1
|
Hou M, Yang X, Gong L, Shen X. Surveillance of antimicrobial resistance using isothermal amplification: a review. Chem Commun (Camb) 2025; 61:1748-1760. [PMID: 39745317 DOI: 10.1039/d4cc05488a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The monitoring of antibiotic resistance genes (ARGs) is crucial for understanding the level of antimicrobial resistance and the associated health burden, which in turn is essential for the control and prevention of antimicrobial resistance (AMR). Isothermal amplification, an emerging molecular biology technology, has been widely used for drug resistance detection. Furthermore, its compatibility with a range of technologies enables high-specificity, high-throughput, and portable and integrated detection in drug resistance, particularly in resource-limited areas. However, to date, reviews involved in isothermal amplification all concentrate on its technological advancements and its application in nucleic acid point-of-care testing. Few reviews have been published that focus specifically on the application of isothermal amplification in the detection of drug resistance. This review summarizes the detection principles of different isothermal amplification techniques and discusses their strengths and weaknesses as well as the applicable scenarios for drug resistance detection. It also summarizes advances in the application, challenges and prospects of isothermal amplification technologies in conjunction with different methods such as base mismatch, CRISPR-Cas, lateral flow immunoassay, sensing and microfluidic technologies for improvement of specificity, throughput and integration for drug resistance detection. It is anticipated that this review will assist scientists in comprehending the evolution of isothermal amplification in the context of drug resistance detection and provide insights into the prospective applications of isothermal amplification for highly integrated and immediate on-site detection of drug resistance.
Collapse
Affiliation(s)
- Menghan Hou
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, Hubei 430030, China.
| | - Xinying Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, Hubei 430030, China.
| | - Lin Gong
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, Hubei 430030, China.
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control & Prevention, Wuhan, Hubei, 430000, China
| | - Xiantao Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, Hubei 430030, China.
| |
Collapse
|
2
|
Costa P, Pereira C, Romalde JL, Almeida A. A game of resistance: War between bacteria and phages and how phage cocktails can be the solution. Virology 2024; 599:110209. [PMID: 39186863 DOI: 10.1016/j.virol.2024.110209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
While phages hold promise as an antibiotic alternative, they encounter significant challenges in combating bacterial infections, primarily due to the emergence of phage-resistant bacteria. Bacterial defence mechanisms like superinfection exclusion, CRISPR, and restriction-modification systems can hinder phage effectiveness. Innovative strategies, such as combining different phages into cocktails, have been explored to address these challenges. This review delves into these defence mechanisms and their impact at each stage of the infection cycle, their challenges, and the strategies phages have developed to counteract them. Additionally, we examine the role of phage cocktails in the evolving landscape of antibacterial treatments and discuss recent studies that highlight the effectiveness of diverse phage cocktails in targeting essential bacterial receptors and combating resistant strains.
Collapse
Affiliation(s)
- Pedro Costa
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Carla Pereira
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Jesús L Romalde
- Department of Microbiology and Parasitology, CRETUS & CIBUS - Faculty of Biology, University of Santiago de Compostela, CP 15782 Santiago de Compostela, Spain.
| | - Adelaide Almeida
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
3
|
Ghosh S, Lahiri D, Nag M, Sarkar T, Pati S, Edinur HA, Kumar M, Mohd Zain MRA, Ray RR. Precision targeting of food biofilm-forming genes by microbial scissors: CRISPR-Cas as an effective modulator. Front Microbiol 2022; 13:964848. [PMID: 36016778 PMCID: PMC9396135 DOI: 10.3389/fmicb.2022.964848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
The abrupt emergence of antimicrobial resistant (AMR) bacterial strains has been recognized as one of the biggest public health threats affecting the human race and food processing industries. One of the causes for the emergence of AMR is the ability of the microorganisms to form biofilm as a defense strategy that restricts the penetration of antimicrobial agents into bacterial cells. About 80% of human diseases are caused by biofilm-associated sessile microbes. Bacterial biofilm formation involves a cascade of genes that are regulated via the mechanism of quorum sensing (QS) and signaling pathways that control the production of the extracellular polymeric matrix (EPS), responsible for the three-dimensional architecture of the biofilm. Another defense strategy utilized commonly by various bacteria includes clustered regularly interspaced short palindromic repeats interference (CRISPRi) system that prevents the bacterial cell from viral invasion. Since multigenic signaling pathways and controlling systems are involved in each and every step of biofilm formation, the CRISPRi system can be adopted as an effective strategy to target the genomic system involved in biofilm formation. Overall, this technology enables site-specific integration of genes into the host enabling the development of paratransgenic control strategies to interfere with pathogenic bacterial strains. CRISPR-RNA-guided Cas9 endonuclease, being a promising genome editing tool, can be effectively programmed to re-sensitize the bacteria by targeting AMR-encoding plasmid genes involved in biofilm formation and virulence to revert bacterial resistance to antibiotics. CRISPRi-facilitated silencing of genes encoding regulatory proteins associated with biofilm production is considered by researchers as a dependable approach for editing gene networks in various biofilm-forming bacteria either by inactivating biofilm-forming genes or by integrating genes corresponding to antibiotic resistance or fluorescent markers into the host genome for better analysis of its functions both in vitro and in vivo or by editing genes to stop the secretion of toxins as harmful metabolites in food industries, thereby upgrading the human health status.
Collapse
Affiliation(s)
- Sreejita Ghosh
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Kolkata, India
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering and Management, Kolkata, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering and Management, Kolkata, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Govt. of West Bengal, Malda, India
| | - Siddhartha Pati
- Skills Innovation and Academic Network (SIAN) Institute, Association for Biodiversity Conservation and Research (ABC), Balasore, India
- NatNov Bioscience Private Limited, Balasore, India
| | - Hisham Atan Edinur
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, India
| | - Muhammad R. A. Mohd Zain
- Department of Orthopaedics, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- *Correspondence: Muhammad R. A. Mohd Zain
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Kolkata, India
- Rina Rani Ray
| |
Collapse
|
4
|
Wu Q, Cui L, Liu Y, Li R, Dai M, Xia Z, Wu M. CRISPR-Cas systems target endogenous genes to impact bacterial physiology and alter mammalian immune responses. MOLECULAR BIOMEDICINE 2022; 3:22. [PMID: 35854035 PMCID: PMC9296731 DOI: 10.1186/s43556-022-00084-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/25/2022] [Indexed: 11/26/2022] Open
Abstract
CRISPR-Cas systems are an immune defense mechanism that is widespread in archaea and bacteria against invasive phages or foreign genetic elements. In the last decade, CRISPR-Cas systems have been a leading gene-editing tool for agriculture (plant engineering), biotechnology, and human health (e.g., diagnosis and treatment of cancers and genetic diseases), benefitted from unprecedented discoveries of basic bacterial research. However, the functional complexity of CRISPR systems is far beyond the original scope of immune defense. CRISPR-Cas systems are implicated in influencing the expression of physiology and virulence genes and subsequently altering the formation of bacterial biofilm, drug resistance, invasive potency as well as bacterial own physiological characteristics. Moreover, increasing evidence supports that bacterial CRISPR-Cas systems might intriguingly influence mammalian immune responses through targeting endogenous genes, especially those relating to virulence; however, unfortunately, their underlying mechanisms are largely unclear. Nevertheless, the interaction between bacterial CRISPR-Cas systems and eukaryotic cells is complex with numerous mysteries that necessitate further investigation efforts. Here, we summarize the non-canonical functions of CRISPR-Cas that potentially impact bacterial physiology, pathogenicity, antimicrobial resistance, and thereby altering the courses of mammalian immune responses.
Collapse
Affiliation(s)
- Qun Wu
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Biomedical Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, North Dakota, 58203-9037, USA
| | - Luqing Cui
- Department of Biomedical Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, North Dakota, 58203-9037, USA
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Yingying Liu
- Department of Biomedical Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, North Dakota, 58203-9037, USA
| | - Rongpeng Li
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Menghong Dai
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China.
| | - Zhenwei Xia
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, North Dakota, 58203-9037, USA.
| |
Collapse
|
5
|
Wu Y, Battalapalli D, Hakeem MJ, Selamneni V, Zhang P, Draz MS, Ruan Z. Engineered CRISPR-Cas systems for the detection and control of antibiotic-resistant infections. J Nanobiotechnology 2021; 19:401. [PMID: 34863214 PMCID: PMC8642896 DOI: 10.1186/s12951-021-01132-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance is spreading rapidly around the world and seriously impeding efforts to control microbial infections. Although nucleic acid testing is widely deployed for the detection of antibiotic resistant bacteria, the current techniques-mainly based on polymerase chain reaction (PCR)-are time-consuming and laborious. There is an urgent need to develop new strategies to control bacterial infections and the spread of antimicrobial resistance (AMR). The CRISPR-Cas system is an adaptive immune system found in many prokaryotes that presents attractive opportunities to target and edit nucleic acids with high precision and reliability. Engineered CRISPR-Cas systems are reported to effectively kill bacteria or even revert bacterial resistance to antibiotics (resensitizing bacterial cells to antibiotics). Strategies for combating antimicrobial resistance using CRISPR (i.e., Cas9, Cas12, Cas13, and Cas14) can be of great significance in detecting bacteria and their resistance to antibiotics. This review discusses the structures, mechanisms, and detection methods of CRISPR-Cas systems and how these systems can be engineered for the rapid and reliable detection of bacteria using various approaches, with a particular focus on nanoparticles. In addition, we summarize the most recent advances in applying the CRISPR-Cas system for virulence modulation of bacterial infections and combating antimicrobial resistance.
Collapse
Affiliation(s)
- Yuye Wu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Mohammed J Hakeem
- Department of Food Science and Human Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Venkatarao Selamneni
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Pengfei Zhang
- Department of Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Mohamed S Draz
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Zhi Ruan
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
6
|
Pattharaprachayakul N, Lee M, Incharoensakdi A, Woo HM. Current understanding of the cyanobacterial CRISPR-Cas systems and development of the synthetic CRISPR-Cas systems for cyanobacteria. Enzyme Microb Technol 2020; 140:109619. [PMID: 32912679 DOI: 10.1016/j.enzmictec.2020.109619] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/14/2020] [Accepted: 06/05/2020] [Indexed: 11/20/2022]
Abstract
Cyanobacteria are photosynthetic microorganisms that are capable of converting CO2 to value-added chemicals. Engineering of cyanobacteria with synthetic biology tools, including the CRISPR-Cas system, has allowed an opportunity for biological CO2 utilization. Here, we described natural CRISPR-Cas systems for understanding cyanobacterial genomics and synthetic CRISPR-Cas systems for metabolic engineering applications. The natural CRISPR-Cas systems in cyanobacteria have been identified as Class 1, with type I and III, and some Class 2, with type V, as an adaptive immune system against viral invasion. As synthetic tools, CRISPR-Cas9 and -Cas12a have been successfully established in cyanobacteria to delete a target gene without a selection marker. Deactivated Cas9 and Cas12a have also been used to repress genes for metabolic engineering. In addition, a perspective on how advanced CRISPR-Cas systems and a pool of the guide RNAs can be advantageous for precise genome engineering and understanding of unknown functions was discussed for advanced engineering of cyanobacteria.
Collapse
Affiliation(s)
- Napisa Pattharaprachayakul
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea; Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330 Thailand; Program in Biotechnology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Mieun Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330 Thailand
| | - Han Min Woo
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea; BioFoundry Research Center, Institute of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea.
| |
Collapse
|
7
|
Plateau P, Moch C, Blanquet S. Spermidine strongly increases the fidelity of Escherichia coli CRISPR Cas1-Cas2 integrase. J Biol Chem 2019; 294:11311-11322. [PMID: 31171718 DOI: 10.1074/jbc.ra119.007619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
Site-selective CRISPR array expansion at the origin of bacterial adaptive immunity relies on recognition of sequence-dependent DNA structures by the conserved Cas1-Cas2 integrase. Off-target integration of a new spacer sequence outside canonical CRISPR arrays has been described in vitro However, this nonspecific integration activity is rare in vivo Here, we designed gel assays to monitor fluorescently labeled protospacer insertion in a supercoiled 3-kb plasmid harboring a minimal CRISPR locus derived from the Escherichia coli type I-E system. This assay enabled us to distinguish and quantify target and off-target insertion events catalyzed by E. coli Cas1-Cas2 integrase. We show that addition of the ubiquitous polyamine spermidine or of another polyamine, spermine, significantly alters the ratio between target and off-target insertions. Notably, addition of 2 mm spermidine quenched the off-target spacer insertion rate by a factor of 20-fold, and, in the presence of integration host factor, spermidine also increased insertion at the CRISPR locus 1.5-fold. The observation made in our in vitro system that spermidine strongly decreases nonspecific activity of Cas1-Cas2 integrase outside the leader-proximal region of a CRISPR array suggests that this polyamine plays a potential role in the fidelity of the spacer integration also in vivo.
Collapse
Affiliation(s)
- Pierre Plateau
- BIOC, CNRS, Ecole polytechnique, IP Paris, F-91128 Palaiseau, France
| | - Clara Moch
- BIOC, CNRS, Ecole polytechnique, IP Paris, F-91128 Palaiseau, France
| | - Sylvain Blanquet
- BIOC, CNRS, Ecole polytechnique, IP Paris, F-91128 Palaiseau, France
| |
Collapse
|
8
|
Dupuis MÈ, Barrangou R, Moineau S. Procedures for Generating CRISPR Mutants with Novel Spacers Acquired from Viruses or Plasmids. Methods Mol Biol 2015; 1311:195-222. [PMID: 25981475 DOI: 10.1007/978-1-4939-2687-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CRISPR-Cas systems provide immunity in bacteria and archaea against nucleic acids in the form of viral genomes and plasmids, and influence their coevolution. The first main step of CRISPR-Cas activity is the immune adaptation through spacer(s) acquisition into an active CRISPR locus. This step is also mandatory for the final stage of CRISPR-Cas activity, namely interference. This chapter describes general procedures for studying the CRISPR adaptation step, accomplished by producing bacteriophage-insensitive mutants (BIMs) or plasmid-interfering mutants (PIMs) using various spacer acquisition analyses and experiments. Since each bacterial or archaeal species (and even strain) needs specific conditions to optimize the acquisition process, the protocols described below should be thought of as general guidelines and may not be applicable universally, without modification. Because Streptococcus thermophilus was used as the model system in the first published study on novel spacer acquisition and in many studies ever since, the protocols in this chapter describe specific conditions, media, and buffers that have been used with this microorganism. Details for other species will be given when possible, but readers should first evaluate the best growth and storage conditions for each bacterium-foreign element pair (named the procedure settings) and bear in mind the specificity and variability of CRISPR-Cas types and subtypes. Also, we suggest to be mindful of the fact that some CRISPR-Cas systems are not "naturally" active in terms of the ability to acquire novel CRISPR spacers, and that some systems may require specific conditions to induce the CRISPR-Cas activity for spacer acquisition.
Collapse
Affiliation(s)
- Marie-Ève Dupuis
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, Canada, G1V 0A6,
| | | | | |
Collapse
|