1
|
Luna-García V, Bernal Gallardo JJ, Rethoret-Pasty M, Pasha A, Provart NJ, de Folter S. A high-resolution gene expression map of the medial and lateral domains of the gynoecium of Arabidopsis. PLANT PHYSIOLOGY 2024; 195:410-429. [PMID: 38088205 DOI: 10.1093/plphys/kiad658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/14/2023] [Indexed: 05/02/2024]
Abstract
Angiosperms are characterized by the formation of flowers, and in their inner floral whorl, one or various gynoecia are produced. These female reproductive structures are responsible for fruit and seed production, thus ensuring the reproductive competence of angiosperms. In Arabidopsis (Arabidopsis thaliana), the gynoecium is composed of two fused carpels with different tissues that need to develop and differentiate to form a mature gynoecium and thus the reproductive competence of Arabidopsis. For these reasons, they have become the object of study for floral and fruit development. However, due to the complexity of the gynoecium, specific spatio-temporal tissue expression patterns are still scarce. In this study, we used precise laser-assisted microdissection and high-throughput RNA sequencing to describe the transcriptional profiles of the medial and lateral domain tissues of the Arabidopsis gynoecium. We provide evidence that the method used is reliable and that, in addition to corroborating gene expression patterns of previously reported regulators of these tissues, we found genes whose expression dynamics point to being involved in cytokinin and auxin homeostasis and in cell cycle progression. Furthermore, based on differential gene expression analyses, we functionally characterized several genes and found that they are involved in gynoecium development. This resource is available via the Arabidopsis eFP browser and will serve the community in future studies on developmental and reproductive biology.
Collapse
Affiliation(s)
- Valentín Luna-García
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato CP 36824, Guanajuato, México
| | - Judith Jazmin Bernal Gallardo
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato CP 36824, Guanajuato, México
| | - Martin Rethoret-Pasty
- Department of Cell & Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, ON M5S 3B2, Canada
- Polytech Nice Sophia, Université Côte d'Azur, 930 Rte des Colles, 06410 Biot, France
| | - Asher Pasha
- Department of Cell & Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, ON M5S 3B2, Canada
| | - Nicholas J Provart
- Department of Cell & Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, ON M5S 3B2, Canada
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato CP 36824, Guanajuato, México
| |
Collapse
|
2
|
Hu L, Liu P, Jin Z, Sun J, Weng Y, Chen P, Du S, Wei A, Li Y. A mutation in CsHY2 encoding a phytochromobilin (PΦB) synthase leads to an elongated hypocotyl 1(elh1) phenotype in cucumber (Cucumis sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2639-2652. [PMID: 34091695 DOI: 10.1007/s00122-021-03849-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
The elongated hypocotyl1 (elh1) mutant in cucumber is due to a mutation in CsHY2, which is a homolog of the Arabidopsis HY2 encoding the phytochromobilin (PΦB) synthase for phytochrome biosynthesis Hypocotyl length is a critical determinant in establishing high quality seedlings for successful cucumber production, but knowledge on the molecular regulation of hypocotyl growth in cucumber is very limited. Here, we reported identification and characterization of a cucumber elongated hypocotyl 1 (elh1) mutant. We found that the longer hypocotyl in elh1 was due to longitudinal growth of hypocotyl cells. With fine mapping, the elh1 locus was delimited to a 20.9-kb region containing three annotated genes; only one polymorphism was identified in this region between two parental lines, which was a non-synonymous SNP (G28153633A) in the third exon of CsHY2 (CsGy1G030000) that encodes a phytochromobilin (PΦB) synthase. Uniqueness of the mutant allele at CsHY2 was verified in natural cucumber populations. Ectopic expression of CsHY2 in Arabidopsis hy2-1 long-hypocotyl mutant led to reduced hypocotyl length. The PΦB protein was targeted to the chloroplast. The expression levels of CsHY2 and five phytochrome genes CsPHYA1, CsPHYA2, CsPHYB, CsPHYC and CsPHYE were all significantly down-regulated while several cell elongation related genes were up-regulated in elh1 mutant compared to wild-type cucumber, which are correlated with dynamic hypocotyl elongation in the mutant. RNA-seq analysis in the WT and mutant revealed differentially expressed genes involved in porphyrin and chlorophyll metabolisms, cell elongation and plant hormone signal transduction pathways. This is the first report to characterize and clone the CsHY2 gene in cucumber. This work reveals the important of CsHY2 in regulating hypocotyl length and extends our understanding of the roles of CsHY2 in cucumber.
Collapse
Affiliation(s)
- Liangliang Hu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Peng Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhuoshuai Jin
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jing Sun
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yiqun Weng
- Horticulture Department, USDA-ARS Vegetable Crops Research Unit, University of Wisconsin, Madison, WI, 53706, USA
| | - Peng Chen
- College of Life Science, Northwest A & F University, Yangling, 712100, Shaanxi,, China
| | - Shengli Du
- Tianjin Vegetable Research Center, Tianjin, 300192, China
- National Key Laboratory of Vegetable Germplasm Innovation, Tianjin, 300192, China
| | - Aimin Wei
- Tianjin Vegetable Research Center, Tianjin, 300192, China.
- National Key Laboratory of Vegetable Germplasm Innovation, Tianjin, 300192, China.
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
3
|
Wu M, Upreti S, Yan A, Wakeel A, Wu J, Ge S, Liu Y, Liu B, Gan Y. SPATULA regulates floral transition and photomorphogenesis in a PHYTOCHROME B-dependent manner in Arabidopsis. Biochem Biophys Res Commun 2018; 503:2380-2385. [PMID: 29966653 DOI: 10.1016/j.bbrc.2018.06.165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 06/28/2018] [Indexed: 11/16/2022]
Abstract
Light is the most important exogenous stimulus regulating plant growth and various developmental processes. Phytochromes, especially PHYTOCHROME B (PHYB) mediates the various light-mediated processes in Arabidopsis. SPATULA (SPT) is an important transcription factor, which has been reported previously to participate in temperature-mediated transition from seed dormancy to germination. Here we investigate the function of SPT in the floral transition under long day conditions and photomorphogenesis in Arabidopsis. In this study, spt-2 shows significantly delayed flowering time. But mutation of SPT in the background of phyb-1 rescues the phenotype of spt-2. The flowering time of double mutant of spt-2/phyb-1 is similar with the wild type. These results indicate that SPT promotes the transition from vegetative stage to floral stage and it regulates this transition in a PHYB-dependent manner. With qRT-PCR analysis, it is found that SPT regulates flowering time via FLC, SVP, FT and SOC1. Furthermore, SPT also controls photomorphogenesis. spt-2 displays shortened hypocotyls and increased chlorophylls contents compared with the wild type. These phenotypes are also rescued in the double mutant of spt-2/phyb-1. These results indicate that SPT is also involved in photomorphogenic development in Arabidopsis and SPT regulates photomorphogenesis in a PHYB-dependent manner. Collectively, SPT is not only a temperature responder but it is also an important light regulator during plant growth and development.
Collapse
Affiliation(s)
- Minjie Wu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Sakila Upreti
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - An Yan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore, 637616, Singapore
| | - Abdul Wakeel
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Junyu Wu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Song Ge
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yihua Liu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Bohan Liu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yinbo Gan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Nozue K, Tat AV, Kumar Devisetty U, Robinson M, Mumbach MR, Ichihashi Y, Lekkala S, Maloof JN. Shade avoidance components and pathways in adult plants revealed by phenotypic profiling. PLoS Genet 2015; 11:e1004953. [PMID: 25874869 PMCID: PMC4398415 DOI: 10.1371/journal.pgen.1004953] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 12/11/2014] [Indexed: 01/01/2023] Open
Abstract
Shade from neighboring plants limits light for photosynthesis; as a consequence, plants have a variety of strategies to avoid canopy shade and compete with their neighbors for light. Collectively the response to foliar shade is called the shade avoidance syndrome (SAS). The SAS includes elongation of a variety of organs, acceleration of flowering time, and additional physiological responses, which are seen throughout the plant life cycle. However, current mechanistic knowledge is mainly limited to shade-induced elongation of seedlings. Here we use phenotypic profiling of seedling, leaf, and flowering time traits to untangle complex SAS networks. We used over-representation analysis (ORA) of shade-responsive genes, combined with previous annotation, to logically select 59 known and candidate novel mutants for phenotyping. Our analysis reveals shared and separate pathways for each shade avoidance response. In particular, auxin pathway components were required for shade avoidance responses in hypocotyl, petiole, and flowering time, whereas jasmonic acid pathway components were only required for petiole and flowering time responses. Our phenotypic profiling allowed discovery of seventeen novel shade avoidance mutants. Our results demonstrate that logical selection of mutants increased success of phenotypic profiling to dissect complex traits and discover novel components.
Collapse
Affiliation(s)
- Kazunari Nozue
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| | - An V. Tat
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| | - Upendra Kumar Devisetty
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| | - Matthew Robinson
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| | - Maxwell R. Mumbach
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| | - Yasunori Ichihashi
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| | - Saradadevi Lekkala
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| | - Julin N. Maloof
- Department of Plant Biology, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
5
|
Makkena S, Lamb RS. The bHLH transcription factor SPATULA is a key regulator of organ size in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2013; 8:e24140. [PMID: 23470719 PMCID: PMC3897497 DOI: 10.4161/psb.24140] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant organ size and thus plant size is determined by both cell proliferation and cell expansion. The bHLH transcription factor SPATULA (SPT) was originally identified as a regulator of carpel patterning. It has subsequently been found to control growth of the organs of the shoot. It does this at least in part by controlling the size of meristematic regions of organs in parallel to gibberellic acid (GA). It also acts downstream of several environmental signals, influencing growth in response to light and temperature. We have recently demonstrated that SPT functions to repress the size of the root meristem and thus root growth and size. It appears to do this using a similar mechanism to its control of leaf size. Based on the recent work on SPT, we propose that it is a growth repressor that acts to limit the size of meristems in response to environmental signals, perhaps by regulating auxin transport.
Collapse
Affiliation(s)
- Srilakshmi Makkena
- Plant Cellular and Molecular Biology Graduate Program; Ohio State University; Columbus, OH USA
| | - Rebecca S. Lamb
- Plant Cellular and Molecular Biology Graduate Program; Ohio State University; Columbus, OH USA
- Department of Molecular Genetics; Ohio State University; Columbus, OH USA
- Correspondence to: Rebecca S. Lamb,
| |
Collapse
|
6
|
Makkena S, Lamb RS. The bHLH transcription factor SPATULA regulates root growth by controlling the size of the root meristem. BMC PLANT BIOLOGY 2013; 13:1. [PMID: 23924433 PMCID: PMC3583232 DOI: 10.1186/1471-2229-13-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 12/12/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND The Arabidopsis thaliana gene SPATULA (SPT), encoding a bHLH transcription factor, was originally identified for its role in pistil development. SPT is necessary for the growth and development of all carpel margin tissues including the style, stigma, septum and transmitting tract. Since then, it has been shown to have pleiotropic roles during development, including restricting the meristematic region of the leaf primordia and cotyledon expansion. Although SPT is expressed in roots, its role in this organ has not been investigated. RESULTS An analysis of embryo and root development showed that loss of SPT function causes an increase in quiescent center size in both the embryonic and postembryonic stem cell niches. In addition, root meristem size is larger due to increased division, which leads to a longer primary root. spt mutants exhibit other pleiotropic developmental phenotypes, including more flowers, shorter internodes and an extended flowering period. Genetic and molecular analysis suggests that SPT regulates cell proliferation in parallel to gibberellic acid as well as affecting auxin accumulation or transport. CONCLUSIONS Our data suggest that SPT functions in growth control throughout sporophytic growth of Arabidopsis, but is not necessary for cell fate decisions except during carpel development. SPT functions independently of gibberellic acid during root development, but may play a role in regulating auxin transport or accumulation. Our data suggests that SPT plays a role in control of root growth, similar to its roles in above ground tissues.
Collapse
Affiliation(s)
- Srilakshmi Makkena
- Plant Cellular and Molecular Biology Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Rebecca S Lamb
- Plant Cellular and Molecular Biology Graduate Program, The Ohio State University, Columbus, OH, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
7
|
Reymond MC, Brunoud G, Chauvet A, Martínez-Garcia JF, Martin-Magniette ML, Monéger F, Scutt CP. A light-regulated genetic module was recruited to carpel development in Arabidopsis following a structural change to SPATULA. THE PLANT CELL 2012; 24:2812-25. [PMID: 22851763 PMCID: PMC3426116 DOI: 10.1105/tpc.112.097915] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A key innovation of flowering plants is the female reproductive organ, the carpel. Here, we show that a mechanism that regulates carpel margin development in the model flowering plant Arabidopsis thaliana was recruited from light-regulated processes. This recruitment followed the loss from the basic helix-loop-helix transcription factor SPATULA (SPT) of a domain previously responsible for its negative regulation by phytochrome. We propose that the loss of this domain was a prerequisite for the light-independent expression in female reproductive tissues of a genetic module that also promotes shade avoidance responses in vegetative organs. Striking evidence for this proposition is provided by the restoration of wild-type carpel development to spt mutants by low red/far-red light ratios, simulating vegetation shade, which we show to occur via phytochrome B, PHYTOCHROME INTERACTING FACTOR4 (PIF4), and PIF5. Our data illustrate the potential of modular evolutionary events to generate rapid morphological change and thereby provide a molecular basis for neo-Darwinian theories that describe this nongradualist phenomenon. Furthermore, the effects shown here of light quality perception on carpel development lead us to speculate on the potential role of light-regulated mechanisms in plant organs that, like the carpel, form within the shade of surrounding tissues.
Collapse
Affiliation(s)
- Mathieu C. Reymond
- Laboratoire de Reproduction et Développement des Plantes (Unité Mixte de Recherche 5667, Centre National de la Recherche Scientifique–Institut National de la Recherche Agronomique–Université de Lyon), Ecole Normale Supérieure de Lyon, 69364 Lyon cedex 07, France
| | - Géraldine Brunoud
- Laboratoire de Reproduction et Développement des Plantes (Unité Mixte de Recherche 5667, Centre National de la Recherche Scientifique–Institut National de la Recherche Agronomique–Université de Lyon), Ecole Normale Supérieure de Lyon, 69364 Lyon cedex 07, France
| | - Aurélie Chauvet
- Laboratoire de Reproduction et Développement des Plantes (Unité Mixte de Recherche 5667, Centre National de la Recherche Scientifique–Institut National de la Recherche Agronomique–Université de Lyon), Ecole Normale Supérieure de Lyon, 69364 Lyon cedex 07, France
| | - Jaime F. Martínez-Garcia
- Institució Catalana de Recerca i Estudis Avançats and Center for Research in Agricultural Genomics (Consejo Superior de Investigaciones Cientificas–Institut de Recerca i Tecnologia Agroalimentàries–Universitat Autònoma de Barcelona–Universitat de Barcelona), 08139-Bellaterra, Barcelona, Spain
| | - Marie-Laure Martin-Magniette
- Unité de Recherche en Génomique Végétale (Unité Mixte de Recherche 1165, Institut National de la Recherche Agronomique–Université Evry Val d'Essonne), 91057 Evry cedex, France
- Mathématiques et Informatique Appliquées (Unité Mixte de Recherche 518, Institut National de la Recherche Agronomique–AgroParisTech), 75005 Paris, France
| | - Françoise Monéger
- Laboratoire de Reproduction et Développement des Plantes (Unité Mixte de Recherche 5667, Centre National de la Recherche Scientifique–Institut National de la Recherche Agronomique–Université de Lyon), Ecole Normale Supérieure de Lyon, 69364 Lyon cedex 07, France
| | - Charles P. Scutt
- Laboratoire de Reproduction et Développement des Plantes (Unité Mixte de Recherche 5667, Centre National de la Recherche Scientifique–Institut National de la Recherche Agronomique–Université de Lyon), Ecole Normale Supérieure de Lyon, 69364 Lyon cedex 07, France
- Address correspondence to
| |
Collapse
|