1
|
Wiegard JC, Damm K, Lechner M, Thölken C, Ngo S, Putzer H, Hartmann RK. Processing and decay of 6S-1 and 6S-2 RNAs in Bacillus subtilis. RNA (NEW YORK, N.Y.) 2023; 29:1481-1499. [PMID: 37369528 PMCID: PMC10578484 DOI: 10.1261/rna.079666.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
Noncoding 6S RNAs regulate transcription by binding to the active site of bacterial RNA polymerase holoenzymes. Processing and decay of 6S-1 and 6S-2 RNA were investigated in Bacillus subtilis by northern blot and RNA-seq analyses using different RNase knockout strains, as well as by in vitro processing assays. For both 6S RNA paralogs, we identified a key-but mechanistically different-role of RNase J1. RNase J1 catalyzes 5'-end maturation of 6S-1 RNA, yet relatively inefficient and possibly via the enzyme's "sliding endonuclease" activity. 5'-end maturation has no detectable effect on 6S-1 RNA function, but rather regulates its decay: The generated 5'-monophosphate on matured 6S-1 RNA propels endonucleolytic cleavage in its apical loop region. The major 6S-2 RNA degradation pathway is initiated by endonucleolytic cleavage in the 5'-central bubble to trigger 5'-to-3'-exoribonucleolytic degradation of the downstream fragment by RNase J1. The four 3'-exonucleases of B. subtilis-RNase R, PNPase, YhaM, and particularly RNase PH-are involved in 3'-end trimming of both 6S RNAs, degradation of 6S-1 RNA fragments, and decay of abortive transcripts (so-called product RNAs, ∼14 nt in length) synthesized on 6S-1 RNA during outgrowth from stationary phase. In the case of the growth-retarded RNase Y deletion strain, we were unable to infer a specific role of RNase Y in 6S RNA decay. Yet, a participation of RNase Y in 6S RNA decay still remains possible, as evidence for such a function may have been obscured by overlapping substrate specificities of RNase Y, RNase J1, and RNase J2.
Collapse
Affiliation(s)
- Jana Christin Wiegard
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, D-35037 Marburg, Germany
| | - Katrin Damm
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, D-35037 Marburg, Germany
| | - Marcus Lechner
- Philipps-Universität Marburg, Center for Synthetic Microbiology (SYNMIKRO), Bioinformatics Core Facility, D-35032 Marburg, Germany
| | - Clemens Thölken
- Philipps-Universität Marburg, Center for Synthetic Microbiology (SYNMIKRO), Bioinformatics Core Facility, D-35032 Marburg, Germany
| | - Saravuth Ngo
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Harald Putzer
- Expression Génétique Microbienne, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Roland K Hartmann
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, D-35037 Marburg, Germany
| |
Collapse
|
2
|
Spanka DT, Klug G. Maturation of UTR-Derived sRNAs Is Modulated during Adaptation to Different Growth Conditions. Int J Mol Sci 2021; 22:ijms222212260. [PMID: 34830143 PMCID: PMC8625941 DOI: 10.3390/ijms222212260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 12/02/2022] Open
Abstract
Small regulatory RNAs play a major role in bacterial gene regulation by binding their target mRNAs, which mostly influences the stability or translation of the target. Expression levels of sRNAs are often regulated by their own promoters, but recent reports have highlighted the presence and importance of sRNAs that are derived from mRNA 3′ untranslated regions (UTRs). In this study, we investigated the maturation of 5′ and 3′ UTR-derived sRNAs on a global scale in the facultative phototrophic alphaproteobacterium Rhodobacter sphaeroides. Including some already known UTR-derived sRNAs like UpsM or CcsR1-4, 14 sRNAs are predicted to be located in 5 UTRs and 16 in 3′ UTRs. The involvement of different ribonucleases during maturation was predicted by a differential RNA 5′/3′ end analysis based on RNA next generation sequencing (NGS) data from the respective deletion strains. The results were validated in vivo and underline the importance of polynucleotide phosphorylase (PNPase) and ribonuclease E (RNase E) during processing and maturation. The abundances of some UTR-derived sRNAs changed when cultures were exposed to external stress conditions, such as oxidative stress and also during different growth phases. Promoter fusions revealed that this effect cannot be solely attributed to an altered transcription rate. Moreover, the RNase E dependent cleavage of several UTR-derived sRNAs varied significantly during the early stationary phase and under iron depletion conditions. We conclude that an alteration of ribonucleolytic processing influences the levels of UTR-derived sRNAs, and may thus indirectly affect their mRNA targets.
Collapse
|
3
|
Spanka DT, Reuscher CM, Klug G. Impact of PNPase on the transcriptome of Rhodobacter sphaeroides and its cooperation with RNase III and RNase E. BMC Genomics 2021; 22:106. [PMID: 33549057 PMCID: PMC7866481 DOI: 10.1186/s12864-021-07409-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The polynucleotide phosphorylase (PNPase) is conserved among both Gram-positive and Gram-negative bacteria. As a core part of the Escherichia coli degradosome, PNPase is involved in maintaining proper RNA levels within the bacterial cell. It plays a major role in RNA homeostasis and decay by acting as a 3'-to-5' exoribonuclease. Furthermore, PNPase can catalyze the reverse reaction by elongating RNA molecules in 5'-to-3' end direction which has a destabilizing effect on the prolonged RNA molecule. RNA degradation is often initiated by an endonucleolytic cleavage, followed by exoribonucleolytic decay from the new 3' end. RESULTS The PNPase mutant from the facultative phototrophic Rhodobacter sphaeroides exhibits several phenotypical characteristics, including diminished adaption to low temperature, reduced resistance to organic peroxide induced stress and altered growth behavior. The transcriptome composition differs in the pnp mutant strain, resulting in a decreased abundance of most tRNAs and rRNAs. In addition, PNPase has a major influence on the half-lives of several regulatory sRNAs and can have both a stabilizing or a destabilizing effect. Moreover, we globally identified and compared differential RNA 3' ends in RNA NGS sequencing data obtained from PNPase, RNase E and RNase III mutants for the first time in a Gram-negative organism. The genome wide RNA 3' end analysis revealed that 885 3' ends are degraded by PNPase. A fair percentage of these RNA 3' ends was also identified at the same genomic position in RNase E or RNase III mutant strains. CONCLUSION The PNPase has a major influence on RNA processing and maturation and thus modulates the transcriptome of R. sphaeroides. This includes sRNAs, emphasizing the role of PNPase in cellular homeostasis and its importance in regulatory networks. The global 3' end analysis indicates a sequential RNA processing: 5.9% of all RNase E-dependent and 9.7% of all RNase III-dependent RNA 3' ends are subsequently degraded by PNPase. Moreover, we provide a modular pipeline which greatly facilitates the identification of RNA 5'/3' ends. It is publicly available on GitHub and is distributed under ICS license.
Collapse
Affiliation(s)
- Daniel-Timon Spanka
- Institute of Microbiology and Molecular Biology, Justus Liebig University Giessen, IFZ, Giessen, Germany
| | - Carina Maria Reuscher
- Institute of Microbiology and Molecular Biology, Justus Liebig University Giessen, IFZ, Giessen, Germany
| | - Gabriele Klug
- Institute of Microbiology and Molecular Biology, Justus Liebig University Giessen, IFZ, Giessen, Germany.
| |
Collapse
|
4
|
Iost I, Chabas S, Darfeuille F. Maturation of atypical ribosomal RNA precursors in Helicobacter pylori. Nucleic Acids Res 2019; 47:5906-5921. [PMID: 31006803 PMCID: PMC6582327 DOI: 10.1093/nar/gkz258] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/28/2019] [Accepted: 04/18/2019] [Indexed: 01/01/2023] Open
Abstract
In most bacteria, ribosomal RNA is transcribed as a single polycistronic precursor that is first processed by RNase III. This double-stranded specific RNase cleaves two large stems flanking the 23S and 16S rRNA mature sequences, liberating three 16S, 23S and 5S rRNA precursors, which are further processed by other ribonucleases. Here, we investigate the rRNA maturation pathway of the human gastric pathogen Helicobacter pylori. This bacterium has an unusual arrangement of its rRNA genes, the 16S rRNA gene being separated from a 23S-5S rRNA cluster. We show that RNase III also initiates processing in this organism, by cleaving two typical stem structures encompassing 16S and 23S rRNAs and an atypical stem–loop located upstream of the 5S rRNA. Deletion of RNase III leads to the accumulation of a large 23S-5S precursor that is found in polysomes, suggesting that it can function in translation. Finally, we characterize a cis-encoded antisense RNA overlapping the leader of the 23S-5S rRNA precursor. We present evidence that this antisense RNA interacts with this precursor, forming an intermolecular complex that is cleaved by RNase III. This pairing induces additional specific cleavages of the rRNA precursor coupled with a rapid degradation of the antisense RNA.
Collapse
Affiliation(s)
- Isabelle Iost
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, France
| | - Sandrine Chabas
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, France
| | - Fabien Darfeuille
- ARNA Laboratory, Inserm U1212, CNRS UMR 5320, Université de Bordeaux, France
| |
Collapse
|
5
|
Gordon GC, Pfleger BF. Regulatory Tools for Controlling Gene Expression in Cyanobacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1080:281-315. [PMID: 30091100 PMCID: PMC6662922 DOI: 10.1007/978-981-13-0854-3_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cyanobacteria are attractive hosts for converting carbon dioxide and sunlight into desirable chemical products. To engineer these organisms and manipulate their metabolic pathways, the biotechnology community has developed genetic tools to control gene expression. Many native cyanobacterial promoters and related sequence elements have been used to regulate genes of interest, and heterologous tools that use non-native small molecules to induce gene expression have been demonstrated. Overall, IPTG-based induction systems seem to be leaky and initially demonstrate small dynamic ranges in cyanobacteria. Consequently, a variety of other induction systems have been optimized to enable tighter control of gene expression. Tools require significant optimization because they function quite differently in cyanobacteria when compared to analogous use in model heterotrophs. We hypothesize that these differences are due to fundamental differences in physiology between organisms. This review is not intended to summarize all known products made in cyanobacteria nor the performance (titer, rate, yield) of individual strains, but instead will focus on the genetic tools and the inherent aspects of cellular physiology that influence gene expression in cyanobacteria.
Collapse
Affiliation(s)
- Gina C Gordon
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
6
|
Förstner KU, Reuscher CM, Haberzettl K, Weber L, Klug G. RNase E cleavage shapes the transcriptome ofRhodobacter sphaeroidesand strongly impacts phototrophic growth. Life Sci Alliance 2018; 1:e201800080. [PMID: 30456366 PMCID: PMC6238624 DOI: 10.26508/lsa.201800080] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/13/2018] [Accepted: 07/13/2018] [Indexed: 11/24/2022] Open
Abstract
This study identifies the cleavage sites of the endoribonuclease RNase E in the Rhodobacter sphaeroides transcriptome and demonstrates its effect on oxidative stress resistance and phototrophic growth. Bacteria adapt to changing environmental conditions by rapid changes in their transcriptome. This is achieved not only by adjusting rates of transcription but also by processing and degradation of RNAs. We applied TIER-Seq (transiently inactivating an endoribonuclease followed by RNA-Seq) for the transcriptome-wide identification of RNase E cleavage sites and of 5′ RNA ends, which are enriched when RNase E activity is reduced in Rhodobacter sphaeroides. These results reveal the importance of RNase E for the maturation and turnover of mRNAs, rRNAs, and sRNAs in this guanine-cytosine-rich α-proteobacterium, some of the latter have well-described functions in the oxidative stress response. In agreement with this, a role of RNase E in the oxidative stress response is demonstrated. A remarkably strong phenotype of a mutant with reduced RNase E activity was observed regarding the formation of photosynthetic complexes and phototrophic growth, whereas there was no effect on chemotrophic growth.
Collapse
Affiliation(s)
- Konrad U Förstner
- German National Library of Medicine—Information Center for Life Sciences, Cologne, Germany
- Technical University of Cologne, Faculty for Information and Communication Sciences, Cologne, Germany
- Core Unit Systems Medicine, Institutes of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
- Correspondence:
| | - Carina M Reuscher
- Institut für Mikrobiologie und Molekularbiologie, Interdisciplinary Research Center for Biosystems, Universität Giessen, Giessen, Germany
| | - Kerstin Haberzettl
- Institut für Mikrobiologie und Molekularbiologie, Interdisciplinary Research Center for Biosystems, Universität Giessen, Giessen, Germany
| | - Lennart Weber
- Institut für Mikrobiologie und Molekularbiologie, Interdisciplinary Research Center for Biosystems, Universität Giessen, Giessen, Germany
| | - Gabriele Klug
- Institut für Mikrobiologie und Molekularbiologie, Interdisciplinary Research Center for Biosystems, Universität Giessen, Giessen, Germany
| |
Collapse
|
7
|
Enzymatic activity necessary to restore the lethality due to Escherichia coli RNase E deficiency is distributed among bacteria lacking RNase E homologues. PLoS One 2017; 12:e0177915. [PMID: 28542621 PMCID: PMC5436854 DOI: 10.1371/journal.pone.0177915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/05/2017] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli RNase E (Eco-RNase E), encoded by rne (Eco-rne), is considered the global RNA decay initiator. Although Eco-RNase E is an essential gene product in E. coli, some bacterial species, such as Bacillus subtilis, do not possess Eco-RNase E sequence homologues. B. subtilis instead possesses RNase J1/J2 (Bsu-RNase J1/J2) and RNase Y (Bsu-RNase Y) to execute RNA decay. Here we found that E. coli lacking the Eco-rne gene (Δrne E. coli) was viable conditional on M9 minimal media by introducing Bsu-RNase J1/J2 or Bsu-RNase Y. We also cloned an extremely short Eco-RNase E homologue (Wpi-RNase E) and a canonical sized Bsu-RNase J1/J2 homologue (Wpi-RNase J) from Wolbachia pipientis, an α-proteobacterial endosymbiont of arthropods. We found that Wpi-RNase J restored the colony-forming ability (CFA) of Δrne E. coli, whereas Wpi-RNase E did not. Unexpectedly, Wpi-RNase E restored defective CFA due to lack of Eco-RNase G, a paralogue of Eco-RNase E. Our results indicate that bacterial species that lack Eco-RNase E homologues or bacterial species that possess Eco-RNase E homologues which lack Eco-RNase E-like activities have a modest Eco-RNase E-like function using RNase J and/or RNase Y. These results suggest that Eco-RNase E-like activities might distribute among a wide array of bacteria and that functions of RNases may have changed dynamically during evolutionary divergence of bacterial lineages.
Collapse
|
8
|
Baumgardt K, Melior H, Madhugiri R, Thalmann S, Schikora A, McIntosh M, Becker A, Evguenieva-Hackenberg E. RNase E and RNase J are needed for S-adenosylmethionine homeostasis in Sinorhizobium meliloti. MICROBIOLOGY-SGM 2017; 163:570-583. [PMID: 28141492 DOI: 10.1099/mic.0.000442] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ribonucleases (RNases) E and J play major roles in E. coli and Bacillus subtilis, respectively, and co-exist in Sinorhizobium meliloti. We analysed S. meliloti 2011 mutants with mini-Tn5 insertions in the corresponding genes rne and rnj and found many overlapping effects. We observed similar changes in mRNA levels, including lower mRNA levels of the motility and chemotaxis related genes flaA, flgB and cheR and higher levels of ndvA (important for glucan export). The acyl-homoserine lactone (AHL) levels were also higher during exponential growth in both RNase mutants, despite no increase in the expression of the sinI AHL synthase gene. Furthermore, several RNAs from both mutants migrated aberrantly in denaturing gels at 300 V but not under stronger denaturing conditions at 1300 V. The similarities between the two mutants could be explained by increased levels of the key methyl donor S-adenosylmethionine (SAM), since this may result in faster AHL synthesis leading to higher AHL accumulation as well as in uncontrolled methylation of macromolecules including RNA, which may strengthen RNA secondary structures. Indeed, we found that in both mutants the N6-methyladenosine content was increased almost threefold and the SAM level was increased at least sevenfold. Complementation by induced ectopic expression of the respective RNase restored the AHL and SAM levels in each of the mutants. In summary, our data show that both RNase E and RNase J are needed for SAM homeostasis in S. meliloti.
Collapse
Affiliation(s)
- Kathrin Baumgardt
- Institute of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany.,Present address: CNRS, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Hendrik Melior
- Institute of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Ramakanth Madhugiri
- Institute of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany.,Present address: Institute of Medical Virology, Biomedical Research Center, Justus Liebig University, Schubertstr. 81, D 35392 Giessen, Germany
| | - Sebastian Thalmann
- Institute of Microbiology and Molecular Biology, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Adam Schikora
- Institute of Phytopathology and Applied Zoology, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany.,Present address: Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104, Brunswick, Germany
| | - Matthew McIntosh
- Centre of Synthetic Microbiology, Hans-Meerwein-Straße 6, D-35043 Marburg, Germany
| | - Anke Becker
- Centre of Synthetic Microbiology, Hans-Meerwein-Straße 6, D-35043 Marburg, Germany
| | | |
Collapse
|
9
|
Remes B, Eisenhardt BD, Srinivasan V, Klug G. IscR of Rhodobacter sphaeroides functions as repressor of genes for iron-sulfur metabolism and represents a new type of iron-sulfur-binding protein. Microbiologyopen 2015; 4:790-802. [PMID: 26235649 PMCID: PMC4618611 DOI: 10.1002/mbo3.279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 06/15/2015] [Accepted: 06/23/2015] [Indexed: 12/20/2022] Open
Abstract
IscR proteins are known as transcriptional regulators for Fe–S biogenesis. In the facultatively phototrophic bacterium, Rhodobacter sphaeroides IscR is the product of the first gene in the isc-suf operon. A major role of IscR in R. sphaeroides iron-dependent regulation was suggested in a bioinformatic study (Rodionov et al., PLoS Comput Biol 2:e163, 2006), which predicted a binding site in the upstream regions of several iron uptake genes, named Iron-Rhodo-box. Most known IscR proteins have Fe–S clusters featuring (Cys)3(His)1 ligation. However, IscR proteins from Rhodobacteraceae harbor only a single-Cys residue and it was considered unlikely that they can ligate an Fe–S cluster. In this study, the role of R. sphaeroides IscR as transcriptional regulator and sensor of the Fe–S cluster status of the cell was analyzed. A mutant lacking IscR is more impaired in growth under iron limitation than the wild-type and exhibits significantly increased ROS levels in iron-replete and iron-deplete conditions. Expression studies reveal that R. sphaeroides IscR in its cluster-bound form functions as transcriptional repressor of genes involved in iron metabolism by direct binding to the promoter region of genes preceded by the motif. A total of 110 genes are directly or indirectly affected by IscR. Furthermore, IscR possesses a unique Fe–S cluster ligation scheme with only a single cysteine involved.
Collapse
Affiliation(s)
- Bernhard Remes
- Institut für Mikrobiologie und Molekularbiologie, IFZ, Justus-Liebig-Universität, 35392, Giessen, Germany
| | - Benjamin D Eisenhardt
- Institut für Mikrobiologie und Molekularbiologie, IFZ, Justus-Liebig-Universität, 35392, Giessen, Germany
| | - Vasundara Srinivasan
- LOEWE-Zentrum für Synthetische Mikrobiologie, Philipps Universität Marburg, 35043, Marburg, Germany
| | - Gabriele Klug
- Institut für Mikrobiologie und Molekularbiologie, IFZ, Justus-Liebig-Universität, 35392, Giessen, Germany
| |
Collapse
|
10
|
Rische-Grahl T, Weber L, Remes B, Förstner KU, Klug G. RNase J is required for processing of a small number of RNAs in Rhodobacter sphaeroides. RNA Biol 2014; 11:855-64. [PMID: 24922065 PMCID: PMC4179960 DOI: 10.4161/rna.29440] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
All bacteria contain multiple exoribonucleases to ensure a fast breakdown of different RNA molecules, either for maturation or for complete degradation to the level of mononucleotides. This efficient RNA degradation plays pivotal roles in the post-transcriptional gene regulation, in RNA processing and maturation as well as in RNA quality control mechanisms and global adaption to stress conditions. Besides different 3'-to-5' exoribonucleases mostly with overlapping functions in vivo many bacteria additionally possess the 5'-to-3' exoribonuclease, RNase J, to date the only known bacterial ribonuclease with this activity. An RNA-seq approach was applied to identify specific targets of RNase J in the α-proteobacterium Rhodobacter sphaeroides. Only few transcripts were strongly affected by the lack of RNase J implying that its function is mostly required for specific processing/degradation steps in this bacterium. The accumulation of diverse RNA fragments in the RNase J deletion mutant points to RNA features that apparently cannot be targeted by the conventional 3'-exoribonucleases in Gram-negative bacteria.
Collapse
Affiliation(s)
- Tom Rische-Grahl
- Institut für Mikrobiologie und Molekularbiologie, University of Giessen, Germany
| | - Lennart Weber
- Institut für Mikrobiologie und Molekularbiologie, University of Giessen, Germany
| | - Bernhard Remes
- Institut für Mikrobiologie und Molekularbiologie, University of Giessen, Germany
| | - Konrad U Förstner
- Institute for Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany; Research Center for Infectious Diseases, University of Würzburg, 97080 Würzburg, Germany
| | - Gabriele Klug
- Institut für Mikrobiologie und Molekularbiologie, University of Giessen, Germany
| |
Collapse
|
11
|
RNase E affects the expression of the acyl-homoserine lactone synthase gene sinI in Sinorhizobium meliloti. J Bacteriol 2014; 196:1435-47. [PMID: 24488310 DOI: 10.1128/jb.01471-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Quorum sensing of Sinorhizobium meliloti relies on N-acyl-homoserine lactones (AHLs) as autoinducers. AHL production increases at high population density, and this depends on the AHL synthase SinI and two transcriptional regulators, SinR and ExpR. Our study demonstrates that ectopic expression of the gene rne, coding for RNase E, an endoribonuclease that is probably essential for growth, prevents the accumulation of AHLs at detectable levels. The ectopic rne expression led to a higher level of rne mRNA and a lower level of sinI mRNA independently of the presence of ExpR, the AHL receptor, and AHLs. In line with this, IPTG (isopropyl-β-D-thiogalactopyranoside)-induced overexpression of rne resulted in a shorter half-life of sinI mRNA and a strong reduction of AHL accumulation. Moreover, using translational sinI-egfp fusions, we found that sinI expression is specifically decreased upon induced overexpression of rne, independently of the presence of the global posttranscriptional regulator Hfq. The 28-nucleotide 5' untranslated region (UTR) of sinI mRNA was sufficient for this effect. Random amplification of 5' cDNA ends (5'-RACE) analyses revealed a potential RNase E cleavage site at position +24 between the Shine-Dalgarno site and the translation start site. We postulate therefore that RNase E-dependent degradation of sinI mRNA from the 5' end is one of the steps mediating a high turnover of sinI mRNA, which allows the Sin quorum-sensing system to respond rapidly to changes in transcriptional control of AHL production.
Collapse
|
12
|
Dominski Z, Carpousis AJ, Clouet-d'Orval B. Emergence of the β-CASP ribonucleases: highly conserved and ubiquitous metallo-enzymes involved in messenger RNA maturation and degradation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:532-51. [PMID: 23403287 DOI: 10.1016/j.bbagrm.2013.01.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/18/2013] [Accepted: 01/22/2013] [Indexed: 01/05/2023]
Abstract
The β-CASP ribonucleases, which are found in the three domains of life, have in common a core of 460 residues containing seven conserved sequence motifs involved in the tight binding of two catalytic zinc ions. A hallmark of these enzymes is their ability to catalyze both endo- and exo-ribonucleolytic degradation. Exo-ribonucleolytic degradation proceeds in the 5' to 3' direction and is sensitive to the phosphorylation state of the 5' end of a transcript. Recent phylogenomic analyses have shown that the β-CASP ribonucleases can be partitioned into two major subdivisions that correspond to orthologs of eukaryal CPSF73 and bacterial RNase J. We discuss the known functions of the CPSF73 and RNase J orthologs, their association into complexes, and their structure as it relates to mechanism of action. Eukaryal CPSF73 is part of a large multiprotein complex that is involved in the maturation of the 3' end of RNA Polymerase II transcripts and the polyadenylation of messenger RNA. RNase J1 and J2 are paralogs in Bacillus subtilis that are involved in the degradation of messenger RNA and the maturation of non-coding RNA. RNase J1 and J2 co-purify as a heteromeric complex and there is recent evidence that they interact with other enzymes to form a bacterial RNA degradosome. Finally, we speculate on the evolutionary origin of β-CASP ribonucleases and on their functions in Archaea. Orthologs of CPSF73 with endo- and exo-ribonuclease activity are strictly conserved throughout the archaea suggesting a role for these enzymes in the maturation and/or degradation of messenger RNA. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Zbigniew Dominski
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | | | | |
Collapse
|
13
|
Ji F, Lv X, Jiao J. The role of microRNAs in neural stem cells and neurogenesis. J Genet Genomics 2013; 40:61-6. [PMID: 23439404 DOI: 10.1016/j.jgg.2012.12.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/24/2012] [Accepted: 12/27/2012] [Indexed: 12/30/2022]
Abstract
Neural stem cells give rise to neurons through the process of neurogenesis, which includes neural stem cell proliferation, fate determination of new neurons, as well as the new neuron's migration, maturation and integration. Currently, neurogenesis is divided into two phases: embryonic and adult phases. Embryonic neurogenesis occurs at high levels to form the central nervous system. Adult neurogenesis has been consistently identified only in restricted regions and occurs at low levels. As the basic process for embryonic neurodevelopment and adult brain maintenance, neurogenesis is tightly regulated by many factors and pathways. MicroRNA, short non-coding RNA that regulates gene expression at the post-transcriptional level, appears to be involved in multiple steps of neurogenesis. This review summarizes the emerging role of microRNAs in regulating embryonic and adult neurogenesis, with a particular emphasis on the proliferation and differentiation of neural stem cells.
Collapse
Affiliation(s)
- Fen Ji
- Institute of Zoology, State Key Laboratory of Reproductive Biology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | | | | |
Collapse
|