciparum cells mediates an increased resistance to the ionophores which suggests its role in calcium-dependent signaling within the apicoplast. Our data indicate that the P. falciparum apicoplast requires calcium-dependent signaling that involves a novel protein PfACBP1.
Collapse
Affiliation(s)
- Sabna Cheemadan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Ramya Ramadoss
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
4
|
Rocha AG, Vothknecht UC. The role of calcium in chloroplasts--an intriguing and unresolved puzzle. PROTOPLASMA 2012; 249:957-66. [PMID: 22227834 DOI: 10.1007/s00709-011-0373-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 12/19/2011] [Indexed: 05/24/2023]
Abstract
More than 70 years of studies have indicated that chloroplasts contain a significant amount of calcium, are a potential storage compartment for this ion, and might themselves be prone to calcium regulation. Many of these studies have been performed on the photosynthetic light reaction as well as CO(2) fixation via the Calvin-Benson-Bassham cycle, and they showed that calcium is required in several steps of these processes. Further studies have indicated that calcium is involved in other chloroplast functions that are not directly related to photosynthesis and that there is a calcium-dependent regulation similar to cytoplasmic calcium signal transduction. Nevertheless, the precise role that calcium has as a functional and regulatory component of chloroplast processes remains enigmatic. Calcium concentrations in different chloroplast subcompartments have been measured, but the extent and direction of intra-plastidal calcium fluxes or calcium transport into and from the cytosol are not yet very well understood. In this review we want to give an overview over the current knowledge on the relationship between chloroplasts and calcium and discuss questions that need to be addressed in future research.
Collapse
Affiliation(s)
- Agostinho G Rocha
- Department of Biology I, Botany, LMU Munich, Grosshaderner Str. 2-4, 82152, Planegg-Martinsried, Germany
| | | |
Collapse
|
5
|
Mehlmer N, Parvin N, Hurst CH, Knight MR, Teige M, Vothknecht UC. A toolset of aequorin expression vectors for in planta studies of subcellular calcium concentrations in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1751-61. [PMID: 22213817 PMCID: PMC3971373 DOI: 10.1093/jxb/err406] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Calcium has long been acknowledged as one of the most important signalling components in plants. Many abiotic and biotic stimuli are transduced into a cellular response by temporal and spatial changes in cellular calcium concentration and the calcium-sensitive protein aequorin has been exploited as a genetically encoded calcium indicator for the measurement of calcium in planta. The objective of this work was to generate a compatible set of aequorin expression plasmids for the generation of transgenic plant lines to measure changes in calcium levels in different cellular subcompartments. Aequorin was fused to different targeting peptides or organellar proteins as a means to localize it to the cytosol, the nucleus, the plasma membrane, and the mitochondria. Furthermore, constructs were designed to localize aequorin in the stroma as well as the inner and outer surface of the chloroplast envelope membranes. The modular set-up of the plasmids also allows the easy replacement of targeting sequences to include other compartments. An additional YFP-fusion was included to verify the correct subcellular localization of all constructs by laser scanning confocal microscopy. For each construct, pBin19-based binary expression vectors driven by the 35S or UBI10 promoter were made for Agrobacterium-mediated transformation. Stable Arabidopsis lines were generated and initial tests of several lines confirmed their feasibility to measure calcium signals in vivo.
Collapse
Affiliation(s)
- Norbert Mehlmer
- Department of Biology I, Botany, LMU Munich, Großhaderner Str. 2-4, D-82152 Planegg, Germany
| | - Nargis Parvin
- Department of Biology I, Botany, LMU Munich, Großhaderner Str. 2-4, D-82152 Planegg, Germany
| | - Charlotte H. Hurst
- Plant Stress Laboratory, Durham Centre for Crop Improvement Technology, School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Marc R. Knight
- Plant Stress Laboratory, Durham Centre for Crop Improvement Technology, School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Markus Teige
- Department of Biochemistry, MFPL, University of Vienna, Dr. Bohr Gasse 9/5, A-1030 Vienna, Austria
| | - Ute C. Vothknecht
- Department of Biology I, Botany, LMU Munich, Großhaderner Str. 2-4, D-82152 Planegg, Germany
- Centre for Integrated Protein Science (Munich) at the Department of Biology of the LMU Munich, D-81377 Munich, Germany
| |
Collapse
|
6
|
Arabidopsis calcium-binding mitochondrial carrier proteins as potential facilitators of mitochondrial ATP-import and plastid SAM-import. FEBS Lett 2011; 585:3935-40. [PMID: 22062157 DOI: 10.1016/j.febslet.2011.10.039] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/06/2011] [Accepted: 10/23/2011] [Indexed: 11/20/2022]
Abstract
Chloroplasts and mitochondria are central to crucial cellular processes in plants and contribute to a whole range of metabolic pathways. The use of calcium ions as a secondary messenger in and around organelles is increasingly appreciated as an important mediator of plant cell signaling, enabling plants to develop or to acclimatize to changing environmental conditions. Here, we have studied the four calcium-dependent mitochondrial carriers that are encoded in the Arabidopsis genome. An unknown substrate carrier, which was previously found to localize to chloroplasts, is proposed to present a calcium-dependent S-adenosyl methionine carrier. For three predicted ATP/phosphate carriers, we present experimental evidence that they can function as mitochondrial ATP-importers.
Collapse
|
7
|
Duncan O, Taylor NL, Carrie C, Eubel H, Kubiszewski-Jakubiak S, Zhang B, Narsai R, Millar AH, Whelan J. Multiple lines of evidence localize signaling, morphology, and lipid biosynthesis machinery to the mitochondrial outer membrane of Arabidopsis. PLANT PHYSIOLOGY 2011; 157:1093-113. [PMID: 21896887 PMCID: PMC3252152 DOI: 10.1104/pp.111.183160] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Accepted: 08/31/2011] [Indexed: 05/18/2023]
Abstract
The composition of the mitochondrial outer membrane is notoriously difficult to deduce by orthology to other organisms, and biochemical enrichments are inevitably contaminated with the closely associated inner mitochondrial membrane and endoplasmic reticulum. In order to identify novel proteins of the outer mitochondrial membrane in Arabidopsis (Arabidopsis thaliana), we integrated a quantitative mass spectrometry analysis of highly enriched and prefractionated samples with a number of confirmatory biochemical and cell biology approaches. This approach identified 42 proteins, 27 of which were novel, more than doubling the number of confirmed outer membrane proteins in plant mitochondria and suggesting novel functions for the plant outer mitochondrial membrane. The novel components identified included proteins that affected mitochondrial morphology and/or segregation, a protein that suggests the presence of bacterial type lipid A in the outer membrane, highly stress-inducible proteins, as well as proteins necessary for embryo development and several of unknown function. Additionally, proteins previously inferred via orthology to be present in other compartments, such as an NADH:cytochrome B5 reductase required for hydroxyl fatty acid accumulation in developing seeds, were shown to be located in the outer membrane. These results also revealed novel proteins, which may have evolved to fulfill plant-specific requirements of the mitochondrial outer membrane, and provide a basis for the future functional characterization of these proteins in the context of mitochondrial intracellular interaction.
Collapse
|
8
|
Petroutsos D, Busch A, Janßen I, Trompelt K, Bergner SV, Weinl S, Holtkamp M, Karst U, Kudla J, Hippler M. The chloroplast calcium sensor CAS is required for photoacclimation in Chlamydomonas reinhardtii. THE PLANT CELL 2011; 23:2950-63. [PMID: 21856795 PMCID: PMC3180803 DOI: 10.1105/tpc.111.087973] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 07/12/2011] [Accepted: 08/01/2011] [Indexed: 05/19/2023]
Abstract
The plant-specific calcium binding protein CAS (calcium sensor) has been localized in chloroplast thylakoid membranes of vascular plants and green algae. To elucidate the function of CAS in Chlamydomonas reinhardtii, we generated and analyzed eight independent CAS knockdown C. reinhardtii lines (cas-kd). Upon transfer to high-light (HL) growth conditions, cas-kd lines were unable to properly induce the expression of LHCSR3 protein that is crucial for nonphotochemical quenching. Prolonged exposure to HL revealed a severe light sensitivity of cas-kd lines and caused diminished activity and recovery of photosystem II (PSII). Remarkably, the induction of LHCSR3, the growth of cas-kd lines under HL, and the performance of PSII were fully rescued by increasing the calcium concentration in the growth media. Moreover, perturbing cellular Ca(2+) homeostasis by application of the calmodulin antagonist W7 or the G-protein activator mastoparan impaired the induction of LHCSR3 expression in a concentration-dependent manner. Our findings demonstrate that CAS and Ca(2+) are critically involved in the regulation of the HL response and particularly in the control of LHCSR3 expression.
Collapse
Affiliation(s)
- Dimitris Petroutsos
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany
| | - Andreas Busch
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany
| | - Ingrid Janßen
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany
| | - Kerstin Trompelt
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany
| | - Sonja Verena Bergner
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany
| | - Stefan Weinl
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany
| | - Michael Holtkamp
- Institute of Inorganic and Analytical Chemistry, University of Münster, 48149 Muenster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, 48149 Muenster, Germany
| | - Jörg Kudla
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany
- Address correspondence to
| |
Collapse
|