1
|
Neelam K, Aggarwal SK, Kumari S, Kumar K, Kaur A, Babbar A, Lore JS, Kaur R, Khanna R, Vikal Y, Singh K. Molecular Mapping and Transfer of Quantitative Trait Loci (QTL) for Sheath Blight Resistance from Wild Rice Oryza nivara to Cultivated Rice ( Oryza sativa L.). Genes (Basel) 2024; 15:919. [PMID: 39062698 PMCID: PMC11275441 DOI: 10.3390/genes15070919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Sheath blight (ShB) is the most serious disease of rice (Oryza sativa L.), caused by the soil-borne fungus Rhizoctonia solani Kühn (R. solani). It poses a significant threat to global rice productivity, resulting in approximately 50% annual yield loss. Managing ShB is particularly challenging due to the broad host range of the pathogen, its necrotrophic nature, the emergence of new races, and the limited availability of highly resistant germplasm. In this study, we conducted QTL mapping using an F2 population derived from a cross between a partially resistant accession (IRGC81941A) of Oryza nivara and the susceptible rice cultivar Punjab rice 121 (PR121). Our analysis identified 29 QTLs for ShB resistance, collectively explaining a phenotypic variance ranging from 4.70 to 48.05%. Notably, a cluster of four QTLs (qRLH1.1, qRLH1.2, qRLH1.5, and qRLH1.8) on chromosome 1 consistently exhibit a resistant response against R. solani. These QTLs span from 0.096 to 420.1 Kb on the rice reference genome and contain several important genes, including Ser/Thr protein kinase, auxin-responsive protein, protease inhibitor/seed storage/LTP family protein, MLO domain-containing protein, disease-responsive protein, thaumatin-like protein, Avr9/Cf9-eliciting protein, and various transcription factors. Additionally, simple sequence repeats (SSR) markers RM212 and RM246 linked to these QTLs effectively distinguish resistant and susceptible rice cultivars, showing great promise for marker-assisted selection programs. Furthermore, our study identified pre-breeding lines in the advanced backcrossed population that exhibited superior agronomic traits and sheath blight resistance compared to the recurrent parent. These promising lines hold significant potential for enhancing the sheath blight resistance in elite cultivars through targeted improvement efforts.
Collapse
Affiliation(s)
- Kumari Neelam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141004, India
| | - Sumit Kumar Aggarwal
- Department of Plant Pathology, Punjab Agricultural University, Ludhiana 141004, India
- ICAR—Indian Institute of Maize Research, PAU Campus, Ludhiana 141004, India
| | - Saundarya Kumari
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141004, India
| | - Kishor Kumar
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141004, India
- Division of Agricultural Biotechnology, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur Campus, Kolkata 700103, India
| | - Amandeep Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141004, India
| | - Ankita Babbar
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141004, India
| | - Jagjeet Singh Lore
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana 141004, India
| | - Rupinder Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana 141004, India
| | - Renu Khanna
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana 141004, India
| | - Yogesh Vikal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141004, India
| | - Kuldeep Singh
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141004, India
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India
| |
Collapse
|
2
|
Optimized Method for the Identification of Candidate Genes and Molecular Maker Development Related to Drought Tolerance in Oil Palm (Elaeis guineensis Jacq.). PLANTS 2022; 11:plants11172317. [PMID: 36079700 PMCID: PMC9460821 DOI: 10.3390/plants11172317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
Drought is a major constraint in oil palm (Elaeis guineensis Jacq.) production. As oil palm breeding takes a long time, molecular markers of genes related to drought tolerance characteristics were developed for effective selection. Two methods of gene identification associated with drought, differential display reverse transcription polymerase chain reaction (DDRT-PCR) and pyrosequencing platform, were conducted before developing the EST-SSR marker. By DDRT-PCR, fourteen out of twenty-four primer combinations yielded the polymorphism in leaf as 77.66% and root as 96.09%, respectively. BLASTN and BLASTX revealed nucleotides from 8 out of 236 different banding similarities to genes associated with drought stress. Five out of eight genes gave a similarity with our pyrosequencing sequencing database. Furthermore, pyrosequencing analysis of two oil palm libraries, drought-tolerant, and drought sensitive, found 117 proteins associated with drought tolerance. Thirteen out of sixty EST-SSR primers could be distinguished in 119 oil palm parents in our breeding program. All of our found genes revealed an ability to develop as a molecular marker for drought tolerance. However, the function of the validated genes on drought response in oil palm must be evaluated.
Collapse
|
3
|
Muthusamy M, Kim JH, Kim SH, Park SY, Lee SI. BrPP5.2 Overexpression Confers Heat Shock Tolerance in Transgenic Brassica rapa through Inherent Chaperone Activity, Induced Glucosinolate Biosynthesis, and Differential Regulation of Abiotic Stress Response Genes. Int J Mol Sci 2021; 22:ijms22126437. [PMID: 34208567 PMCID: PMC8234546 DOI: 10.3390/ijms22126437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
Plant phosphoprotein phosphatases are ubiquitous and multifarious enzymes that respond to developmental requirements and stress signals through reversible dephosphorylation of target proteins. In this study, we investigated the hitherto unknown functions of Brassica rapa protein phosphatase 5.2 (BrPP5.2) by transgenic overexpression of B. rapa lines. The overexpression of BrPP5.2 in transgenic lines conferred heat shock tolerance in 65–89% of the young transgenic seedlings exposed to 46 °C for 25 min. The examination of purified recombinant BrPP5.2 at different molar ratios efficiently prevented the thermal aggregation of malate dehydrogenase at 42 °C, thus suggesting that BrPP5.2 has inherent chaperone activities. The transcriptomic dynamics of transgenic lines, as determined using RNA-seq, revealed that 997 and 1206 (FDR < 0.05, logFC ≥ 2) genes were up- and down-regulated, as compared to non-transgenic controls. Statistical enrichment analyses revealed abiotic stress response genes, including heat stress response (HSR), showed reduced expression in transgenic lines under optimal growth conditions. However, most of the HSR DEGs were upregulated under high temperature stress (37 °C/1 h) conditions. In addition, the glucosinolate biosynthesis gene expression and total glucosinolate content increased in the transgenic lines. These findings provide a new avenue related to BrPP5.2 downstream genes and their crucial metabolic and heat stress responses in plants.
Collapse
Affiliation(s)
- Muthusamy Muthusamy
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Rural Development Administration, Jeonju 54874, Korea; (M.M.); (J.H.K.); (S.H.K.); (S.Y.P.)
| | - Jong Hee Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Rural Development Administration, Jeonju 54874, Korea; (M.M.); (J.H.K.); (S.H.K.); (S.Y.P.)
- Division of Horticultural Biotechnology, Hankyung National University, Anseong 17579, Korea
| | - Suk Hee Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Rural Development Administration, Jeonju 54874, Korea; (M.M.); (J.H.K.); (S.H.K.); (S.Y.P.)
| | - So Young Park
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Rural Development Administration, Jeonju 54874, Korea; (M.M.); (J.H.K.); (S.H.K.); (S.Y.P.)
| | - Soo In Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Rural Development Administration, Jeonju 54874, Korea; (M.M.); (J.H.K.); (S.H.K.); (S.Y.P.)
- Correspondence: ; Tel.: +82-63-238-4618; Fax: +82-63-238-4604
| |
Collapse
|
4
|
Mishra A, Gupta S, Gupta P, Dhawan SS, Lal RK. In Silico Identification of miRNA and Targets from Chrysopogon zizanioides (L.) Roberty with Functional Validation from Leaf and Root Tissues. Appl Biochem Biotechnol 2020; 192:1076-1092. [PMID: 32656724 DOI: 10.1007/s12010-020-03381-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/23/2020] [Indexed: 11/24/2022]
Abstract
microRNAs are small non-coding RNA molecule that plays an important role in metabolism. Chrysopogon zizanioides (L.) Roberty is an important aromatic plant used in perfumery industries, soil, water conservation, and agricultural practices. In this study, the transcriptomic sequence of vetiver leaf and root was subjected to miRNA identification by the computational methods. miRNA identification was carried out using a homology-based method by C-mii software with several other online tools. A total of 80 miRNA were identified from both leaf and root sequences. Target identification was done by identified miRNA sets. A total of 25 and 31 miRNA families were identified in both leaf and root, respectively, with ten common families involve in different ontological function. miR169 and miR5021 regulate most of the target in leaf and root. In vetiver, many primary and secondary metabolism elements are regulated by miRNA as photo-system, transcription factor, terpenoid metabolism, etc. Here is the first in silico study revealing the specific miRNAs and their target genes for corresponding root and leaf tissues respectively in C. zizanioides.
Collapse
Affiliation(s)
- Anand Mishra
- Genetics and Plant Breeding Division, CSIR-Central Institute for Medicinal and Aromatic Plants, Lucknow, UP, 226015, India.
| | - Sanchita Gupta
- Bioinformatics Department, CSIR-National Botanical Research Institute, Lucknow, UP, 226001, India
| | - Pankhuri Gupta
- Biotechnology Division, CSIR-Central Institute for Medicinal and Aromatic Plants, U P, Lucknow, 226015, India.,CSIR-Human Resource Development Centre Campus, Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| | - Sunita Singh Dhawan
- Biotechnology Division, CSIR-Central Institute for Medicinal and Aromatic Plants, U P, Lucknow, 226015, India
| | - Raj Kishori Lal
- Genetics and Plant Breeding Division, CSIR-Central Institute for Medicinal and Aromatic Plants, Lucknow, UP, 226015, India
| |
Collapse
|
5
|
Saski CA, Scheffler BE, Hulse-Kemp AM, Liu B, Song Q, Ando A, Stelly DM, Scheffler JA, Grimwood J, Jones DC, Peterson DG, Schmutz J, Chen ZJ. Sub genome anchored physical frameworks of the allotetraploid Upland cotton (Gossypium hirsutum L.) genome, and an approach toward reference-grade assemblies of polyploids. Sci Rep 2017; 7:15274. [PMID: 29127298 PMCID: PMC5681701 DOI: 10.1038/s41598-017-14885-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 10/18/2017] [Indexed: 01/06/2023] Open
Abstract
Like those of many agricultural crops, the cultivated cotton is an allotetraploid and has a large genome (~2.5 gigabase pairs). The two sub genomes, A and D, are highly similar but unequally sized and repeat-rich, which pose significant challenges for accurate genome reconstruction using standard approaches. Here we report the development of BAC libraries, sub genome specific physical maps, and a new-generation sequencing approach that will lead to a reference-grade genome assembly for Upland cotton. Three BAC libraries were constructed, fingerprinted, and integrated with BAC-end sequences (BES) to produce a de novo whole-genome physical map. The BAC map was partitioned by sub genomes through alignment to the diploid progenitor D-genome reference sequence with densely spaced BES anchor points and computational filtering. The physical maps were validated with FISH and genetic mapping of SNP markers derived from BES. Two pairs of homeologous chromosomes, A11/D11 and A12/D12, were used to assess multiplex sequencing approaches for completeness and scalability. The results represent the first sub genome anchored physical maps of Upland cotton, and a new-generation approach to the whole-genome sequencing, which will lead to the reference-grade assembly of allopolyploid cotton and serve as a general strategy for sequencing other polyploid species.
Collapse
Affiliation(s)
| | - Brian E Scheffler
- USDA-ARS, Genomics and Bioinformatics Research Unit, Stoneville, MS, USA
| | - Amanda M Hulse-Kemp
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA
| | - Bo Liu
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA
| | - Qingxin Song
- Department of Molecular Biosciences, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, University of Texas, Austin, TX, 78712, USA
| | - Atsumi Ando
- Department of Molecular Biosciences, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, University of Texas, Austin, TX, 78712, USA
| | - David M Stelly
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA
| | | | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Don C Jones
- Agriculture and Environmental Research, Cotton Incorporated, Cary, NC, USA
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing & Biotechnology and Department of Plant & Soil Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
| | - Z Jeffery Chen
- Department of Molecular Biosciences, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, University of Texas, Austin, TX, 78712, USA.
| |
Collapse
|
6
|
Wang H, Li K, Hu X, Liu Z, Wu Y, Huang C. Genome-wide association analysis of forage quality in maize mature stalk. BMC PLANT BIOLOGY 2016; 16:227. [PMID: 27769176 PMCID: PMC5073832 DOI: 10.1186/s12870-016-0919-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/12/2016] [Indexed: 05/21/2023]
Abstract
BACKGROUND Plant digestibility of silage maize (Zea mays L.) has a large influence on nutrition intake for animal feeding. Improving forage quality will enhance the utilization efficiency and feeding value of forage maize. Dissecting the genetic basis of forage quality will improve our understanding of the complex nature of cell wall biosynthesis and degradation, which is also helpful for breeding good quality silage maize. RESULTS Acid detergent fiber (ADF), neutral detergent fiber (NDF) and in vitro dry matter digestibility (IVDMD) of stalk were evaluated in a diverse maize population, which is comprised of 368 inbred lines and planted across seven environments. Using a mixed model accounting for population structure and polygenic background effects, a genome-wide association study was conducted to identify single nucleotide polymorphisms (SNPs) significantly associated with forage quality. Scanning 559,285 SNPs across the whole genome, 73, 41 and 82 SNPs were found to be associated with ADF, NDF, and IVDMD, respectively. Each significant SNP explained 4.2 %-6.2 % of the phenotypic variation. Underlying these associated loci, 56 genes were proposed as candidate genes for forage quality. CONCLUSIONS Of all the candidate genes proposed by GWAS, we only found a C3H gene (ZmC3H2) that is directly involved in cell wall component biosynthesis. The candidate genes found in this study are mainly involved in signal transduction, stress resistance, and transcriptional regulation of cell wall biosynthetic gene expression. Adding high digestibility maize into the association panel would be helpful for increasing genetic variability and identifying more genes associated with forage quality traits. Cloning and functional validation of these genes would be helpful for understanding the molecular mechanism of the fiber content and digestibility. These findings provide us new insights into cell wall formation and deposition.
Collapse
Affiliation(s)
- Hongwu Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Kun Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xiaojiao Hu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Zhifang Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yujin Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Changling Huang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
7
|
Li K, Wang H, Hu X, Liu Z, Wu Y, Huang C. Genome-Wide Association Study Reveals the Genetic Basis of Stalk Cell Wall Components in Maize. PLoS One 2016; 11:e0158906. [PMID: 27479588 PMCID: PMC4968789 DOI: 10.1371/journal.pone.0158906] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/23/2016] [Indexed: 12/03/2022] Open
Abstract
Lignin, cellulose and hemicellulose are the three main components of the plant cell wall and can impact stalk quality by affecting cell wall structure and strength. In this study, we evaluated the lignin (LIG), cellulose (CEL) and hemicellulose (HC) contents in maize using an association mapping panel that included 368 inbred lines in seven environments. A genome-wide association study using approximately 0.56 million SNPs with a minor allele frequency of 0.05 identified 22, 18 and 24 loci significantly associated with LIG, CEL and HC at P < 1.0×10−4, respectively. The allelic variation of each significant association contributed 4 to 7% of the phenotypic variation. Candidate genes identified by GWAS mainly encode enzymes involved in cell wall metabolism, transcription factors, protein kinase and protein related to other biological processes. Among the association signals, six candidate genes had pleiotropic effects on lignin and cellulose content. These results provide valuable information for better understanding the genetic basis of stalk cell wall components in maize.
Collapse
Affiliation(s)
- Kun Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongwu Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaojiao Hu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhifang Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yujin Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Changling Huang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- * E-mail:
| |
Collapse
|
8
|
Samayoa LF, Malvar RA, Olukolu BA, Holland JB, Butrón A. Genome-wide association study reveals a set of genes associated with resistance to the Mediterranean corn borer (Sesamia nonagrioides L.) in a maize diversity panel. BMC PLANT BIOLOGY 2015; 15:35. [PMID: 25652257 PMCID: PMC4340109 DOI: 10.1186/s12870-014-0403-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/22/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND Corn borers are the primary maize pest; their feeding on the pith results in stem damage and yield losses. In this study, we performed a genome-wide association study (GWAS) to identify SNPs associated with resistance to Mediterranean corn borer in a maize diversity panel using a set of more than 240,000 SNPs. RESULTS Twenty five SNPs were significantly associated with three resistance traits: 10 were significantly associated with tunnel length, 4 with stem damage, and 11 with kernel resistance. Allelic variation at each significant SNP was associated with from 6 to 9% of the phenotypic variance. A set of genes containing or physically close to these SNPs are proposed as candidate genes for borer resistance, supported by their involvement in plant defense-related mechanisms in previously published evidence. The linkage disequilibrium decayed (r(2) < 0.10) rapidly within short distance, suggesting high resolution of GWAS associations. CONCLUSIONS Most of the candidate genes found in this study are part of signaling pathways, others act as regulator of expression under biotic stress condition, and a few genes are encoding enzymes with antibiotic effect against insects such as the cystatin1 gene and the defensin proteins. These findings contribute to the understanding the complex relationship between plant-insect interactions.
Collapse
Affiliation(s)
- Luis Fernando Samayoa
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), P.O. Box 28, 36080, Pontevedra, Spain.
| | - Rosa Ana Malvar
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), P.O. Box 28, 36080, Pontevedra, Spain.
| | - Bode A Olukolu
- Department of Crop Science, North Carolina State University, Raleigh, North Carolina, 27695, USA.
| | - James B Holland
- Department of Crop Science, North Carolina State University, Raleigh, North Carolina, 27695, USA.
- U.S. Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, Raleigh, North Carolina, 27695, USA.
| | - Ana Butrón
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), P.O. Box 28, 36080, Pontevedra, Spain.
| |
Collapse
|
9
|
Bajsa J, Pan Z, Duke SO. Cantharidin, a protein phosphatase inhibitor, strongly upregulates detoxification enzymes in the Arabidopsis proteome. JOURNAL OF PLANT PHYSIOLOGY 2015; 173:33-40. [PMID: 25462076 DOI: 10.1016/j.jplph.2014.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/19/2014] [Accepted: 09/07/2014] [Indexed: 06/04/2023]
Abstract
Cantharidin, a potent inhibitor of plant serine/threonine protein phosphatases (PPPs), is highly phytotoxic and dramatically affects the transcriptome in Arabidopsis. To investigate the effect of cantharidin on the Arabidopsis proteome, a combination of two-dimensional difference gel electrophoresis (2-D DIGE) and matrix-assisted laser desorption ionization time-of-flight (MALDI/TOF) mass spectrometry was employed for protein profiling. Multivariate statistical analysis identified 75 significant differential spots corresponding to 59 distinct cantharidin-responsive proteins, which were representative of different biological processes, cellular components, and molecular functions categories. The majority of identified proteins localized in the chloroplast had a significantly decreased presence, especially proteins involved in photosynthesis. Detoxification enzymes, especially glutathione-S-transferases (GSTs), were the most upregulated group (ca. 1.5- to 3.3-fold). Given that the primary role of GSTs is involved in the process of detoxification of both xenobiotic and endobiotic compounds, the induction of GSTs suggests that cantharidin promoted inhibition of PPPs may lead to defense-like responses through regulation of GST enzymes as well as other metabolic pathways.
Collapse
Affiliation(s)
- Joanna Bajsa
- USDA, ARS, Natural Products Utilization Research Unit, Cochran Research Center, University, MS 38677, USA
| | - Zhiqiang Pan
- USDA, ARS, Natural Products Utilization Research Unit, Cochran Research Center, University, MS 38677, USA
| | - Stephen O Duke
- USDA, ARS, Natural Products Utilization Research Unit, Cochran Research Center, University, MS 38677, USA.
| |
Collapse
|
10
|
Omics methods for probing the mode of action of natural and synthetic phytotoxins. J Chem Ecol 2013; 39:333-47. [PMID: 23355015 PMCID: PMC3589630 DOI: 10.1007/s10886-013-0240-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/20/2012] [Accepted: 12/31/2012] [Indexed: 11/05/2022]
Abstract
For a little over a decade, omics methods (transcriptomics, proteomics, metabolomics, and physionomics) have been used to discover and probe the mode of action of both synthetic and natural phytotoxins. For mode of action discovery, the strategy for each of these approaches is to generate an omics profile for phytotoxins with known molecular targets and to compare this library of responses to the responses of compounds with unknown modes of action. Using more than one omics approach enhances the probability of success. Generally, compounds with the same mode of action generate similar responses with a particular omics method. Stress and detoxification responses to phytotoxins can be much clearer than effects directly related to the target site. Clues to new modes of action must be validated with in vitro enzyme effects or genetic approaches. Thus far, the only new phytotoxin target site discovered with omics approaches (metabolomics and physionomics) is that of cinmethylin and structurally related 5-benzyloxymethyl-1,2-isoxazolines. These omics approaches pointed to tyrosine amino-transferase as the target, which was verified by enzyme assays and genetic methods. In addition to being a useful tool of mode of action discovery, omics methods provide detailed information on genetic and biochemical impacts of phytotoxins. Such information can be useful in understanding the full impact of natural phytotoxins in both agricultural and natural ecosystems.
Collapse
|