1
|
Volpe C, Nymark M, Andersen T, Winge P, Lavaud J, Vadstein O. Skeletonema marinoi ecotypes show specific habitat-related responses to fluctuating light supporting high potential for growth under photobioreactor light regime. THE NEW PHYTOLOGIST 2024; 243:145-161. [PMID: 38736026 DOI: 10.1111/nph.19788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/09/2024] [Indexed: 05/14/2024]
Abstract
Diatoms are a diverse group of phytoplankton usually dominating areas characterized by rapidly shifting light conditions. Because of their high growth rates and interesting biochemical profile, their biomass is considered for various commercial applications. This study aimed at identifying strains with superior growth in a photobioreactor (PBR) by screening the natural intraspecific diversity of ecotypes isolated from different habitats. We investigated the effect of PBR light fluctuating on a millisecond scale (FL, simulating the light in a PBR) on 19 ecotypes of the diatom Skeletonema marinoi isolated from the North Sea-Baltic Sea area. We compare growth, pigment ratios, phylogeny, photo-physiological variables and photoacclimation strategies between all strains and perform qPCR and absorption spectra analysis on a subset of strains. Our results show that the ecotypes responded differently to FL, and have contrasting photo-physiological and photoprotective strategies. The strains from Kattegat performed better in FL, and shared common photoacclimation and photoprotection strategies that are the results of adaptation to the specific light climate of the Kattegat area. The strains that performed better with FL conditions had a high light (HL)-acclimated phenotype coupled with unique nonphotochemical quenching features. Based on their characteristics, three strains were identified as good candidates for growth in PBRs.
Collapse
Affiliation(s)
- Charlotte Volpe
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, N-7465, Trondheim, Norway
| | - Marianne Nymark
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, N-7465, Trondheim, Norway
- Department of Biology, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| | - Tom Andersen
- Department of Biosciences, Section for Aquatic Biology and Toxicology (AQUA), University of Oslo, N-0316, Oslo, Norway
| | - Per Winge
- Department of Biology, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| | - Johann Lavaud
- LEMAR-Laboratory of Marine Environmental Sciences, UMR6539 CNRS, Univ Brest, Ifremer, IRD, Institut Européen de la Mer, Technopôle Brest-Iroise, rue Dumont d'Urville, Plouzané, 29280, France
| | - Olav Vadstein
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| |
Collapse
|
2
|
Niinemets Ü. Variation in leaf photosynthetic capacity within plant canopies: optimization, structural, and physiological constraints and inefficiencies. PHOTOSYNTHESIS RESEARCH 2023; 158:131-149. [PMID: 37615905 DOI: 10.1007/s11120-023-01043-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/04/2023] [Indexed: 08/25/2023]
Abstract
Leaf photosynthetic capacity (light-saturated net assimilation rate, AA) increases from bottom to top of plant canopies as the most prominent acclimation response to the conspicuous within-canopy gradients in light availability. Light-dependent variation in AA through plant canopies is associated with changes in key leaf structural (leaf dry mass per unit leaf area), chemical (nitrogen (N) content per area and dry mass, N partitioning between components of photosynthetic machinery), and physiological (stomatal and mesophyll conductance) traits, whereas the contribution of different traits to within-canopy AA gradients varies across sites, species, and plant functional types. Optimality models maximizing canopy carbon gain for a given total canopy N content predict that AA should be proportionally related to canopy light availability. However, comparison of model expectations with experimental data of within-canopy photosynthetic trait variations in representative plant functional types indicates that such proportionality is not observed in real canopies, and AA vs. canopy light relationships are curvilinear. The factors responsible for deviations from full optimality include stronger stomatal and mesophyll diffusion limitations at higher light, reflecting greater water limitations and more robust foliage in higher light. In addition, limits on efficient packing of photosynthetic machinery within leaf structural scaffolding, high costs of N redistribution among leaves, and limited plasticity of N partitioning among components of photosynthesis machinery constrain AA plasticity. Overall, this review highlights that the variation of AA through plant canopies reflects a complex interplay between adjustments of leaf structure and function to multiple environmental drivers, and that AA plasticity is limited by inherent constraints on and trade-offs between structural, chemical, and physiological traits. I conclude that models trying to simulate photosynthesis gradients in plant canopies should consider co-variations among environmental drivers, and the limitation of functional trait variation by physical constraints and include the key trade-offs between structural, chemical, and physiological leaf characteristics.
Collapse
Affiliation(s)
- Ülo Niinemets
- Chair of Plant and Crop Science, Estonian University of Life Sciences, Kreutzwaldi 1, 51011, Tartu, Estonia.
- Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia.
| |
Collapse
|
3
|
Shi Y, Ke X, Yang X, Liu Y, Hou X. Plants response to light stress. J Genet Genomics 2022; 49:735-747. [DOI: 10.1016/j.jgg.2022.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
|
4
|
Yu J, Li Y, Qin Z, Guo S, Li Y, Miao Y, Song C, Chen S, Dai S. Plant Chloroplast Stress Response: Insights from Thiol Redox Proteomics. Antioxid Redox Signal 2020; 33:35-57. [PMID: 31989831 DOI: 10.1089/ars.2019.7823] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: Plant chloroplasts generate reactive oxygen species (ROS) during photosynthesis, especially under stresses. The sulfhydryl groups of protein cysteine residues are susceptible to redox modifications, which regulate protein structure and function, and thus different signaling and metabolic processes. The ROS-governed protein thiol redox switches play important roles in chloroplasts. Recent Advances: Various high-throughput thiol redox proteomic approaches have been developed, and they have enabled the improved understanding of redox regulatory mechanisms in chloroplasts. For example, the thioredoxin-modulated antioxidant enzymes help to maintain cellular ROS homeostasis. The light- and dark-dependent redox regulation of photosynthetic electron transport, the Calvin/Benson cycle, and starch biosynthesis ensures metabolic coordination and efficient energy utilization. In addition, redox cascades link the light with the dynamic changes of metabolites in nitrate and sulfur assimilation, shikimate pathway, and biosynthesis of fatty acid hormone as well as purine, pyrimidine, and thiamine. Importantly, redox regulation of tetrapyrrole and chlorophyll biosynthesis is critical to balance the photodynamic tetrapyrrole intermediates and prevent oxidative damage. Moreover, redox regulation of diverse elongation factors, chaperones, and kinases plays an important role in the modulation of gene expression, protein conformation, and posttranslational modification that contribute to photosystem II (PSII) repair, state transition, and signaling in chloroplasts. Critical Issues: This review focuses on recent advances in plant thiol redox proteomics and redox protein networks toward understanding plant chloroplast signaling, metabolism, and stress responses. Future Directions: Using redox proteomics integrated with biochemical and molecular genetic approaches, detailed studies of cysteine residues, their redox states, cross talk with other modifications, and the functional implications will yield a holistic understanding of chloroplast stress responses.
Collapse
Affiliation(s)
- Juanjuan Yu
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China.,Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China.,College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Ying Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
| | - Zhi Qin
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Siyi Guo
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, China
| | - Yongfang Li
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yuchen Miao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, China
| | - Chunpeng Song
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, China
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, USA
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China.,Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
| |
Collapse
|
5
|
Pralon T, Collombat J, Pipitone R, Ksas B, Shanmugabalaji V, Havaux M, Finazzi G, Longoni P, Kessler F. Mutation of the Atypical Kinase ABC1K3 Partially Rescues the PROTON GRADIENT REGULATION 6 Phenotype in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:337. [PMID: 32269582 PMCID: PMC7109304 DOI: 10.3389/fpls.2020.00337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/06/2020] [Indexed: 05/15/2023]
Abstract
Photosynthesis is an essential pathway providing the chemical energy and reducing equivalents that sustain higher plant metabolism. It relies on sunlight, which is an inconstant source of energy that fluctuates in both intensity and spectrum. The fine and rapid tuning of the photosynthetic apparatus is essential to cope with changing light conditions and increase plant fitness. Recently PROTON GRADIENT REGULATION 6 (PGR6-ABC1K1), an atypical plastoglobule-associated kinase, was shown to regulate a new mechanism of light response by controlling the homeostasis of photoactive plastoquinone (PQ). PQ is a crucial electron carrier existing as a free neutral lipid in the photosynthetic thylakoid membrane. Perturbed homeostasis of PQ impairs photosynthesis and plant acclimation to high light. Here we show that a homologous kinase, ABC1K3, which like PGR6-ABC1K1 is associated with plastoglobules, also contributes to the homeostasis of the photoactive PQ pool. Contrary to PGR6-ABC1K1, ABC1K3 disfavors PQ availability for photosynthetic electron transport. In fact, in the abc1k1/abc1k3 double mutant the pgr6(abc1k1) the photosynthetic defect seen in the abc1k1 mutant is mitigated. However, the PQ concentration in the photoactive pool of the double mutant is comparable to that of abc1k1 mutant. An increase of the PQ mobility, inferred from the kinetics of its oxidation in dark, contributes to the mitigation of the pgr6(abc1k1) photosynthetic defect. Our results also demonstrate that ABC1K3 contributes to the regulation of other mechanisms involved in the adaptation of the photosynthetic apparatus to changes in light quality and intensity such as the induction of thermal dissipation and state transitions. Overall, we suggests that, besides the absolute concentration of PQ, its mobility and exchange between storage and active pools are critical for light acclimation in plants.
Collapse
Affiliation(s)
- Thibaut Pralon
- Laboratory of Plant Physiology, Institute Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Joy Collombat
- Laboratory of Plant Physiology, Institute Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Rosa Pipitone
- Laboratory of Plant Physiology, Institute Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Brigitte Ksas
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), UMR 7265, Biosciences et Biotechnologies Institute of Aix-Marseille, Saint-Paul-lez-Durance, France
| | | | - Michel Havaux
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), UMR 7265, Biosciences et Biotechnologies Institute of Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Giovanni Finazzi
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Recherche Agromique (INRA), Interdisciplinary Research Institute of Grenoble - Cell and Plant Physiology Laboratory (IRIG-LPCV), Grenoble, France
| | - Paolo Longoni
- Laboratory of Plant Physiology, Institute Biology, University of Neuchâtel, Neuchâtel, Switzerland
- *Correspondence: Paolo Longoni,
| | - Felix Kessler
- Laboratory of Plant Physiology, Institute Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Felix Kessler,
| |
Collapse
|
6
|
Cutolo E, Parvin N, Ruge H, Pirayesh N, Roustan V, Weckwerth W, Teige M, Grieco M, Larosa V, Vothknecht UC. The High Light Response in Arabidopsis Requires the Calcium Sensor Protein CAS, a Target of STN7- and STN8-Mediated Phosphorylation. FRONTIERS IN PLANT SCIENCE 2019; 10:974. [PMID: 31417591 PMCID: PMC6682602 DOI: 10.3389/fpls.2019.00974] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/11/2019] [Indexed: 05/18/2023]
Abstract
Reversible phosphorylation of thylakoid proteins contributes to photoacclimation responses in photosynthetic organisms, enabling the fine-tuning of light harvesting under changing light conditions and promoting the onset of photoprotective processes. However, the precise functional role of many of the described phosphorylation events on thylakoid proteins remains elusive. The calcium sensor receptor protein (CAS) has previously been indicated as one of the targets of the state transition kinase 8 (STN8). Here we show that in Arabidopsis thaliana, CAS is also phosphorylated by the state transition kinase 7 (STN7), as well as by another, so-far unknown, Ca2+-dependent kinase. Phosphoproteomics analysis and in vitro phosphorylation assays on CAS variants identified the phylogenetically conserved residues Thr-376, Ser-378, and Thr-380 as the major phosphorylation sites of the STN kinases. Spectroscopic analyses of chlorophyll fluorescence emission at 77K further showed that, while the cas mutant is not affected in state transition, it displays a persistent strong excitation of PSI under high light exposure, similar to the phenotype previously observed in other mutants defective in photoacclimation mechanisms. Together with the observation of a strong concomitant phosphorylation of light harvesting complex II (LHCII) and photosynthetic core proteins under high irradiance in the cas mutant this suggests a role for CAS in the STN7/STN8/TAP38 network of phosphorylation-mediated photoacclimation processes in Arabidopsis.
Collapse
Affiliation(s)
- Edoardo Cutolo
- Plant Cell Biology, Institut für Zelluläre und Molekulare Botanik, University of Bonn, Bonn, Germany
| | - Nargis Parvin
- Department of Plant Nutrition, Institut für Nutzpflanzenwissenschaften und Ressourcenschutz, University of Bonn, Bonn, Germany
| | - Henning Ruge
- Department of Biology I, Ludwig Maximilian University of Munich, Munich, Germany
| | - Niloufar Pirayesh
- Plant Cell Biology, Institut für Zelluläre und Molekulare Botanik, University of Bonn, Bonn, Germany
| | - Valentin Roustan
- Department of Molecular Systems Biology, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Department of Molecular Systems Biology, University of Vienna, Vienna, Austria
| | - Markus Teige
- Department of Molecular Systems Biology, University of Vienna, Vienna, Austria
| | - Michele Grieco
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Veronique Larosa
- Laboratory of Genetics and Physiology of Microalgae, InBios, University of Liège, Liège, Belgium
| | - Ute C. Vothknecht
- Plant Cell Biology, Institut für Zelluläre und Molekulare Botanik, University of Bonn, Bonn, Germany
| |
Collapse
|
7
|
The Proteomic Analysis of Maize Endosperm Protein Enriched by Phos-tag tm Reveals the Phosphorylation of Brittle-2 Subunit of ADP-Glc Pyrophosphorylase in Starch Biosynthesis Process. Int J Mol Sci 2019; 20:ijms20040986. [PMID: 30813492 PMCID: PMC6412418 DOI: 10.3390/ijms20040986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 11/17/2022] Open
Abstract
AGPase catalyzes a key rate-limiting step that converts ATP and Glc-1-p into ADP-glucose and diphosphate in maize starch biosynthesis. Previous studies suggest that AGPase is modulated by redox, thermal and allosteric regulation. However, the phosphorylation of AGPase is unclear in the kernel starch biosynthesis process. Phos-tagTM technology is a novel method using phos-tagTM agarose beads for separation, purification, and detection of phosphorylated proteins. Here we identified phos-tagTM agarose binding proteins from maize endosperm. Results showed a total of 1733 proteins identified from 10,678 distinct peptides. Interestingly, a total of 21 unique peptides for AGPase sub-unit Brittle-2 (Bt2) were identified. Bt2 was demonstrated by immunoblot when enriched maize endosperm protein with phos-tagTM agarose was in different pollination stages. In contrast, Bt2 would lose binding to phos-tagTM when samples were treated with alkaline phosphatase (ALP). Furthermore, Bt2 could be detected by Pro-Q diamond staining specifically for phosphorylated protein. We further identified the phosphorylation sites of Bt2 at Ser10, Thr451, and Thr462 by iTRAQ. In addition, dephosphorylation of Bt2 decreased the activity of AGPase in the native gel assay through ALP treatment. Taking together, these results strongly suggest that the phosphorylation of AGPase may be a new model to regulate AGPase activity in the starch biosynthesis process.
Collapse
|
8
|
Nitric Oxide Enhancing Resistance to PEG-Induced Water Deficiency is Associated with the Primary Photosynthesis Reaction in Triticum aestivum L. Int J Mol Sci 2018; 19:ijms19092819. [PMID: 30231569 PMCID: PMC6164216 DOI: 10.3390/ijms19092819] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 12/30/2022] Open
Abstract
Photosynthesis is affected by water-deficiency (WD) stress, and nitric oxide (NO) is a free radical that participates in the photosynthesis process. Previous studies have suggested that NO regulates excitation-energy distribution of photosynthesis under WD stress. Here, quantitative phosphoproteomic profiling was conducted using iTRAQ. Differentially phosphorylated protein species (DEPs) were identified in leaves of NO- or polyethylene glycol (PEG)-treated wheat seedlings (D), and in control seedlings. From 1396 unique phosphoproteins, 2257 unique phosphorylated peptides and 2416 phosphorylation sites were identified. Of these, 96 DEPs displayed significant changes (≥1.50-fold, p < 0.01). These DEPs are involved in photosynthesis, signal transduction, etc. Furthermore, phosphorylation of several DEPs was upregulated by both D and NO treatments, but downregulated only in NO treatment. These differences affected the chlorophyll A–B binding protein, chloroplast post-illumination chlorophyll-fluorescence-increase protein, and SNT7, implying that NO indirectly regulated the absorption and transport of light energy in photosynthesis in response to WD stress. The significant difference of chlorophyll (Chl) content, Chl a fluorescence-transient, photosynthesis index, and trapping and transport of light energy further indicated that exogenous NO under D stress enhanced the primary photosynthesis reaction compared to D treatment. A putative pathway is proposed to elucidate NO regulation of the primary reaction of photosynthesis under WD.
Collapse
|
9
|
Bressan M, Bassi R, Dall'Osto L. Loss of LHCI system affects LHCII re-distribution between thylakoid domains upon state transitions. PHOTOSYNTHESIS RESEARCH 2018; 135:251-261. [PMID: 28918549 DOI: 10.1007/s11120-017-0444-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/12/2017] [Indexed: 05/22/2023]
Abstract
LHCI, the peripheral antenna system of Photosystem I, includes four light-harvesting proteins (Lhca1-Lhca4) in higher plants, all of which are devoid in the Arabidopsis thaliana knock-out mutant ΔLhca. PSI absorption cross-section was reduced in the mutant, thus affecting the redox balance of the photosynthetic electron chain and resulting in a more reduced PQ with respect to the wild type. ΔLhca plants developed compensatory response by enhancing LHCII binding to PSI. However, the amplitude of state transitions, as measured from changes of chlorophyll fluorescence in vivo, was unexpectedly low than the high level of PSI-LHCII supercomplex established. In order to elucidate the reasons for discrepancy, we further analyzed state transition in ΔLhca plants. The STN7 kinase was fully active in the mutant as judged from up-regulation of LHCII phosphorylation in state II. Instead, the lateral heterogeneity of thylakoids was affected by lack of LHCI, with LHCII being enriched in stroma membranes with respect to the wild type. Re-distribution of this complex affected the overall fluorescence yield of thylakoids already in state I and minimized changes in RT fluorescence yield when LHCII did connect to PSI reaction center. We conclude that interpretation of chlorophyll fluorescence analysis of state transitions becomes problematic when applied to mutants whose thylakoid architecture is significantly modified with respect to the wild type.
Collapse
Affiliation(s)
- Mauro Bressan
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | - Luca Dall'Osto
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| |
Collapse
|
10
|
Díaz MG, Hernández-Verdeja T, Kremnev D, Crawford T, Dubreuil C, Strand Å. Redox regulation of PEP activity during seedling establishment in Arabidopsis thaliana. Nat Commun 2018; 9:50. [PMID: 29298981 PMCID: PMC5752674 DOI: 10.1038/s41467-017-02468-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/02/2017] [Indexed: 12/21/2022] Open
Abstract
Activation of the plastid-encoded RNA polymerase is tightly controlled and involves a network of phosphorylation and, as yet unidentified, thiol-mediated events. Here, we characterize PLASTID REDOX INSENSITIVE2, a redox-regulated protein required for full PEP-driven transcription. PRIN2 dimers can be reduced into the active monomeric form by thioredoxins through reduction of a disulfide bond. Exposure to light increases the ratio between the monomeric and dimeric forms of PRIN2. Complementation of prin2-2 with different PRIN2 protein variants demonstrates that the monomer is required for light-activated PEP-dependent transcription and that expression of the nuclear-encoded photosynthesis genes is linked to the activity of PEP. Activation of PEP during chloroplast development likely is the source of a retrograde signal that promotes nuclear LHCB expression. Thus, regulation of PRIN2 is the thiol-mediated mechanism required for full PEP activity, with PRIN2 monomerization via reduction by TRXs providing a mechanistic link between photosynthetic electron transport and activation of photosynthetic gene expression. The plastid-encoded RNA polymerase PEP is regulated according to plastid redox state. Here, the authors show that the redox-regulated PRIN2 protein is reduced to monomeric form in a thiol-dependent manner in response to light and that PRIN2 monomers are required for PEP activity and retrograde signaling.
Collapse
Affiliation(s)
- Manuel Guinea Díaz
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87, Umeå, Sweden.,Molecular Plant Biology, University of Turku, FI-20520, Turku, Finland
| | - Tamara Hernández-Verdeja
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87, Umeå, Sweden
| | - Dmitry Kremnev
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87, Umeå, Sweden
| | - Tim Crawford
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87, Umeå, Sweden
| | - Carole Dubreuil
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87, Umeå, Sweden
| | - Åsa Strand
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87, Umeå, Sweden.
| |
Collapse
|
11
|
Abstract
This chapter presents an overview of structural properties of the cytochrome (Cyt) b 6 f complex and its functioning in chloroplasts. The Cyt b 6 f complex stands at the crossroad of photosynthetic electron transport pathways, providing connectivity between Photosystem (PSI) and Photosysten II (PSII) and pumping protons across the membrane into the thylakoid lumen. After a brief review of the chloroplast electron transport chain, the consideration is focused on the structural organization of the Cyt b 6 f complex and its interaction with plastoquinol (PQH2, reduced form of plastoquinone), a mediator of electron transfer from PSII to the Cyt b 6 f complex. The processes of PQH2 oxidation by the Cyt b 6 f complex have been considered within the framework of the Mitchell's Q-cycle. The overall rate of the intersystem electron transport is determined by PQH2 turnover at the quinone-binding site Qo of the Cyt b 6 f complex. The rate of PQH2 oxidation is controlled by the intrathylakoid pHin, which value determines the protonation/deprotonation events in the Qo-center. Two other regulatory mechanisms associated with the Cyt b 6 f complex are briefly overviewed: (i) redistribution of electron fluxes between alternative (linear and cyclic) pathways, and (ii) "state transitions" related to redistribution of solar energy between PSI and PSII.
Collapse
|
12
|
Nozue H, Oono K, Ichikawa Y, Tanimura S, Shirai K, Sonoike K, Nozue M, Hayashida N. Significance of structural variation in thylakoid membranes in maintaining functional photosystems during reproductive growth. PHYSIOLOGIA PLANTARUM 2017; 160:111-123. [PMID: 27859364 DOI: 10.1111/ppl.12528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/31/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
Structural variation in the stroma-grana (SG) arrangement of the thylakoid membranes, such as changes in the thickness of the grana stacks and in the ratio between grana and inter-grana thylakoid, is often observed. Broadly, such alterations are considered acclimation to changes in growth and the environment. However, the relation of thylakoid morphology to plant growth and photosynthesis remains obscure. Here, we report changes in the thylakoid during leaf development under a fixed light condition. Histological studies on the chloroplasts of fresh green Arabidopsis leaves have shown that characteristically shaped thylakoid membranes lacking the inter-grana region, referred to hereafter as isolated-grana (IG), occurred adjacent to highly ordered, large grana layers. This morphology was restored to conventional SG thylakoid membranes with the removal of bolting stems from reproductive plants. Statistical analysis showed a negative correlation between the incidences of IG-type chloroplasts in mesophyll cells and the rates of leaf growth. Fluorescence parameters calculated from pulse-amplitude modulated fluorometry measurements and CO2 assimilation data showed that the IG thylakoids had a photosynthetic ability that was equivalent to that of the SG thylakoids under moderate light. However, clear differences were observed in the chlorophyll a/b ratio. The IG thylakoids were apparently an acclimated phenotype to the internal condition of source leaves. The idea is supported by the fact that the life span of the IG thylakoids increased significantly in the later developing leaves. In conclusion, the heterogeneous state of thylakoid membranes is likely important in maintaining photosynthesis during the reproductive phase of growth.
Collapse
Affiliation(s)
- Hatsumi Nozue
- Research Center for Advanced Plant Factory (SU-PLAF), Faculty of Textile Science and Technology, Shinshu University, Nagano, 386-8567, Japan
| | - Kaori Oono
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano, 386-8567, Japan
| | | | - Shun Tanimura
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano, 386-8567, Japan
| | - Kana Shirai
- Research Center for Advanced Plant Factory (SU-PLAF), Faculty of Textile Science and Technology, Shinshu University, Nagano, 386-8567, Japan
| | - Kintake Sonoike
- Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, 162-8480, Japan
| | - Masayuki Nozue
- Research Center for Advanced Plant Factory (SU-PLAF), Faculty of Textile Science and Technology, Shinshu University, Nagano, 386-8567, Japan
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano, 386-8567, Japan
| | - Nobuaki Hayashida
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano, 386-8567, Japan
| |
Collapse
|
13
|
Plöchinger M, Torabi S, Rantala M, Tikkanen M, Suorsa M, Jensen PE, Aro EM, Meurer J. The Low Molecular Weight Protein PsaI Stabilizes the Light-Harvesting Complex II Docking Site of Photosystem I. PLANT PHYSIOLOGY 2016; 172:450-63. [PMID: 27406169 PMCID: PMC5074619 DOI: 10.1104/pp.16.00647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/09/2016] [Indexed: 05/03/2023]
Abstract
PsaI represents one of three low molecular weight peptides of PSI. Targeted inactivation of the plastid PsaI gene in Nicotiana tabacum has no measurable effect on photosynthetic electron transport around PSI or on accumulation of proteins involved in photosynthesis. Instead, the lack of PsaI destabilizes the association of PsaL and PsaH to PSI, both forming the light-harvesting complex (LHC)II docking site of PSI. These alterations at the LHCII binding site surprisingly did not prevent state transition but led to an increased incidence of PSI-LHCII complexes, coinciding with an elevated phosphorylation level of the LHCII under normal growth light conditions. Remarkably, LHCII was rapidly phosphorylated in ΔpsaI in darkness even after illumination with far-red light. We found that this dark phosphorylation also occurs in previously described mutants impaired in PSI function or state transition. A prompt shift of the plastoquinone (PQ) pool into a more reduced redox state in the dark caused an enhanced LHCII phosphorylation in ΔpsaI Since the redox status of the PQ pool is functionally connected to a series of physiological, biochemical, and gene expression reactions, we propose that the shift of mutant plants into state 2 in darkness represents a compensatory and/or protective metabolic mechanism. This involves an increased reduction and/or reduced oxidation of the PQ pool, presumably to sustain a balanced excitation of both photosystems upon the onset of light.
Collapse
Affiliation(s)
- Magdalena Plöchinger
- Department of Biology I, Plant Molecular Biology, Ludwig-Maximilians-University Munich, 80638 Munich, Germany (M.P., S.T., J.M.); Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark (P.-E.J.); and Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland (M.R., M.T., M.S., E.M.A.)
| | - Salar Torabi
- Department of Biology I, Plant Molecular Biology, Ludwig-Maximilians-University Munich, 80638 Munich, Germany (M.P., S.T., J.M.); Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark (P.-E.J.); and Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland (M.R., M.T., M.S., E.M.A.)
| | - Marjaana Rantala
- Department of Biology I, Plant Molecular Biology, Ludwig-Maximilians-University Munich, 80638 Munich, Germany (M.P., S.T., J.M.); Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark (P.-E.J.); and Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland (M.R., M.T., M.S., E.M.A.)
| | - Mikko Tikkanen
- Department of Biology I, Plant Molecular Biology, Ludwig-Maximilians-University Munich, 80638 Munich, Germany (M.P., S.T., J.M.); Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark (P.-E.J.); and Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland (M.R., M.T., M.S., E.M.A.)
| | - Marjaana Suorsa
- Department of Biology I, Plant Molecular Biology, Ludwig-Maximilians-University Munich, 80638 Munich, Germany (M.P., S.T., J.M.); Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark (P.-E.J.); and Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland (M.R., M.T., M.S., E.M.A.)
| | - Poul-Erik Jensen
- Department of Biology I, Plant Molecular Biology, Ludwig-Maximilians-University Munich, 80638 Munich, Germany (M.P., S.T., J.M.); Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark (P.-E.J.); and Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland (M.R., M.T., M.S., E.M.A.)
| | - Eva Mari Aro
- Department of Biology I, Plant Molecular Biology, Ludwig-Maximilians-University Munich, 80638 Munich, Germany (M.P., S.T., J.M.); Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark (P.-E.J.); and Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland (M.R., M.T., M.S., E.M.A.)
| | - Jörg Meurer
- Department of Biology I, Plant Molecular Biology, Ludwig-Maximilians-University Munich, 80638 Munich, Germany (M.P., S.T., J.M.); Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark (P.-E.J.); and Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland (M.R., M.T., M.S., E.M.A.)
| |
Collapse
|
14
|
Bressan M, Dall'Osto L, Bargigia I, Alcocer MJP, Viola D, Cerullo G, D'Andrea C, Bassi R, Ballottari M. LHCII can substitute for LHCI as an antenna for photosystem I but with reduced light-harvesting capacity. NATURE PLANTS 2016; 2:16131. [PMID: 27564313 DOI: 10.1038/nplants.2016.131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 07/28/2016] [Indexed: 05/10/2023]
Abstract
Light-harvesting complexes (LHCs) are major constituents of the antenna systems in higher plant photosystems. Four Lhca subunits are tightly bound to the photosystem I (PSI) core complex, forming its outer antenna moiety called LHCI. The Arabidopsis thaliana mutant ΔLhca lacks all Lhca1-4 subunits and compensates for its decreased antenna size by binding LHCII trimers, the main constituent of the photosystem II antenna system, to PSI. In this work we have investigated the effect of LHCI/LHCII substitution by comparing the light harvesting and excitation energy transfer efficiency properties of PSI complexes isolated from ΔLhca mutants and from the wild type, as well as the consequences for plant growth. We show that the excitation energy transfer efficiency was not compromised by the substitution of LHCI with LHCII but a significant reduction in the absorption cross-section was observed. The absence of LHCI subunits in PSI thus significantly limits light harvesting, even on LHCII binding, inducing, as a consequence, a strong reduction in growth.
Collapse
Affiliation(s)
- Mauro Bressan
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, I-37134 Verona, Italy
| | - Luca Dall'Osto
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, I-37134 Verona, Italy
| | - Ilaria Bargigia
- Centre for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milan, Italy
| | - Marcelo J P Alcocer
- Centre for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milan, Italy
- IFN-CNR, Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Daniele Viola
- IFN-CNR, Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Giulio Cerullo
- IFN-CNR, Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Cosimo D'Andrea
- Centre for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milan, Italy
- IFN-CNR, Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, I-37134 Verona, Italy
| | - Matteo Ballottari
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, I-37134 Verona, Italy
| |
Collapse
|
15
|
Kleine T, Leister D. Retrograde signaling: Organelles go networking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1313-1325. [PMID: 26997501 DOI: 10.1016/j.bbabio.2016.03.017] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/09/2016] [Accepted: 03/14/2016] [Indexed: 10/25/2022]
Abstract
The term retrograde signaling refers to the fact that chloroplasts and mitochondria utilize specific signaling molecules to convey information on their developmental and physiological states to the nucleus and modulate the expression of nuclear genes accordingly. Signals emanating from plastids have been associated with two main networks: 'Biogenic control' is active during early stages of chloroplast development, while 'operational' control functions in response to environmental fluctuations. Early work focused on the former and its major players, the GUN proteins. However, our view of retrograde signaling has since been extended and revised. Elements of several 'operational' signaling circuits have come to light, including metabolites, signaling cascades in the cytosol and transcription factors. Here, we review recent advances in the identification and characterization of retrograde signaling components. We place particular emphasis on the strategies employed to define signaling components, spanning the entire spectrum of genetic screens, metabolite profiling and bioinformatics. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Tatjana Kleine
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany; Copenhagen Plant Science Centre (CPSC), Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
16
|
Colombo M, Suorsa M, Rossi F, Ferrari R, Tadini L, Barbato R, Pesaresi P. Photosynthesis Control: An underrated short-term regulatory mechanism essential for plant viability. PLANT SIGNALING & BEHAVIOR 2016; 11:e1165382. [PMID: 27018523 PMCID: PMC4883964 DOI: 10.1080/15592324.2016.1165382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/08/2016] [Indexed: 05/22/2023]
Abstract
Regulation of photosynthetic electron transport provides efficient performance of oxygenic photosynthesis in plants. During the last 15 years, the molecular bases of various photosynthesis short-term regulatory processes have been elucidated, however the wild type-like phenotypes of mutants lacking of State Transitions, Non Photochemical Quenching, or Cyclic Electron Transport, when grown under constant light conditions, have also raised doubts about the acclimatory significance of these short-regulatory mechanisms on plant performance. Interestingly, recent studies performed by growing wild type and mutant plants under field conditions revealed a prominent role of State Transitions and Non Photochemical Quenching on plant fitness, with almost no effect on vegetative plant growth. Conversely, the analysis of plants lacking the regulation of electron transport by the cytochrome b6f complex, also known as Photosynthesis Control, revealed the fundamental role of this regulatory mechanism in the survival of young, developing seedlings under fluctuating light conditions.
Collapse
Affiliation(s)
- Monica Colombo
- a Centro Ricerca e Innovazione, Fondazione Edmund Mach , San Michele all'Adige , Italy
| | - Marjaana Suorsa
- b Molecular Plant Biology, Department of Biochemistry, University of Turku , Turku , Finland
| | - Fabio Rossi
- c Dipartimento di Bioscienze , Università degli studi di Milano , Milano , Italy
| | - Roberto Ferrari
- c Dipartimento di Bioscienze , Università degli studi di Milano , Milano , Italy
| | - Luca Tadini
- c Dipartimento di Bioscienze , Università degli studi di Milano , Milano , Italy
| | - Roberto Barbato
- d Dipartimento di Scienze dell'Ambiente e della Vita , Università del Piemonte Orientale , Alessandria , Italy
| | - Paolo Pesaresi
- c Dipartimento di Bioscienze , Università degli studi di Milano , Milano , Italy
| |
Collapse
|
17
|
Roose JL, Frankel LK, Bricker TM. The PsbP domain protein 1 functions in the assembly of lumenal domains in photosystem I. J Biol Chem 2014; 289:23776-85. [PMID: 25008325 DOI: 10.1074/jbc.m114.589085] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Photosystem I (PS I) is a multisubunit membrane protein complex that functions as a light-driven plastocyanin-ferredoxin oxidoreductase. The PsbP domain protein 1 (PPD1; At4g15510) is located in the thylakoid lumen of plant chloroplasts and is essential for photoautotrophy, functioning as a PS I assembly factor. In this work, RNAi was used to suppress PPD1 expression, yielding mutants displaying a range of phenotypes with respect to PS I accumulation and function. These PPD1 RNAi mutants showed a loss of assembled PS I that was correlated with loss of the PPD1 protein. In the most severely affected PPD1 RNAi lines, the accumulated PS I complexes exhibited defects in electron transfer from plastocyanin to the oxidized reaction center P700 (+). The defects in PS I assembly in the PPD1 RNAi mutants also had secondary effects with respect to the association of light-harvesting antenna complexes to PS I. Because of the imbalance in photosystem function in the PPD1 RNAi mutants, light-harvesting complex II associated with and acted as an antenna for the PS I complexes. These results provide new evidence for the role of PPD1 in PS I biogenesis, particularly as a factor essential for proper assembly of the lumenal portion of the complex.
Collapse
Affiliation(s)
- Johnna L Roose
- From the Department of Biological Sciences, Biochemistry and Molecular Biology Section, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Laurie K Frankel
- From the Department of Biological Sciences, Biochemistry and Molecular Biology Section, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Terry M Bricker
- From the Department of Biological Sciences, Biochemistry and Molecular Biology Section, Louisiana State University, Baton Rouge, Louisiana 70803
| |
Collapse
|
18
|
Häusler RE, Heinrichs L, Schmitz J, Flügge UI. How sugars might coordinate chloroplast and nuclear gene expression during acclimation to high light intensities. MOLECULAR PLANT 2014; 7:1121-37. [PMID: 25006007 DOI: 10.1093/mp/ssu064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The concept of retrograde control of nuclear gene expression assumes the generation of signals inside the chloroplasts, which are either released from or sensed inside of the organelle. In both cases, downstream signaling pathways lead eventually to a differential regulation of nuclear gene expression and the production of proteins required in the chloroplast. This concept appears reasonable as the majority of the over 3000 predicted plastidial proteins are encoded by nuclear genes. Hence, the nucleus needs information on the status of the chloroplasts, such as during acclimation responses, which trigger massive changes in the protein composition of the thylakoid membrane and in the stroma. Here, we propose an additional control mechanism of nuclear- and plastome-encoded photosynthesis genes, taking advantage of pathways involved in sugar- or hormonal signaling. Sugars are major end products of photosynthesis and their contents respond very sensitively to changes in light intensities. Based on recent findings, we ask the question as to whether the carbohydrate status outside the chloroplast can be directly sensed within the chloroplast stroma. Sugars might synchronize the responsiveness of both genomes and thereby help to coordinate the expression of plastome- and nuclear-encoded photosynthesis genes in concert with other, more specific retrograde signals.
Collapse
Affiliation(s)
- Rainer E Häusler
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicherstr. 47b, 50674 Cologne, Germany
| | - Luisa Heinrichs
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicherstr. 47b, 50674 Cologne, Germany
| | - Jessica Schmitz
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicherstr. 47b, 50674 Cologne, Germany Present address: Plant Molecular Physiology and Biotechnology, Heinrich-Heine-University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Ulf-Ingo Flügge
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicherstr. 47b, 50674 Cologne, Germany
| |
Collapse
|
19
|
Abstract
In oxygenic photosynthetic eukaryotes, the hydroxylated carotenoid zeaxanthin is produced from preexisting violaxanthin upon exposure to excess light conditions. Zeaxanthin binding to components of the photosystem II (PSII) antenna system has been investigated thoroughly and shown to help in the dissipation of excess chlorophyll-excited states and scavenging of oxygen radicals. However, the functional consequences of the accumulation of the light-harvesting complex I (LHCI) proteins in the photosystem I (PSI) antenna have remained unclarified so far. In this work we investigated the effect of zeaxanthin binding on photoprotection of PSI-LHCI by comparing preparations isolated from wild-type Arabidopsis thaliana (i.e., with violaxanthin) and those isolated from the A. thaliana nonphotochemical quenching 2 mutant, in which violaxanthin is replaced by zeaxanthin. Time-resolved fluorescence measurements showed that zeaxanthin binding leads to a previously unrecognized quenching effect on PSI-LHCI fluorescence. The efficiency of energy transfer from the LHCI moiety of the complex to the PSI reaction center was down-regulated, and an enhanced PSI resistance to photoinhibition was observed both in vitro and in vivo. Thus, zeaxanthin was shown to be effective in inducing dissipative states in PSI, similar to its well-known effect on PSII. We propose that, upon acclimation to high light, PSI-LHCI changes its light-harvesting efficiency by a zeaxanthin-dependent quenching of the absorbed excitation energy, whereas in PSII the stoichiometry of LHC antenna proteins per reaction center is reduced directly.
Collapse
|
20
|
Albrecht-Borth V, Kauss D, Fan D, Hu Y, Collinge D, Marri S, Liebers M, Apel K, Pfannschmidt T, Chow WS, Pogson BJ. A novel proteinase, SNOWY COTYLEDON4, is required for photosynthetic acclimation to higher light intensities in Arabidopsis. PLANT PHYSIOLOGY 2013; 163:732-45. [PMID: 23940253 PMCID: PMC3793054 DOI: 10.1104/pp.113.216036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 08/12/2013] [Indexed: 05/02/2023]
Abstract
Excess light can have a negative impact on photosynthesis; thus, plants have evolved many different ways to adapt to different light conditions to both optimize energy use and avoid damage caused by excess light. Analysis of the Arabidopsis (Arabidopsis thaliana) mutant snowy cotyledon4 (sco4) revealed a mutation in a chloroplast-targeted protein that shares limited homology with CaaX-type endopeptidases. The SCO4 protein possesses an important function in photosynthesis and development, with point mutations rendering the seedlings and adult plants susceptible to photooxidative stress. The sco4 mutation impairs the acclimation of chloroplasts and their photosystems to excess light, evidenced in a reduction in photosystem I function, decreased linear electron transfer, yet increased nonphotochemical quenching. SCO4 is localized to the chloroplasts, which suggests the existence of an unreported type of protein modification within this organelle. Phylogenetic and yeast complementation analyses of SCO4-like proteins reveal that SCO4 is a member of an unknown group of higher plant-specific proteinases quite distinct from the well-described CaaX-type endopeptidases RAS Converting Enzyme1 (RCE1) and zinc metallopeptidase STE24 and lacks canonical CaaX activity. Therefore, we hypothesize that SCO4 is a novel endopeptidase required for critical protein modifications within chloroplasts, influencing the function of proteins involved in photosynthesis required for tolerance to excess light.
Collapse
Affiliation(s)
| | - Dominika Kauss
- Australian Research Council Centre of Excellence in Plant Energy Biology (V.A.-B., D.C., S.M., B.J.P.) and Research School of Biology (D.F., Y.H., W.S.C.), Australian National University Canberra, Acton, Australian Capital Territory 0200, Australia
- Institute of Plant Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (D.K., K.A.); and
- Université Grenoble-Alpes, Laboratoire de Physiologie Cellulaire and Végétale, Commissariat à l’Energie Atomique, 38054 Grenoble, France (M.L., T.P.)
| | - Dayong Fan
- Australian Research Council Centre of Excellence in Plant Energy Biology (V.A.-B., D.C., S.M., B.J.P.) and Research School of Biology (D.F., Y.H., W.S.C.), Australian National University Canberra, Acton, Australian Capital Territory 0200, Australia
- Institute of Plant Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (D.K., K.A.); and
- Université Grenoble-Alpes, Laboratoire de Physiologie Cellulaire and Végétale, Commissariat à l’Energie Atomique, 38054 Grenoble, France (M.L., T.P.)
| | - Yuanyuan Hu
- Australian Research Council Centre of Excellence in Plant Energy Biology (V.A.-B., D.C., S.M., B.J.P.) and Research School of Biology (D.F., Y.H., W.S.C.), Australian National University Canberra, Acton, Australian Capital Territory 0200, Australia
- Institute of Plant Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (D.K., K.A.); and
- Université Grenoble-Alpes, Laboratoire de Physiologie Cellulaire and Végétale, Commissariat à l’Energie Atomique, 38054 Grenoble, France (M.L., T.P.)
| | - Derek Collinge
- Australian Research Council Centre of Excellence in Plant Energy Biology (V.A.-B., D.C., S.M., B.J.P.) and Research School of Biology (D.F., Y.H., W.S.C.), Australian National University Canberra, Acton, Australian Capital Territory 0200, Australia
- Institute of Plant Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (D.K., K.A.); and
- Université Grenoble-Alpes, Laboratoire de Physiologie Cellulaire and Végétale, Commissariat à l’Energie Atomique, 38054 Grenoble, France (M.L., T.P.)
| | - Shashikanth Marri
- Australian Research Council Centre of Excellence in Plant Energy Biology (V.A.-B., D.C., S.M., B.J.P.) and Research School of Biology (D.F., Y.H., W.S.C.), Australian National University Canberra, Acton, Australian Capital Territory 0200, Australia
- Institute of Plant Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (D.K., K.A.); and
- Université Grenoble-Alpes, Laboratoire de Physiologie Cellulaire and Végétale, Commissariat à l’Energie Atomique, 38054 Grenoble, France (M.L., T.P.)
| | - Monique Liebers
- Australian Research Council Centre of Excellence in Plant Energy Biology (V.A.-B., D.C., S.M., B.J.P.) and Research School of Biology (D.F., Y.H., W.S.C.), Australian National University Canberra, Acton, Australian Capital Territory 0200, Australia
- Institute of Plant Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (D.K., K.A.); and
- Université Grenoble-Alpes, Laboratoire de Physiologie Cellulaire and Végétale, Commissariat à l’Energie Atomique, 38054 Grenoble, France (M.L., T.P.)
| | | | - Thomas Pfannschmidt
- Australian Research Council Centre of Excellence in Plant Energy Biology (V.A.-B., D.C., S.M., B.J.P.) and Research School of Biology (D.F., Y.H., W.S.C.), Australian National University Canberra, Acton, Australian Capital Territory 0200, Australia
- Institute of Plant Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (D.K., K.A.); and
- Université Grenoble-Alpes, Laboratoire de Physiologie Cellulaire and Végétale, Commissariat à l’Energie Atomique, 38054 Grenoble, France (M.L., T.P.)
| | - Wah S. Chow
- Australian Research Council Centre of Excellence in Plant Energy Biology (V.A.-B., D.C., S.M., B.J.P.) and Research School of Biology (D.F., Y.H., W.S.C.), Australian National University Canberra, Acton, Australian Capital Territory 0200, Australia
- Institute of Plant Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (D.K., K.A.); and
- Université Grenoble-Alpes, Laboratoire de Physiologie Cellulaire and Végétale, Commissariat à l’Energie Atomique, 38054 Grenoble, France (M.L., T.P.)
| | - Barry J. Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology (V.A.-B., D.C., S.M., B.J.P.) and Research School of Biology (D.F., Y.H., W.S.C.), Australian National University Canberra, Acton, Australian Capital Territory 0200, Australia
- Institute of Plant Sciences, Eidgenössisch Technische Hochschule Zurich, 8092 Zurich, Switzerland (D.K., K.A.); and
- Université Grenoble-Alpes, Laboratoire de Physiologie Cellulaire and Végétale, Commissariat à l’Energie Atomique, 38054 Grenoble, France (M.L., T.P.)
| |
Collapse
|
21
|
LHCII is an antenna of both photosystems after long-term acclimation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:420-6. [DOI: 10.1016/j.bbabio.2012.12.009] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 11/25/2012] [Accepted: 12/27/2012] [Indexed: 11/17/2022]
|
22
|
Wunder T, Liu Q, Aseeva E, Bonardi V, Leister D, Pribil M. Control of STN7 transcript abundance and transient STN7 dimerisation are involved in the regulation of STN7 activity. PLANTA 2013; 237:541-58. [PMID: 23086342 DOI: 10.1007/s00425-012-1775-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/14/2012] [Indexed: 05/25/2023]
Abstract
Reversible phosphorylation of LHCII, the light-harvesting complex of photosystem II, controls its migration between the two photosystems (state transitions), and serves to adapt the photosynthetic machinery of plants and green algae to short-term changes in ambient light conditions. The thylakoid kinase STN7 is required for LHCII phosphorylation and state transitions in vascular plants. Regulation of STN7 levels occurs at the post-translational level, depends on the thylakoid redox state, and might involve reversible autophosphorylation. Here, we have analysed the effects of different light conditions and chemical inhibitors on the abundance of STN7 transcripts and their products. This analysis was performed in wild-type Arabidopsis thaliana plants, in several photosynthetic mutants, and in lines overexpressing STN7 (oeSTN7) or expressing mutant variants of STN7 carrying single or double cysteine-serine exchanges. It was found that accumulation of the STN7 protein is also controlled at the level of transcript abundance. Under certain conditions, exposure to high light or far-red light treatment, the relative decreases in LHCII phosphorylation can be attributed to decreases in STN7 abundance. Nevertheless, inhibitor experiments showed that redox control of LHCII kinase activity persists in oeSTN7 plants. STN7 dimers were found in oeSTN7 plants and in lines with single cysteine-serine exchanges, indicating that dimerisation involves disulphide bridges. We speculate that transient STN7 dimerisation is required for STN7 activity, and that the altered dimerisation behaviour of oeSTN7 plants might be responsible for the unusually high phosphorylation of LHCII in the dark found in this genotype.
Collapse
Affiliation(s)
- Tobias Wunder
- Department Biology I, Ludwig-Maximilians-University Munich (LMU), Plant Molecular Biology (Botany), Großhaderner Strasse 2, Planegg-Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Regulation of Leaf Senescence: Role of Reactive Oxygen Species. PLASTID DEVELOPMENT IN LEAVES DURING GROWTH AND SENESCENCE 2013. [DOI: 10.1007/978-94-007-5724-0_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Juntawong P, Bailey-Serres J. Dynamic Light Regulation of Translation Status in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2012; 3:66. [PMID: 22645595 DOI: 10.3389/fpls.2012.00066/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/20/2012] [Indexed: 05/26/2023]
Abstract
Light, a dynamic environmental parameter, is an essential regulator of plant growth and development. Light-regulated transcriptional networks are well documented, whereas light-regulated post-transcriptional regulation has received limited attention. In this study, dynamics in translation of cytosolic mRNAs were evaluated at the genome-level in Arabidopsis thaliana seedlings grown under a typical light/dark diurnal regime, shifted to darkness at midday, and then re-illuminated. One-hour of unanticipated darkness reduced levels of polysomes by 17% in a manner consistent with inhibition of initiation of translation. This down-regulation of translation was reversed within 10 min of re-illumination. Quantitative comparison of the total cellular population of transcripts (the transcriptome) to those associated with one or more 80S ribosome (the translatome) identified over 1600 mRNAs that were differentially translated in response to light availability. Unanticipated darkness limited both transcription and translation of mRNAs encoding components of the photosynthetic machinery. Many mRNAs encoding proteins associated with the energy demanding process of protein synthesis were stable but sequestered in the dark, in a rapidly reversible manner. A meta-analysis determined these same transcripts were similarly and coordinately regulated in response to changes in oxygen availability. The dark and hypoxia translationally repressed mRNAs lack highly supported candidate RNA-regulatory elements but are characterized by G + C-rich 5'-untranslated regions. We propose that modulation of translation of a subset of cellular mRNAs functions as an energy conservation mechanism.
Collapse
Affiliation(s)
- Piyada Juntawong
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California Riverside, CA, USA
| | | |
Collapse
|
25
|
Suzuki N, Koussevitzky S, Mittler R, Miller G. ROS and redox signalling in the response of plants to abiotic stress. PLANT, CELL & ENVIRONMENT 2012; 35:259-70. [PMID: 21486305 DOI: 10.1111/j.1365-3040.2011.02336.x] [Citation(s) in RCA: 829] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The redox state of the chloroplast and mitochondria, the two main powerhouses of photosynthesizing eukaryotes, is maintained by a delicate balance between energy production and consumption, and affected by the need to avoid increased production of reactive oxygen species (ROS). These demands are especially critical during exposure to extreme environmental conditions, such as high light (HL) intensity, heat, drought or a combination of different environmental stresses. Under these conditions, ROS and redox cues, generated in the chloroplast and mitochondria, are essential for maintaining normal energy and metabolic fluxes, optimizing different cell functions, activating acclimation responses through retrograde signalling, and controlling whole-plant systemic signalling pathways. Regulation of the multiple redox and ROS signals in plants requires a high degree of coordination and balance between signalling and metabolic pathways in different cellular compartments. In this review, we provide an update on ROS and redox signalling in the context of abiotic stress responses, while addressing their role in retrograde regulation, systemic acquired acclimation and cellular coordination in plants.
Collapse
Affiliation(s)
- Nobuhiro Suzuki
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | | | | | | |
Collapse
|
26
|
Foyer CH, Neukermans J, Queval G, Noctor G, Harbinson J. Photosynthetic control of electron transport and the regulation of gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1637-61. [PMID: 22371324 DOI: 10.1093/jxb/ers013] [Citation(s) in RCA: 289] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The term 'photosynthetic control' describes the short- and long-term mechanisms that regulate reactions in the photosynthetic electron transport (PET) chain so that the rate of production of ATP and NADPH is coordinated with the rate of their utilization in metabolism. At low irradiances these mechanisms serve to optimize light use efficiency, while at high irradiances they operate to dissipate excess excitation energy as heat. Similarly, the production of ATP and NADPH in ratios tailored to meet demand is finely tuned by a sophisticated series of controls that prevents the accumulation of high NAD(P)H/NAD(P) ratios and ATP/ADP ratios that would lead to potentially harmful over-reduction and inactivation of PET chain components. In recent years, photosynthetic control has also been extrapolated to the regulation of gene expression because mechanisms that are identical or similar to those that serve to regulate electron flow through the PET chain also coordinate the regulated expression of genes encoding photosynthetic proteins. This requires coordinated gene expression in the chloroplasts, mitochondria, and nuclei, involving complex networks of forward and retrograde signalling pathways. Photosynthetic control operates to control photosynthetic gene expression in response to environmental and metabolic changes. Mining literature data on transcriptome profiles of C(3) and C(4) leaves from plants grown under high atmospheric carbon dioxide (CO(2)) levels compared with those grown with ambient CO(2) reveals that the transition to higher photorespiratory conditions in C(3) plants enhances the expression of genes associated with cyclic electron flow pathways in Arabidopsis thaliana, consistent with the higher ATP requirement (relative to NADPH) of photorespiration.
Collapse
Affiliation(s)
- Christine H Foyer
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | | | |
Collapse
|
27
|
Dockter C, Müller AH, Dietz C, Volkov A, Polyhach Y, Jeschke G, Paulsen H. Rigid core and flexible terminus: structure of solubilized light-harvesting chlorophyll a/b complex (LHCII) measured by EPR. J Biol Chem 2012; 287:2915-25. [PMID: 22147706 PMCID: PMC3268448 DOI: 10.1074/jbc.m111.307728] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/24/2011] [Indexed: 11/06/2022] Open
Abstract
The structure of the major light-harvesting chlorophyll a/b complex (LHCII) was analyzed by pulsed EPR measurements and compared with the crystal structure. Site-specific spin labeling of the recombinant protein allowed the measurement of distance distributions over several intra- and intermolecular distances in monomeric and trimeric LHCII, yielding information on the protein structure and its local flexibility. A spin label rotamer library based on a molecular dynamics simulation was used to take the local mobility of spin labels into account. The core of LHCII in solution adopts a structure very similar or identical to the one seen in crystallized LHCII trimers with little motional freedom as indicated by narrow distance distributions along and between α helices. However, distances comprising the lumenal loop domain show broader distance distributions, indicating some mobility of this loop structure. Positions in the hydrophilic N-terminal domain, upstream of the first trans-membrane α helix, exhibit more and more mobility the closer they are to the N terminus. The nine amino acids at the very N terminus that have not been resolved in any of the crystal structure analyses give rise to very broad and possibly bimodal distance distributions, which may represent two families of preferred conformations.
Collapse
Affiliation(s)
- Christoph Dockter
- From the Institut für Allgemeine Botanik der Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - André H. Müller
- From the Institut für Allgemeine Botanik der Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Carsten Dietz
- From the Institut für Allgemeine Botanik der Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Aleksei Volkov
- the Max-Planck-Institut für Polymerforschung, 55021 Mainz, Germany, and
| | - Yevhen Polyhach
- the Laboratorium für Physikalische Chemie, Eidgenössische Technische Hochschule, 8093 Zürich, Switzerland
| | - Gunnar Jeschke
- the Laboratorium für Physikalische Chemie, Eidgenössische Technische Hochschule, 8093 Zürich, Switzerland
| | - Harald Paulsen
- From the Institut für Allgemeine Botanik der Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| |
Collapse
|
28
|
León P, Gregorio J, Cordoba E. ABI4 and its role in chloroplast retrograde communication. FRONTIERS IN PLANT SCIENCE 2012; 3:304. [PMID: 23335930 PMCID: PMC3541689 DOI: 10.3389/fpls.2012.00304] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/18/2012] [Indexed: 05/17/2023]
Abstract
The acquisition of plastids is a landmark event in plant evolution. The proper functionality of these organelles depends on strict and continuous communication between the plastids and the nucleus to precisely adjust gene expression in response to the organelle's requirements. Signals originating from the plastids impact the expression of a variety of nuclear genes, and this retrograde communication is essential to couple the nuclear expression of plastid-localized products with organelle gene expression and, ultimately, functionality. Major advances have been made in this field over the past few years with the characterization of independent retrograde signaling pathways and the identification of some of their components. One such factor is the nuclear transcriptional factor ABI4 (ABA-INSENTIVE 4). ABI4, together with the plastid PPR GUN1 protein, has been proposed to function as a node of convergence for multiple plastid retrograde signaling pathways. ABI4 is conserved among plants and also plays important roles in various critical developmental and metabolic processes. ABI4 is a versatile regulator that positively and negatively modulates the expression of many genes, including other transcriptional factors. However, its mode of action during plastid retrograde signaling is not fully understood. In this review, we describe the current evidence that supports the participation of ABI4 in different retrograde communication pathways. ABI4 is regulated at the transcriptional and post-transcriptional level. A known regulator of ABI4 includes the PTM transcription factor, which moves from the chloroplast to the nucleus. This transcription factor is a candidate for the transmission of retrograde signals between the plastid and ABI4.
Collapse
Affiliation(s)
- Patricia León
- *Correspondence: Patricia León, Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, México. e-mail:
| | | | | |
Collapse
|
29
|
Juntawong P, Bailey-Serres J. Dynamic Light Regulation of Translation Status in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2012; 3:66. [PMID: 22645595 PMCID: PMC3355768 DOI: 10.3389/fpls.2012.00066] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/20/2012] [Indexed: 05/18/2023]
Abstract
Light, a dynamic environmental parameter, is an essential regulator of plant growth and development. Light-regulated transcriptional networks are well documented, whereas light-regulated post-transcriptional regulation has received limited attention. In this study, dynamics in translation of cytosolic mRNAs were evaluated at the genome-level in Arabidopsis thaliana seedlings grown under a typical light/dark diurnal regime, shifted to darkness at midday, and then re-illuminated. One-hour of unanticipated darkness reduced levels of polysomes by 17% in a manner consistent with inhibition of initiation of translation. This down-regulation of translation was reversed within 10 min of re-illumination. Quantitative comparison of the total cellular population of transcripts (the transcriptome) to those associated with one or more 80S ribosome (the translatome) identified over 1600 mRNAs that were differentially translated in response to light availability. Unanticipated darkness limited both transcription and translation of mRNAs encoding components of the photosynthetic machinery. Many mRNAs encoding proteins associated with the energy demanding process of protein synthesis were stable but sequestered in the dark, in a rapidly reversible manner. A meta-analysis determined these same transcripts were similarly and coordinately regulated in response to changes in oxygen availability. The dark and hypoxia translationally repressed mRNAs lack highly supported candidate RNA-regulatory elements but are characterized by G + C-rich 5'-untranslated regions. We propose that modulation of translation of a subset of cellular mRNAs functions as an energy conservation mechanism.
Collapse
Affiliation(s)
- Piyada Juntawong
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of CaliforniaRiverside, CA, USA
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of CaliforniaRiverside, CA, USA
- *Correspondence: Julia Bailey-Serres, Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, CA 92521, USA. e-mail:
| |
Collapse
|
30
|
Tikkanen M, Gollan PJ, Suorsa M, Kangasjärvi S, Aro EM. STN7 Operates in Retrograde Signaling through Controlling Redox Balance in the Electron Transfer Chain. FRONTIERS IN PLANT SCIENCE 2012; 3:277. [PMID: 23267361 PMCID: PMC3525998 DOI: 10.3389/fpls.2012.00277] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/23/2012] [Indexed: 05/20/2023]
Abstract
Phosphorylation of the major photosynthetic light harvesting antenna proteins by STN7 kinase balances excitation between PSII and PSI. Phosphorylation of such abundant proteins is unique, differing distinctively from conventional tasks of protein kinases in phosphorylation of low abundance proteins in signaling cascades. Excitation balance between PSII and PSI is critical for redox homeostasis between the plastoquinone and plastocyanin pools and PSI electron acceptors, determining the capacity of the thylakoid membrane to produce reactive oxygen species (ROS) that operate as signals relaying information between chloroplasts and other cellular compartments. STN7 has also been proposed to be a conventional signaling kinase, instigating the phosphorylation cascade required for coordinated expression of photosynthesis genes and assembly of the photosynthetic machinery. The absence of STN7 kinase, however, does not prevent plants from sensing redox imbalance and adjusting the stoichiometry of the photosynthetic machinery to restore redox homeostasis. This suggests that STN7 is not essential for signaling between the chloroplast and the nucleus. Here we discuss the evolution and functions of the STN7 and other thylakoid protein kinases and phosphatases, and the inherent difficulties in analyzing signaling cascades initiated from the photosynthetic machinery. Based on our analyses of literature and publicly available expression data, we conclude that STN7 exerts it signaling effect primarily by controlling chloroplast ROS homeostasis through maintaining steady-state phosphorylation of the light harvesting II proteins and the redox balance in the thylakoid membrane. ROS are important signaling molecules with a direct effect on the development of jasmonate, which in turn relays information out from the chloroplast. We propose that thylakoid membrane redox homeostasis, regulated by SNT7, sends cell-wide signals that reprogram the entire hormonal network in the cell.
Collapse
Affiliation(s)
- Mikko Tikkanen
- Molecular Plant Biology, Department of Biochemistry and Food Chemistry, University of TurkuTurku, Finland
| | - Peter J. Gollan
- Molecular Plant Biology, Department of Biochemistry and Food Chemistry, University of TurkuTurku, Finland
| | - Marjaana Suorsa
- Molecular Plant Biology, Department of Biochemistry and Food Chemistry, University of TurkuTurku, Finland
| | - Saijaliisa Kangasjärvi
- Molecular Plant Biology, Department of Biochemistry and Food Chemistry, University of TurkuTurku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry and Food Chemistry, University of TurkuTurku, Finland
- *Correspondence: Eva-Mari Aro, Molecular Plant Biology, Department of Biochemistry and Food Chemistry, University of Turku, FIN–20014 Turku, Finland. e-mail:
| |
Collapse
|
31
|
Galetskiy D, Lohscheider JN, Kononikhin AS, Popov IA, Nikolaev EN, Adamska I. Phosphorylation and nitration levels of photosynthetic proteins are conversely regulated by light stress. PLANT MOLECULAR BIOLOGY 2011; 77:461-73. [PMID: 21901528 DOI: 10.1007/s11103-011-9824-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 08/24/2011] [Indexed: 05/21/2023]
Abstract
Using a label-free mass spectrometric approach, we investigated light-induced changes in the distribution of phosphorylated and nitrated proteins within subpopulations of native photosynthetic complexes in the thylakoid membrane of Arabidopsis thaliana leaves adapted to growth light (GL) and subsequently exposed to high light (HL). Eight protein phosphorylation sites were identified in photosystem II (PSII) and the phosphorylation level of seven was regulated by HL as determined based on peak areas from ion chromatograms of phosphorylated and non-phosphorylated peptides. Although the phosphorylation of PSII proteins was reported in the past, we demonstrated for the first time that two minor antenna LHCB4 isoforms are alternately phosphorylated under GL and HL conditions in PSII monomers, dimers and supercomplexes. A role of LHCB4 phosphorylation in state transition and monomerization of PSII under HL conditions is proposed. We determined changes in the nitration level of 23 tyrosine residues in five photosystem I (PSI) and nine PSII proteins and demonstrated for the majority of them a lower nitration level in PSI and PSII complexes and supercomplexes under HL conditions, as compared to GL. In contrast, the nitration level significantly increased in assembled/disassembled PSI and PSII subcomplexes under HL conditions. A possible role of nitration in (1) monomerization of LHCB1-3 trimers under HL conditions (2) binding properties of ferredoxin-NADP+ oxidoreductase to photosystem I, and (3) PSII photodamage and repair cycle, is discussed. Based on these data, we propose that the conversely regulated phosphorylation and nitration levels regulate the stability and turnover of photosynthetic complexes under HL conditions.
Collapse
Affiliation(s)
- Dmitry Galetskiy
- Department of Physiology and Plant Biochemistry, University of Konstanz, Constance, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Dietzel L, Bräutigam K, Steiner S, Schüffler K, Lepetit B, Grimm B, Schöttler MA, Pfannschmidt T. Photosystem II supercomplex remodeling serves as an entry mechanism for state transitions in Arabidopsis. THE PLANT CELL 2011; 23:2964-77. [PMID: 21880991 PMCID: PMC3180804 DOI: 10.1105/tpc.111.087049] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/20/2011] [Accepted: 07/30/2011] [Indexed: 05/18/2023]
Abstract
Within dense plant populations, strong light quality gradients cause unbalanced excitation of the two photosystems resulting in reduced photosynthetic efficiency. Plants redirect such imbalances by structural rearrangements of the photosynthetic apparatus via state transitions and photosystem stoichiometry adjustments. However, less is known about the function of photosystem II (PSII) supercomplexes in this context. Here, we show in Arabidopsis thaliana that PSII supercomplex remodeling precedes and facilitates state transitions. Intriguingly, the remodeling occurs in the short term, paralleling state transitions, but is also present in a state transition-deficient mutant, indicating that PSII supercomplex generation is independently regulated and does not require light-harvesting complex phosphorylation and movement. Instead, PSII supercomplex remodeling involves reversible phosphorylation of PSII core subunits (preferentially of CP43) and requires the luminal PSII subunit Psb27 for general formation and structural stabilization. Arabidopsis knockout mutants lacking Psb27 display highly accelerated state transitions, indicating that release of PSII supercomplexes is required for phosphorylation and subsequent movement of the antenna. Downregulation of PSII supercomplex number by physiological light treatments also results in acceleration of state transitions confirming the genetic analyses. Thus, supercomplex remodeling is a prerequisite and an important kinetic determinant of state transitions.
Collapse
Affiliation(s)
- Lars Dietzel
- Lehrstuhl für Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Katharina Bräutigam
- Lehrstuhl für Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Sebastian Steiner
- Lehrstuhl für Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Kristin Schüffler
- Lehrstuhl für Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Bernard Lepetit
- Institut für Biologie I, Abteilung für Pflanzenphysiologie Universität Leipzig, 04103 Leipzig, Germany
| | - Bernhard Grimm
- Institut für Biologie/Pflanzenphysiologie, Humboldt-Universität Berlin, 10115 Berlin, Germany
| | - Mark Aurel Schöttler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Thomas Pfannschmidt
- Lehrstuhl für Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
- Address correspondence to
| |
Collapse
|
33
|
Spetea C, Schoefs B. Solute transporters in plant thylakoid membranes: Key players during photosynthesis and light stress. Commun Integr Biol 2011; 3:122-9. [PMID: 20585503 DOI: 10.4161/cib.3.2.10909] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 12/09/2009] [Indexed: 11/19/2022] Open
Abstract
Plants utilize sunlight to drive photosynthetic energy conversion in the chloroplast thylakoid membrane. Here are located four major photosynthetic complexes, about which we have great knowledge in terms of structure and function. However, much less we know about auxiliary proteins, such as transporters, ensuring an optimum function and turnover of these complexes. The most prominent thylakoid transporter is the proton-translocating ATP-synthase. Recently, four additional transporters have been identified in the thylakoid membrane of Arabidopsis thaliana, namely one copper-transporting P-ATPase, one chloride channel, one phosphate transporter, and one ATP/ADP carrier. Here, we review the current knowledge on the function and physiological role of these transporters during photosynthesis and light stress in plants. Subsequently, we make a survey on the outlook of thylakoid activities awaiting identification of responsible proteins. Such knowledge is necessary to understand the thylakoid network of transporters, and to design strategies for bioengineering crop plants in the future.
Collapse
|
34
|
Dietz KJ, Pfannschmidt T. Novel regulators in photosynthetic redox control of plant metabolism and gene expression. PLANT PHYSIOLOGY 2011; 155:1477-85. [PMID: 21205617 PMCID: PMC3091116 DOI: 10.1104/pp.110.170043] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 12/23/2010] [Indexed: 05/18/2023]
Affiliation(s)
- Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Bielefeld University, 33615 Bielefeld, Germany.
| | | |
Collapse
|