1
|
Yang Y, Oldenkott B, Ramanathan S, Lesch E, Takenaka M, Schallenberg-Rüdinger M, Knoop V. DYW cytidine deaminase domains have a long-range impact on RNA recognition by the PPR array of chimeric plant C-to-U RNA editing factors and strongly affect target selection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:840-854. [PMID: 37565789 DOI: 10.1111/tpj.16412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/12/2023]
Abstract
The protein factors for the specific C-to-U RNA editing events in plant mitochondria and chloroplasts possess unique arrays of RNA-binding pentatricopeptide repeats (PPRs) linked to carboxy-terminal cytidine deaminase DYW domains via the extension motifs E1 and E2. The E1 and E2 motifs have distant similarities to tetratricopeptide repeats known to mediate protein-protein interactions but their precise function is unclear. Here, we investigate the tolerance of PPR56 and PPR65, two functionally characterized RNA editing factors of the moss Physcomitrium patens, for the creation of chimeras by variably replacing their C-terminal protein regions. Making use of a heterologous RNA editing assay system in Escherichia coli we find that heterologous DYW domains can strongly restrict or widen the spectrum of off-targets in the bacterial transcriptome for PPR56. Surprisingly, our data suggest that these changes are not only caused by the preference of a given heterologous DYW domain for the immediate sequence environment of the cytidine to be edited but also by a long-range impact on the nucleotide selectivity of the upstream PPRs.
Collapse
Affiliation(s)
- Yingying Yang
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Bastian Oldenkott
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Shyam Ramanathan
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Elena Lesch
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Mizuki Takenaka
- Department of Botany Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Mareike Schallenberg-Rüdinger
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Volker Knoop
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany
| |
Collapse
|
2
|
Zhang Y, Tian L, Lu C. Chloroplast gene expression: Recent advances and perspectives. PLANT COMMUNICATIONS 2023; 4:100611. [PMID: 37147800 PMCID: PMC10504595 DOI: 10.1016/j.xplc.2023.100611] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/11/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023]
Abstract
Chloroplasts evolved from an ancient cyanobacterial endosymbiont more than 1.5 billion years ago. During subsequent coevolution with the nuclear genome, the chloroplast genome has remained independent, albeit strongly reduced, with its own transcriptional machinery and distinct features, such as chloroplast-specific innovations in gene expression and complicated post-transcriptional processing. Light activates the expression of chloroplast genes via mechanisms that optimize photosynthesis, minimize photodamage, and prioritize energy investments. Over the past few years, studies have moved from describing phases of chloroplast gene expression to exploring the underlying mechanisms. In this review, we focus on recent advances and emerging principles that govern chloroplast gene expression in land plants. We discuss engineering of pentatricopeptide repeat proteins and its biotechnological effects on chloroplast RNA research; new techniques for characterizing the molecular mechanisms of chloroplast gene expression; and important aspects of chloroplast gene expression for improving crop yield and stress tolerance. We also discuss biological and mechanistic questions that remain to be answered in the future.
Collapse
Affiliation(s)
- Yi Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Lin Tian
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Congming Lu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
3
|
Dong SS, Zhou XP, Peng T, Liu Y. Mitochondrial RNA editing sites affect the phylogenetic reconstruction of gymnosperms. PLANT DIVERSITY 2023; 45:485-489. [PMID: 37601539 PMCID: PMC10435907 DOI: 10.1016/j.pld.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 08/22/2023]
Abstract
•RNA editing sites may contain homoplasious signals that cause artifactual inferences in phylogenetic analyses.•Excluding RNA editing sites from gymnosperm mitochondrial genes restored the sister relationship of gnetophytes and Pinaceae.•Phylogenetic analysis based on mitochondrial genomic data should carefully evaluate the impact of RNA editing sites.
Collapse
Affiliation(s)
- Shan-Shan Dong
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, Guangdong, China
| | - Xu-Ping Zhou
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, Guangdong, China
- School of Life Sciences, Guizhou Normal University, Guiyang 550001, Guizhou, China
| | - Tao Peng
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, Guangdong, China
- School of Life Sciences, Guizhou Normal University, Guiyang 550001, Guizhou, China
| | - Yang Liu
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, Guangdong, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| |
Collapse
|
4
|
Xiang QP, Tang JY, Yu JG, Smith DR, Zhu YM, Wang YR, Kang JS, Yang J, Zhang XC. The evolution of extremely diverged plastomes in Selaginellaceae (lycophyte) is driven by repeat patterns and the underlying DNA maintenance machinery. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:768-784. [PMID: 35648423 DOI: 10.1111/tpj.15851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Two factors are proposed to account for the unusual features of organellar genomes: the disruptions of organelle-targeted DNA replication, repair, and recombination (DNA-RRR) systems in the nuclear genome and repetitive elements in organellar genomes. Little is known about how these factors affect organellar genome evolution. The deep-branching vascular plant family Selaginellaceae is known to have a deficient DNA-RRR system and convergently evolved organellar genomes. However, we found that the plastid genome (plastome) of Selaginella sinensis has extremely accelerated substitution rates, a low GC content, pervasive repeat elements, a dynamic network structure, and it lacks direct or inverted repeats. Unexpectedly, its organelle DNA-RRR system is short of a plastid-targeted Recombinase A1 (RecA1) and a mitochondrion-targeted RecA3, in line with other explored Selaginella species. The plastome contains a large collection of short- and medium-sized repeats. Given the absence of RecA1 surveillance, we propose that these repeats trigger illegitimate recombination, accelerated mutation rates, and structural instability. The correlations between repeat quantity and architectural complexity in the Selaginella plastomes support these conclusions. We, therefore, hypothesize that the interplay of the deficient DNA-RRR system and the high repeat content has led to the extraordinary divergence of the S. sinensis plastome. Our study not only sheds new light on the mechanism of plastome divergence by emphasizing the power of cytonuclear integration, but it also reconciles the longstanding contradiction on the effects of DNA-RRR system disruption on genome structure evolution.
Collapse
Affiliation(s)
- Qiao-Ping Xiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Jun-Yong Tang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ji-Gao Yu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - David Roy Smith
- Department of Biology, University of Western Ontario, London, N6A 5B7, Ontario, Canada
| | - Yan-Mei Zhu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Ya-Rong Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Jong-Soo Kang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Jie Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xian-Chun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
5
|
Martyn JE, Gomez-Valero L, Buchrieser C. The evolution and role of eukaryotic-like domains in environmental intracellular bacteria: the battle with a eukaryotic cell. FEMS Microbiol Rev 2022; 46:6529235. [DOI: 10.1093/femsre/fuac012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Intracellular pathogens that are able to thrive in different environments, such as Legionella spp. which preferentially live in protozoa in aquatic environments or environmental Chlamydiae which replicate either within protozoa or a range of animals, possess a plethora of cellular biology tools to influence their eukaryotic host. The host manipulation tools that evolved in the interaction with protozoa, confer these bacteria the capacity to also infect phylogenetically distinct eukaryotic cells, such as macrophages and thus they can also be human pathogens. To manipulate the host cell, bacteria use protein secretion systems and molecular effectors. Although these molecular effectors are encoded in bacteria, they are expressed and function in a eukaryotic context often mimicking or inhibiting eukaryotic proteins. Indeed, many of these effectors have eukaryotic-like domains. In this review we propose that the main pathways environmental intracellular bacteria need to subvert in order to establish the host eukaryotic cell as a replication niche are chromatin remodelling, ubiquitination signalling, and modulation of protein-protein interactions via tandem repeat domains. We then provide mechanistic insight into how these proteins might have evolved as molecular weapons. Finally, we highlight that in environmental intracellular bacteria the number of eukaryotic-like domains and proteins is considerably higher than in intracellular bacteria specialised to an isolated niche, such as obligate intracellular human pathogens. As mimics of eukaryotic proteins are critical components of host pathogen interactions, this distribution of eukaryotic-like domains suggests that the environment has selected them.
Collapse
Affiliation(s)
- Jessica E Martyn
- Institut Pasteur, Biologie des Bactéries Intracellulaires and CNRS UMR 3525, Paris, France
| | - Laura Gomez-Valero
- Institut Pasteur, Biologie des Bactéries Intracellulaires and CNRS UMR 3525, Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires and CNRS UMR 3525, Paris, France
| |
Collapse
|
6
|
Takenaka M, Takenaka S, Barthel T, Frink B, Haag S, Verbitskiy D, Oldenkott B, Schallenberg-Rüdinger M, Feiler CG, Weiss MS, Palm GJ, Weber G. DYW domain structures imply an unusual regulation principle in plant organellar RNA editing catalysis. Nat Catal 2021; 4:510-522. [PMID: 34712911 PMCID: PMC7611903 DOI: 10.1038/s41929-021-00633-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RNA editosomes selectively deaminate cytidines to uridines in plant organellar transcripts–mostly to restore protein functionality and consequently facilitate mitochondrial and chloroplast function. The RNA editosomal pentatricopeptide repeat proteins serve target RNA recognition, whereas the intensively studied DYW domain elicits catalysis. Here we present structures and functional data of a DYW domain in an inactive ground state and activated. DYW domains harbour a cytidine deaminase fold and a C-terminal DYW motif, with catalytic and structural zinc atoms, respectively. A conserved gating domain within the deaminase fold regulates the active site sterically and mechanistically in a process that we termed gated zinc shutter. Based on the structures, an autoinhibited ground state and its activation are cross-validated by RNA editing assays and differential scanning fluorimetry. We anticipate that, in vivo, the framework of an active plant RNA editosome triggers the release of DYW autoinhibition to ensure a controlled and coordinated cytidine deamination playing a key role in mitochondrial and chloroplast homeostasis.
Collapse
Affiliation(s)
- Mizuki Takenaka
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Sachi Takenaka
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan.,These authors contributed equally: Sachi Takenaka, Tatjana Barthel
| | - Tatjana Barthel
- University of Greifswald, Molecular Structural Biology, Greifswald, Germany.,Present address: Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany.,These authors contributed equally: Sachi Takenaka, Tatjana Barthel
| | - Brody Frink
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Sascha Haag
- Molekulare Botanik, Universität Ulm, Ulm, Germany
| | | | - Bastian Oldenkott
- Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, University of Bonn, Bonn, Germany
| | | | - Christian G Feiler
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany
| | - Manfred S Weiss
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany
| | - Gottfried J Palm
- University of Greifswald, Molecular Structural Biology, Greifswald, Germany
| | - Gert Weber
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany
| |
Collapse
|
7
|
Feng X, Yang S, Zhang Y, Zhiyuan C, Tang K, Li G, Yu H, Leng J, Wang Q. GmPGL2, Encoding a Pentatricopeptide Repeat Protein, Is Essential for Chloroplast RNA Editing and Biogenesis in Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:690973. [PMID: 34567023 PMCID: PMC8458969 DOI: 10.3389/fpls.2021.690973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Chloroplast biogenesis and development are highly complex processes requiring interactions between plastids and nuclear genomic products. Pentatricopeptide repeat (PPR) proteins play an essential role in the development of chloroplasts; however, it remains unclear how RNA editing factors influence soybean development. In this study, a Glycine max pale green leaf 2 mutant (Gmpgl2) was identified with decreased chlorophyll contents. Genetic mapping revealed that a single-nucleotide deletion at position 1949 bp in the Glyma.05g132700 gene in the Gmpgl2 mutant, resulting in a truncated GmPGL2 protein. The nuclear-encoded GmPGL2 is a PLS-type PPR protein that localizes to the chloroplasts. The C-to-U editing efficiencies of rps16, rps18, ndhB, ndhD, ndhE, and ndhF were reduced in the Gmpgl2 mutant. RNA electrophoresis mobility shift assay (REMSA) analysis further revealed that GmPGL2 binds to the immediate upstream sequences at RNA editing sites of rps16 and ndhB in vitro, respectively. In addition, GmPGL2 was found to interact with GmMORF8, GmMORF9, and GmORRM6. These results suggest that GmPGL2 participates in C-to-U RNA editing via the formation of a complex RNA editosome in soybean chloroplasts.
Collapse
Affiliation(s)
- Xingxing Feng
- College of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
| | - Suxin Yang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
| | - Yaohua Zhang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
| | - Cheng Zhiyuan
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
| | - Kuanqiang Tang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
| | - Guang Li
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
| | - Hui Yu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
| | - Jiantian Leng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
| | - Qingyu Wang
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
8
|
The U-to-C RNA editing affects the mRNA stability of nuclear genes in Arabidopsis thaliana. Biochem Biophys Res Commun 2021; 571:110-117. [PMID: 34325125 DOI: 10.1016/j.bbrc.2021.06.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022]
Abstract
Cytidine-to-uridine (C-to-U) RNA editing has been generally observed in land plants; however, reverse (U-to-C) RNA editing is a rare phenomenon. In this study, we investigated the U-to-C RNA editing-related genes in Arabidopsis tissues and the effects on mRNA stability, with a special focus on PPR proteins. A previous study showed the extensive occurrence of U-to-C RNA editing in 12-day and 20-dayold Arabidopsis seedlings. Here, we have demonstrated the effects of this "reverse" RNA editing on the mRNA stability for all seven edited genes. We also identified U-to-C RNA editing in the nuclear PPR gene (AT2G19280) in 12-day-old seedlings of Arabidopsis thaliana. The U-to-C RNA editing sites were found in the untranslated region (3' UTR) of the mature mRNA and may affect its secondary structure. We also examined the correlation between U-to-C RNA editing-related genes and their mRNA abundance. Furthermore, we investigated the effects of U-to-C RNA editing in Arabidopsis using the transcription inhibitor actinomycin D (Act D). The addition of Act D to the seedlings of transgenic Arabidopsis generated by Agrobacterium-mediated transformation showed that single nucleotide base conversion adversely affected the mRNA secondary structure and stability.
Collapse
|
9
|
Knoop V. Plant PPRs Come in Multiple Flavors-But Why? PLANT & CELL PHYSIOLOGY 2020; 61:1685-1686. [PMID: 32687178 DOI: 10.1093/pcp/pcaa096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Volker Knoop
- Department of Molecular Evolution, IZMB, University of Bonn, Bonn, Germany
| |
Collapse
|
10
|
Dong S, Zhao C, Zhang S, Wu H, Mu W, Wei T, Li N, Wan T, Liu H, Cui J, Zhu R, Goffinet B, Liu Y. The Amount of RNA Editing Sites in Liverwort Organellar Genes Is Correlated with GC Content and Nuclear PPR Protein Diversity. Genome Biol Evol 2020; 11:3233-3239. [PMID: 31651960 PMCID: PMC6865856 DOI: 10.1093/gbe/evz232] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2019] [Indexed: 02/06/2023] Open
Abstract
RNA editing occurs in the organellar mRNAs of all land plants but the marchantioid liverworts, making liverworts a perfect group for studying the evolution of RNA editing. Here, we profiled the RNA editing of 42 exemplars spanning the ordinal phylogenetic diversity of liverworts, and screened for the nuclear-encoded pentatricopeptide repeat (PPR) proteins in the transcriptome assemblies of these taxa. We identified 7,428 RNA editing sites in 128 organellar genes from 31 non-marchantioid liverwort species, and characterized 25,059 PPR protein sequences. The abundance of organellar RNA editing sites varies greatly among liverwort lineages, genes, and codon positions, and shows strong positive correlations with the GC content of protein-coding genes, and the diversity of the PLS class of nuclear PPR proteins.
Collapse
Affiliation(s)
- Shanshan Dong
- Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Chaoxian Zhao
- Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China.,Department of Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Shouzhou Zhang
- Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | | | | | - Na Li
- Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Tao Wan
- Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | | | - Jie Cui
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Ruiliang Zhu
- Department of Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut
| | - Yang Liu
- Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
11
|
Kaur B, Záhonová K, Valach M, Faktorová D, Prokopchuk G, Burger G, Lukeš J. Gene fragmentation and RNA editing without borders: eccentric mitochondrial genomes of diplonemids. Nucleic Acids Res 2020; 48:2694-2708. [PMID: 31919519 PMCID: PMC7049700 DOI: 10.1093/nar/gkz1215] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/14/2019] [Accepted: 01/08/2020] [Indexed: 11/20/2022] Open
Abstract
Diplonemids are highly abundant heterotrophic marine protists. Previous studies showed that their strikingly bloated mitochondrial genome is unique because of systematic gene fragmentation and manifold RNA editing. Here we report a comparative study of mitochondrial genome architecture, gene structure and RNA editing of six recently isolated, phylogenetically diverse diplonemid species. Mitochondrial gene fragmentation and modes of RNA editing, which include cytidine-to-uridine (C-to-U) and adenosine-to-inosine (A-to-I) substitutions and 3' uridine additions (U-appendage), are conserved across diplonemids. Yet as we show here, all these features have been pushed to their extremes in the Hemistasiidae lineage. For example, Namystynia karyoxenos has its genes fragmented into more than twice as many modules than other diplonemids, with modules as short as four nucleotides. Furthermore, we detected in this group multiple A-appendage and guanosine-to-adenosine (G-to-A) substitution editing events not observed before in diplonemids and found very rarely elsewhere. With >1,000 sites, C-to-U and A-to-I editing in Namystynia is nearly 10 times more frequent than in other diplonemids. The editing density of 12% in coding regions makes Namystynia's the most extensively edited transcriptome described so far. Diplonemid mitochondrial genome architecture, gene structure and post-transcriptional processes display such high complexity that they challenge all other currently known systems.
Collapse
Affiliation(s)
- Binnypreet Kaur
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Kristína Záhonová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic
- Faculty of Science, Charles University, BIOCEV, 25250 Vestec, Czech Republic
| | - Matus Valach
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, H3T 1J4 Montreal, Canada
| | - Drahomíra Faktorová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Galina Prokopchuk
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic
| | - Gertraud Burger
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, H3T 1J4 Montreal, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| |
Collapse
|
12
|
Barik S. The Nature and Arrangement of Pentatricopeptide Domains and the Linker Sequences Between Them. Bioinform Biol Insights 2020; 14:1177932220906434. [PMID: 32180683 PMCID: PMC7059232 DOI: 10.1177/1177932220906434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 12/31/2022] Open
Abstract
The tricopeptide (amino acid number in the 30s) repeats constitute some of the
most common amino acid repeats in proteins of diverse organisms. The most
important representatives of this class are the 34-residue and 35-residue
repeats, eponymously known as tetratricopeptide repeat (TPR) and
pentatricopeptide repeat (PPR), respectively. The unit motif of both consists of
a pair of alpha helices. As members of the large, all-helical repeat classes,
TPR and PPR share structural similarities, but also play specific roles in
protein function. In this study, a comprehensive bioinformatic analysis of the
PPR units and the linkers that connect them was conducted. The results suggested
the existence of PPR repeats of various formats, as well as smaller,
PPR-unrelated repeats. Besides their length, these repeats differed in amino
acid arrangements and location of key amino acids. These findings provide a
broader and unified perspective of the pentatricopeptide family while raising
provocative questions about the assembly and evolution of these domains.
Collapse
|
13
|
Gray MW, Burger G, Derelle R, Klimeš V, Leger MM, Sarrasin M, Vlček Č, Roger AJ, Eliáš M, Lang BF. The draft nuclear genome sequence and predicted mitochondrial proteome of Andalucia godoyi, a protist with the most gene-rich and bacteria-like mitochondrial genome. BMC Biol 2020; 18:22. [PMID: 32122349 PMCID: PMC7050145 DOI: 10.1186/s12915-020-0741-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/21/2020] [Indexed: 01/02/2023] Open
Abstract
Background Comparative analyses have indicated that the mitochondrion of the last eukaryotic common ancestor likely possessed all the key core structures and functions that are widely conserved throughout the domain Eucarya. To date, such studies have largely focused on animals, fungi, and land plants (primarily multicellular eukaryotes); relatively few mitochondrial proteomes from protists (primarily unicellular eukaryotic microbes) have been examined. To gauge the full extent of mitochondrial structural and functional complexity and to identify potential evolutionary trends in mitochondrial proteomes, more comprehensive explorations of phylogenetically diverse mitochondrial proteomes are required. In this regard, a key group is the jakobids, a clade of protists belonging to the eukaryotic supergroup Discoba, distinguished by having the most gene-rich and most bacteria-like mitochondrial genomes discovered to date. Results In this study, we assembled the draft nuclear genome sequence for the jakobid Andalucia godoyi and used a comprehensive in silico approach to infer the nucleus-encoded portion of the mitochondrial proteome of this protist, identifying 864 candidate mitochondrial proteins. The A. godoyi mitochondrial proteome has a complexity that parallels that of other eukaryotes, while exhibiting an unusually large number of ancestral features that have been lost particularly in opisthokont (animal and fungal) mitochondria. Notably, we find no evidence that the A. godoyi nuclear genome has or had a gene encoding a single-subunit, T3/T7 bacteriophage-like RNA polymerase, which functions as the mitochondrial transcriptase in all eukaryotes except the jakobids. Conclusions As genome and mitochondrial proteome data have become more widely available, a strikingly punctuate phylogenetic distribution of different mitochondrial components has been revealed, emphasizing that the pathways of mitochondrial proteome evolution are likely complex and lineage-specific. Unraveling this complexity will require comprehensive comparative analyses of mitochondrial proteomes from a phylogenetically broad range of eukaryotes, especially protists. The systematic in silico approach described here offers a valuable adjunct to direct proteomic analysis (e.g., via mass spectrometry), particularly in cases where the latter approach is constrained by sample limitation or other practical considerations.
Collapse
Affiliation(s)
- Michael W Gray
- Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Gertraud Burger
- Département de Biochimie and Robert-Cedergren Center for Bioinformatics and Genomics, Université de Montréal, Montréal, QC, Canada
| | - Romain Derelle
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Vladimír Klimeš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Michelle M Leger
- Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada.,Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
| | - Matt Sarrasin
- Département de Biochimie and Robert-Cedergren Center for Bioinformatics and Genomics, Université de Montréal, Montréal, QC, Canada
| | - Čestmír Vlček
- Current address: Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - B Franz Lang
- Département de Biochimie and Robert-Cedergren Center for Bioinformatics and Genomics, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
14
|
Gutmann B, Royan S, Schallenberg-Rüdinger M, Lenz H, Castleden IR, McDowell R, Vacher MA, Tonti-Filippini J, Bond CS, Knoop V, Small ID. The Expansion and Diversification of Pentatricopeptide Repeat RNA-Editing Factors in Plants. MOLECULAR PLANT 2020; 13:215-230. [PMID: 31760160 DOI: 10.1016/j.molp.2019.11.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/10/2019] [Accepted: 11/11/2019] [Indexed: 05/08/2023]
Abstract
The RNA-binding pentatricopeptide repeat (PPR) family comprises hundreds to thousands of genes in most plants, but only a few dozen in algae, indicating massive gene expansions during land plant evolution. The nature and timing of these expansions has not been well defined due to the sparse sequence data available from early-diverging land plant lineages. In this study, we exploit the comprehensive OneKP datasets of over 1000 transcriptomes from diverse plants and algae toward establishing a clear picture of the evolution of this massive gene family, focusing on the proteins typically associated with RNA editing, which show the most spectacular variation in numbers and domain composition across the plant kingdom. We characterize over 2 250 000 PPR motifs in over 400 000 proteins. In lycophytes, polypod ferns, and hornworts, nearly 10% of expressed protein-coding genes encode putative PPR editing factors, whereas they are absent from algae and complex-thalloid liverworts. We show that rather than a single expansion, most land plant lineages with high numbers of editing factors have continued to generate novel sequence diversity. We identify sequence variations that imply functional differences between PPR proteins in seed plants versus non-seed plants and variations we propose to be linked to seed-plant-specific editing co-factors. Finally, using the sequence variations across the datasets, we develop a structural model of the catalytic DYW domain associated with C-to-U editing and identify a clade of unique DYW variants that are strong candidates as U-to-C RNA-editing factors, given their phylogenetic distribution and sequence characteristics.
Collapse
Affiliation(s)
- Bernard Gutmann
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth 6009, WA, Australia; School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, WA, Australia
| | - Santana Royan
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth 6009, WA, Australia; School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, WA, Australia
| | - Mareike Schallenberg-Rüdinger
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Henning Lenz
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Ian R Castleden
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth 6009, WA, Australia; School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, WA, Australia
| | - Rose McDowell
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth 6009, WA, Australia; School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, WA, Australia
| | - Michael A Vacher
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth 6009, WA, Australia; School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, WA, Australia
| | - Julian Tonti-Filippini
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth 6009, WA, Australia; School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, WA, Australia
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, WA, Australia
| | - Volker Knoop
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Ian D Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth 6009, WA, Australia; School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, WA, Australia.
| |
Collapse
|
15
|
Hayes ML, Santibanez PI. A plant pentatricopeptide repeat protein with a DYW-deaminase domain is sufficient for catalyzing C-to-U RNA editing in vitro. J Biol Chem 2020; 295:3497-3505. [PMID: 31996373 DOI: 10.1074/jbc.ra119.011790] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/23/2020] [Indexed: 12/27/2022] Open
Abstract
Pentatricopeptide repeat (PPR) proteins with C-terminal DYW domains are present in organisms that undergo C-to-U editing of organelle RNA transcripts. PPR domains act as specificity factors through electrostatic interactions between a pair of polar residues and the nitrogenous bases of an RNA target. DYW-deaminase domains act as the editing enzyme. Two moss (Physcomitrella patens) PPR proteins containing DYW-deaminase domains, PPR65 and PPR56, can convert Cs to Us in cognate, exogenous RNA targets co-expressed in Escherichia coli We show here that purified, recombinant PPR65 exhibits robust editase activity on synthetic RNAs containing cognate, mitochondrial PpccmFC sequences in vitro, indicating that a PPR protein with a DYW domain is solely sufficient for catalyzing C-to-U RNA editing in vitro Monomeric fractions possessed the highest conversion efficiency, and oligomeric fractions had reduced activity. Inductively coupled plasma (ICP)-MS analysis indicated a stoichiometry of two zinc ions per highly active PPR65 monomer. Editing activity was sensitive to addition of zinc acetate or the zinc chelators 1,10-o-phenanthroline and EDTA. Addition of ATP or nonhydrolyzable nucleotide analogs stimulated PPR65-catalyzed RNA-editing activity on PpccmFC substrates, indicating potential allosteric regulation of PPR65 by ATP. Unlike for bacterial cytidine deaminase, addition of two putative transition-state analogs, zebularine and tetrahydrouridine, failed to disrupt RNA-editing activity. RNA oligonucleotides with a single incorporated zebularine also did not disrupt editing in vitro, suggesting that PPR65 cannot bind modified bases due to differences in the structure of the active site compared with other zinc-dependent nucleotide deaminases.
Collapse
Affiliation(s)
- Michael L Hayes
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, California 90032.
| | - Paola I Santibanez
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, California 90032
| |
Collapse
|
16
|
Hein A, Brenner S, Polsakiewicz M, Knoop V. The dual-targeted RNA editing factor AEF1 is universally conserved among angiosperms and reveals only minor adaptations upon loss of its chloroplast or its mitochondrial target. PLANT MOLECULAR BIOLOGY 2020; 102:185-198. [PMID: 31797248 DOI: 10.1007/s11103-019-00940-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Upon loss of either its chloroplast or mitochondrial target, a uniquely dual-targeted factor for C-to-U RNA editing in angiosperms reveals low evidence for improved molecular adaptation to its remaining target. RNA-binding pentatricopeptide repeat (PPR) proteins specifically recognize target sites for C-to-U RNA editing in the transcriptomes of plant chloroplasts and mitochondria. Among more than 80 PPR-type editing factors that have meantime been characterized, AEF1 (or MPR25) is a special case given its dual targeting to both organelles and addressing an essential mitochondrial (nad5eU1580SL) and an essential chloroplast (atpFeU92SL) RNA editing site in parallel in Arabidopsis. Here, we explored the angiosperm-wide conservation of AEF1 and its two organelle targets. Despite numerous independent losses of the chloroplast editing site by C-to-T conversion and at least four such conversions at the mitochondrial target site in other taxa, AEF1 remains consistently conserved in more than 120 sampled angiosperm genomes. Not a single case of simultaneous loss of the chloroplast and mitochondrial editing target or of AEF1 disintegration or loss could be identified, contrasting previous findings for editing factors targeted to only one organelle. Like in most RNA editing factors, the PPR array of AEF1 reveals potential for conceptually "improved fits" to its targets according to the current PPR-RNA binding code. Surprisingly, we observe only minor evidence for adaptation to the mitochondrial target also after deep losses of the chloroplast target among Asterales, Caryophyllales and Poales or, vice versa, for the remaining chloroplast target after a deep loss of the mitochondrial target among Malvales. The evolutionary observations support the notion that PPR-RNA mismatches may be essential for proper function of editing factors.
Collapse
Affiliation(s)
- Anke Hein
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Sarah Brenner
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Monika Polsakiewicz
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Volker Knoop
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
17
|
Plant-type pentatricopeptide repeat proteins with a DYW domain drive C-to-U RNA editing in Escherichia coli. Commun Biol 2019; 2:85. [PMID: 30854477 PMCID: PMC6397227 DOI: 10.1038/s42003-019-0328-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/18/2019] [Indexed: 11/09/2022] Open
Abstract
RNA editing converting cytidines into uridines is a hallmark of gene expression in land plant chloroplasts and mitochondria. Pentatricopeptide repeat (PPR) proteins have a key role in target recognition, but the functional editosome in the plant organelles has remained elusive. Here we show that individual Physcomitrella patens DYW-type PPR proteins alone can perform efficient C-to-U editing in Escherichia coli reproducing the moss mitochondrial editing. Single amino acid exchanges in the DYW domain abolish RNA editing, confirming it as the functional cytidine deaminase. The modification of RNA targets and the identification of numerous off-targets in the E. coli transcriptome reveal nucleotide identities critical for RNA recognition and cytidine conversion. The straightforward amenability of the new E. coli setup will accelerate future studies on RNA target recognition through PPRs, on the C-to-U editing deamination machinery and towards future establishment of transcript editing in other genetic systems. Bastian Oldenkott et al. show that single moss pentatricopeptide repeat proteins with a DYW domain are sufficient to drive efficient C-to-U RNA editing in Escherichia coli. They demonstrate that the E.coli system is an easy to manipulate platform for future studies on RNA target recognition and C-to-U RNA editing.
Collapse
|
18
|
Qulsum U, Tsukahara T. Tissue-specific alternative splicing of pentatricopeptide repeat (PPR) family genes in Arabidopsis thaliana. Biosci Trends 2018; 12:569-579. [PMID: 30555111 DOI: 10.5582/bst.2018.01178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Alternative splicing is a post- and co-transcriptional regulatory mechanism of gene expression. Pentatricopeptide repeat (PPR) family proteins were recently found to be involved in RNA editing in plants. The aim of this study was to investigate the tissue-specific expression and alternative splicing of PPR family genes and their effects on protein structure and functionality. Of the 27 PPR genes in Arabidopsis thaliana, we selected six PPR genes of the P subfamily that are likely alternatively spliced, which were confirmed by sequencing. Four of these genes show intron retention, and the two remaining genes have 3' alternative-splicing sites. Alternative-splicing events occurred in the coding regions of three genes and in the 3' UTRs of the three remaining genes. We also identified five previously unannotated alternatively spliced isoforms of these PPR genes, which were confirmed by PCR and sequencing. Among these, three contain 3' alternative-splicing sites, one contains a 5' alternative-splicing site, and the remaining gene contains a 3'-5' alternative-splicing site. The new isoforms of two genes affect protein structure, and three other alternative-splicing sites are located in 3' UTRs. These findings suggest that tissue-specific expression of different alternatively spliced transcripts occurs in Arabidopsis, even at different developmental stages.
Collapse
Affiliation(s)
- Umme Qulsum
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST)
| | - Toshifumi Tsukahara
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST).,Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST).,Division of Transdisciplinary Science, Japan Advanced Institute of Science and Technology (JAIST)
| |
Collapse
|
19
|
Lenz H, Hein A, Knoop V. Plant organelle RNA editing and its specificity factors: enhancements of analyses and new database features in PREPACT 3.0. BMC Bioinformatics 2018; 19:255. [PMID: 29970001 PMCID: PMC6029061 DOI: 10.1186/s12859-018-2244-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/13/2018] [Indexed: 01/20/2023] Open
Abstract
Background Gene expression in plant chloroplasts and mitochondria is affected by RNA editing. Numerous C-to-U conversions, accompanied by reverse U-to-C exchanges in some plant clades, alter the genetic information encoded in the organelle genomes. Predicting and analyzing RNA editing, which ranges from only few sites in some species to thousands in other taxa, is bioinformatically demanding. Results Here, we present major enhancements and extensions of PREPACT, a WWW-based service for analysing, predicting and cataloguing plant-type RNA editing. New features in PREPACT’s core include direct GenBank accession query input and options to restrict searches to candidate U-to-C editing or to sites where editing has been documented previously in the references. The reference database has been extended by 20 new organelle editomes. PREPACT 3.0 features new modules “EdiFacts” and “TargetScan”. EdiFacts integrates information on pentatricopeptide repeat (PPR) proteins characterized as site-specific RNA editing factors. PREPACT’s editome references connect into EdiFacts, linking editing events to specific co-factors where known. TargetScan allows position-weighted querying for sequence motifs in the organelle references, optionally restricted to coding regions or sequences around editing sites, or in queries uploaded by the user. TargetScan is mainly intended to evaluate and further refine the proposed PPR-RNA recognition code but may be handy for other tasks as well. We present an analysis for the immediate sequence environment of more than 15,000 documented editing sites finding strong and different bias in the editome data sets. Conclusions We exemplarily present the novel features of PREPACT 3.0 aimed to enhance the analyses of plant-type RNA editing, including its new modules EdiFacts integrating information on characterized editing factors and TargetScan aimed to analyse RNA editing site recognition specificities. Electronic supplementary material The online version of this article (10.1186/s12859-018-2244-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Henning Lenz
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115, Bonn, Germany.,IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Anke Hein
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Volker Knoop
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
20
|
Sykes T, Yates S, Nagy I, Asp T, Small I, Studer B. In Silico Identification of Candidate Genes for Fertility Restoration in Cytoplasmic Male Sterile Perennial Ryegrass (Lolium perenne L.). Genome Biol Evol 2017; 9:351-362. [PMID: 26951780 PMCID: PMC5499803 DOI: 10.1093/gbe/evw047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2016] [Indexed: 12/24/2022] Open
Abstract
Perennial ryegrass (Lolium perenne L.) is widely used for forage production in both permanent and temporary grassland systems. To increase yields in perennial ryegrass, recent breeding efforts have been focused on strategies to more efficiently exploit heterosis by hybrid breeding. Cytoplasmic male sterility (CMS) is a widely applied mechanism to control pollination for commercial hybrid seed production and although CMS systems have been identified in perennial ryegrass, they are yet to be fully characterized. Here, we present a bioinformatics pipeline for efficient identification of candidate restorer of fertility (Rf) genes for CMS. From a high-quality draft of the perennial ryegrass genome, 373 pentatricopeptide repeat (PPR) genes were identified and classified, further identifying 25 restorer of fertility-like PPR (RFL) genes through a combination of DNA sequence clustering and comparison to known Rf genes. This extensive gene family was targeted as the majority of Rf genes in higher plants are RFL genes. These RFL genes were further investigated by phylogenetic analyses, identifying three groups of perennial ryegrass RFLs. These three groups likely represent genomic regions of active RFL generation and identify the probable location of perennial ryegrass PPR-Rf genes. This pipeline allows for the identification of candidate PPR-Rf genes from genomic sequence data and can be used in any plant species. Functional markers for PPR-Rf genes will facilitate map-based cloning of Rf genes and enable the use of CMS as an efficient tool to control pollination for hybrid crop production.
Collapse
Affiliation(s)
- Timothy Sykes
- Institute of Agricultural Sciences, Forage Crop Genetics, ETH Zurich, Zurich, Switzerland
| | - Steven Yates
- Institute of Agricultural Sciences, Forage Crop Genetics, ETH Zurich, Zurich, Switzerland
| | - Istvan Nagy
- Department of Molecular Biology and Genetics, Research Centre Flakkebjerg, Aarhus University, Slagelse, Denmark
| | - Torben Asp
- Department of Molecular Biology and Genetics, Research Centre Flakkebjerg, Aarhus University, Slagelse, Denmark
| | - Ian Small
- Plant Energy Biology, ARC Centre of Excellence, the University of Western Australia, Crawley, Western Australia, Australia
| | - Bruno Studer
- Institute of Agricultural Sciences, Forage Crop Genetics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Rodrigues NF, Christoff AP, da Fonseca GC, Kulcheski FR, Margis R. Unveiling Chloroplast RNA Editing Events Using Next Generation Small RNA Sequencing Data. FRONTIERS IN PLANT SCIENCE 2017; 8:1686. [PMID: 29033962 PMCID: PMC5626879 DOI: 10.3389/fpls.2017.01686] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/13/2017] [Indexed: 05/21/2023]
Abstract
Organellar RNA editing involves the modification of nucleotide sequences to maintain conserved protein functions, mainly by reverting non-neutral codon mutations. The loss of plastid editing events, resulting from mutations in RNA editing factors or through stress interference, leads to developmental, physiological and photosynthetic alterations. Recently, next generation sequencing technology has generated the massive discovery of sRNA sequences and expanded the number of sRNA data. Here, we present a method to screen chloroplast RNA editing using public sRNA libraries from Arabidopsis, soybean and rice. We mapped the sRNAs against the nuclear, mitochondrial and plastid genomes to confirm predicted cytosine to uracil (C-to-U) editing events and identify new editing sites in plastids. Among the predicted editing sites, 40.57, 34.78, and 25.31% were confirmed using sRNAs from Arabidopsis, soybean and rice, respectively. SNP analysis revealed 58.2, 43.9, and 37.5% new C-to-U changes in the respective species and identified known and new putative adenosine to inosine (A-to-I) RNA editing in tRNAs. The present method and data reveal the potential of sRNA as a reliable source to identify new and confirm known editing sites.
Collapse
Affiliation(s)
- Nureyev F. Rodrigues
- Programa de Posgraduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana P. Christoff
- Programa de Posgraduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Guilherme C. da Fonseca
- Programa de Posgraduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Franceli R. Kulcheski
- Programa de Pósgraduação em Biologia Celular e do Desenvolvimento, Departamento de Biologia Celular, Genética e Embriologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Rogerio Margis
- Programa de Posgraduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Posgraduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- *Correspondence: Rogerio Margis
| |
Collapse
|
22
|
Ichinose M, Sugita M. RNA Editing and Its Molecular Mechanism in Plant Organelles. Genes (Basel) 2016; 8:genes8010005. [PMID: 28025543 PMCID: PMC5295000 DOI: 10.3390/genes8010005] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/23/2016] [Accepted: 12/20/2016] [Indexed: 12/03/2022] Open
Abstract
RNA editing by cytidine (C) to uridine (U) conversions is widespread in plant mitochondria and chloroplasts. In some plant taxa, “reverse” U-to-C editing also occurs. However, to date, no instance of RNA editing has yet been reported in green algae and the complex thalloid liverworts. RNA editing may have evolved in early land plants 450 million years ago. However, in some plant species, including the liverwort, Marchantia polymorpha, editing may have been lost during evolution. Most RNA editing events can restore the evolutionarily conserved amino acid residues in mRNAs or create translation start and stop codons. Therefore, RNA editing is an essential process to maintain genetic information at the RNA level. Individual RNA editing sites are recognized by plant-specific pentatricopeptide repeat (PPR) proteins that are encoded in the nuclear genome. These PPR proteins are characterized by repeat elements that bind specifically to RNA sequences upstream of target editing sites. In flowering plants, non-PPR proteins also participate in multiple RNA editing events as auxiliary factors. C-to-U editing can be explained by cytidine deamination. The proteins discovered to date are important factors for RNA editing but a bona fide RNA editing enzyme has yet to be identified.
Collapse
Affiliation(s)
- Mizuho Ichinose
- Center for Gene Research, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
- Institute of Transformative Bio-Molecules, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Mamoru Sugita
- Center for Gene Research, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
| |
Collapse
|
23
|
Sun T, Bentolila S, Hanson MR. The Unexpected Diversity of Plant Organelle RNA Editosomes. TRENDS IN PLANT SCIENCE 2016; 21:962-973. [PMID: 27491516 DOI: 10.1016/j.tplants.2016.07.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 05/02/2023]
Abstract
Flowering plants convert many hundreds of organelle cytidines (Cs) to uridines (Us) during post-transcriptional RNA editing. Pentatricopeptide repeat (PPR) proteins dictate specificity by recognizing RNA sequences near C targets. However, the complete mechanism of the editing machinery is not yet understood. Recently, non-PPR editing factors [RNA editing factor interacting proteins (RIPs)/multiple organellar RNA editing factors (MORFs), organelle RNA recognition motif (ORRM) proteins, organelle zinc-finger (OZ) proteins, and protoporphyrinogen oxidase 1 (PPO1)] have been identified as components of the plant RNA editosome, which is a small RNA-protein complex. Surprisingly, plant editosomes are highly diverse not only with regard to the PPR proteins they contain but also in the non-PPR components that are present. Here we review the most recent progress in the field and discuss the implications of the diversity of plant editosomes for the evolution of RNA editing and for possible future applications.
Collapse
Affiliation(s)
- Tao Sun
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Stephane Bentolila
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
24
|
Leu KC, Hsieh MH, Wang HJ, Hsieh HL, Jauh GY. Distinct role of Arabidopsis mitochondrial P-type pentatricopeptide repeat protein-modulating editing protein, PPME, in nad1 RNA editing. RNA Biol 2016; 13:593-604. [PMID: 27149614 PMCID: PMC4962808 DOI: 10.1080/15476286.2016.1184384] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The mitochondrion is an important power generator in most eukaryotic cells. To preserve its function, many essential nuclear-encoded factors play specific roles in mitochondrial RNA metabolic processes, including RNA editing. RNA editing consists of post-transcriptional deamination, which alters specific nucleotides in transcripts to mediate gene expression. In plant cells, many pentatricopeptide repeat proteins (PPRs) participate in diverse organellar RNA metabolic processes, but only PLS-type PPRs are involved in RNA editing. Here, we report a P-type PPR protein from Arabidopsis thaliana, P-type PPR-Modulating Editing (PPME), which has a distinct role in mitochondrial nad1 RNA editing via RNA binding activity. In the homozygous ppme mutant, cytosine (C)-to-uracil (U) conversions at both the nad1-898 and 937 sites were abolished, disrupting Arg300-to-Trp300 and Pro313-to-Ser313 amino acid changes in the mitochondrial NAD1 protein. NAD1 is a critical component of mitochondrial respiration complex I; its activity is severely reduced in the homozygous ppme mutant, resulting in significantly altered growth and development. Both abolished RNA editing and defective complex I activity were completely rescued by CaMV 35S promoter- and PPME native promoter-driven PPME genomic fragments tagged with GFP in a homozygous ppme background. Our experimental results demonstrate a distinct role of a P-type PPR protein, PPME, in RNA editing in plant organelles.
Collapse
Affiliation(s)
- Kuan-Chieh Leu
- a Institute of Plant Biology, National Taiwan University , Taipei , Taiwan.,b Institute of Plant and Microbial Biology, Academia Sinica, Nankang , Taipei , Taiwan
| | - Ming-Hsiun Hsieh
- b Institute of Plant and Microbial Biology, Academia Sinica, Nankang , Taipei , Taiwan
| | - Huei-Jing Wang
- b Institute of Plant and Microbial Biology, Academia Sinica, Nankang , Taipei , Taiwan
| | - Hsu-Liang Hsieh
- a Institute of Plant Biology, National Taiwan University , Taipei , Taiwan
| | - Guang-Yuh Jauh
- b Institute of Plant and Microbial Biology, Academia Sinica, Nankang , Taipei , Taiwan.,c Biotechnology Center, National Chung-Hsing University , Taichung , Taiwan
| |
Collapse
|
25
|
Schaap P, Barrantes I, Minx P, Sasaki N, Anderson RW, Bénard M, Biggar KK, Buchler NE, Bundschuh R, Chen X, Fronick C, Fulton L, Golderer G, Jahn N, Knoop V, Landweber LF, Maric C, Miller D, Noegel AA, Peace R, Pierron G, Sasaki T, Schallenberg-Rüdinger M, Schleicher M, Singh R, Spaller T, Storey KB, Suzuki T, Tomlinson C, Tyson JJ, Warren WC, Werner ER, Werner-Felmayer G, Wilson RK, Winckler T, Gott JM, Glöckner G, Marwan W. The Physarum polycephalum Genome Reveals Extensive Use of Prokaryotic Two-Component and Metazoan-Type Tyrosine Kinase Signaling. Genome Biol Evol 2015; 8:109-25. [PMID: 26615215 PMCID: PMC4758236 DOI: 10.1093/gbe/evv237] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2015] [Indexed: 12/13/2022] Open
Abstract
Physarum polycephalum is a well-studied microbial eukaryote with unique experimental attributes relative to other experimental model organisms. It has a sophisticated life cycle with several distinct stages including amoebal, flagellated, and plasmodial cells. It is unusual in switching between open and closed mitosis according to specific life-cycle stages. Here we present the analysis of the genome of this enigmatic and important model organism and compare it with closely related species. The genome is littered with simple and complex repeats and the coding regions are frequently interrupted by introns with a mean size of 100 bases. Complemented with extensive transcriptome data, we define approximately 31,000 gene loci, providing unexpected insights into early eukaryote evolution. We describe extensive use of histidine kinase-based two-component systems and tyrosine kinase signaling, the presence of bacterial and plant type photoreceptors (phytochromes, cryptochrome, and phototropin) and of plant-type pentatricopeptide repeat proteins, as well as metabolic pathways, and a cell cycle control system typically found in more complex eukaryotes. Our analysis characterizes P. polycephalum as a prototypical eukaryote with features attributed to the last common ancestor of Amorphea, that is, the Amoebozoa and Opisthokonts. Specifically, the presence of tyrosine kinases in Acanthamoeba and Physarum as representatives of two distantly related subdivisions of Amoebozoa argues against the later emergence of tyrosine kinase signaling in the opisthokont lineage and also against the acquisition by horizontal gene transfer.
Collapse
Affiliation(s)
- Pauline Schaap
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Israel Barrantes
- Magdeburg Centre for Systems Biology and Institute for Biology, University of Magdeburg, Magdeburg, Germany
| | - Pat Minx
- The Genome Institute, Washington University School of Medicine, St Louis
| | - Narie Sasaki
- Department of Biological Sciences, Graduate School of Science, Nagoya University, Furocho, Chikusaku, Nagoya, Aichi, Japan
| | - Roger W Anderson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| | - Marianne Bénard
- UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), CNRS UMR-7622, Paris, France
| | - Kyle K Biggar
- Biochemistry Department, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Nicolas E Buchler
- Department of Biology and Center for Genomic and Computational Biology, Duke University, Durham Department of Physics, Duke University, Durham
| | - Ralf Bundschuh
- Department of Physics and Center for RNA Biology, The Ohio State University, Columbus Department of Chemistry & Biochemistry, The Ohio State University, Columbus Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus
| | - Xiao Chen
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton
| | - Catrina Fronick
- The Genome Institute, Washington University School of Medicine, St Louis
| | - Lucinda Fulton
- The Genome Institute, Washington University School of Medicine, St Louis
| | - Georg Golderer
- Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Niels Jahn
- Genome Analysis, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Volker Knoop
- IZMB - Institut für Zelluläre und Molekulare Botanik, Universität Bonn, Bonn, Germany
| | - Laura F Landweber
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton
| | - Chrystelle Maric
- Institut Jacques Monod, CNRS UMR7592, Université Paris Diderot Paris7, Paris, France
| | - Dennis Miller
- The University of Texas at Dallas, Biological Sciences, Richardson
| | - Angelika A Noegel
- Institute for Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
| | - Rob Peace
- Carleton University, Ottawa, Ontario, Canada
| | - Gérard Pierron
- Institut Jacques Monod, CNRS UMR7592, Université Paris Diderot Paris7, Paris, France
| | - Taeko Sasaki
- Department of Biological Sciences, Graduate School of Science, Nagoya University, Furocho, Chikusaku, Nagoya, Aichi, Japan
| | | | - Michael Schleicher
- Institute for Anatomy III / Cell Biology, BioMedCenter, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany
| | - Reema Singh
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Thomas Spaller
- Institut für Pharmazie, Friedrich-Schiller-Universität Jena, Jena, Germany
| | | | - Takamasa Suzuki
- Department of Biological Sciences, Graduate School of Science and JST ERATO Higashiyama Live-holonics Project, Nagoya University, Furocho, Chikusaku, Nagoya, Aichi, Japan
| | - Chad Tomlinson
- The Genome Institute, Washington University School of Medicine, St Louis
| | - John J Tyson
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg
| | - Wesley C Warren
- The Genome Institute, Washington University School of Medicine, St Louis
| | - Ernst R Werner
- Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | | - Richard K Wilson
- The Genome Institute, Washington University School of Medicine, St Louis
| | - Thomas Winckler
- Institut für Pharmazie, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Jonatha M Gott
- Center for RNA Molecular Biology, Case Western Reserve University, School of Medicine, Cleveland
| | - Gernot Glöckner
- Institute for Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Wolfgang Marwan
- Magdeburg Centre for Systems Biology and Institute for Biology, University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
26
|
Manna S. An overview of pentatricopeptide repeat proteins and their applications. Biochimie 2015; 113:93-9. [PMID: 25882680 DOI: 10.1016/j.biochi.2015.04.004] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/03/2015] [Indexed: 01/24/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins are a large family of modular RNA-binding proteins which mediate several aspects of gene expression primarily in organelles but also in the nucleus. These proteins facilitate processing, splicing, editing, stability and translation of RNAs. While major advances in PPR research have been achieved with plant PPR proteins, the significance of non-plant PPR proteins is becoming of increasing importance. PPR proteins are classified into different subclasses based on their domain architecture, which is often a reflection of their function. This review provides an overview of the significant findings regarding the functions, evolution and applications of PPR proteins. Horizontal gene transfer appears to have played a major role in the sporadic phylogenetic distribution of different PPR subclasses in both eukaryotes and prokaryotes. Additionally, the use of synthetic biology and protein engineering to create designer PPR proteins to control gene expression in vivo is discussed. This review also highlights some of the aspects of PPR research that require more attention particularly in non-plant organisms. This includes the lack of research into the recently discovered PPR-TGM subclass, which is not only the first PPR subclass absent from plants but present in economically and clinically-relevant pathogens. Investigation into the structure and function of PPR-TGM proteins in these pathogens presents a novel opportunity for the exploitation of PPR proteins as drug targets to prevent disease.
Collapse
Affiliation(s)
- Sam Manna
- Department of Microbiology, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
27
|
In silico identification, phylogenetic and bioinformatic analysis of argonaute genes in plants. Int J Genomics 2014; 2014:967461. [PMID: 25309901 PMCID: PMC4181786 DOI: 10.1155/2014/967461] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/03/2014] [Accepted: 08/05/2014] [Indexed: 11/26/2022] Open
Abstract
Argonaute protein family is the key players in pathways of gene silencing and small regulatory RNAs in different organisms. Argonaute proteins can bind small noncoding RNAs and control protein synthesis, affect messenger RNA stability, and even participate in the production of new forms of small RNAs. The aim of this study was to characterize and perform bioinformatic analysis of Argonaute proteins in 32 plant species that their genome was sequenced. A total of 437 Argonaute genes were identified and were analyzed based on lengths, gene structure, and protein structure. Results showed that Argonaute proteins were highly conserved across plant kingdom. Phylogenic analysis divided plant Argonautes into three classes. Argonaute proteins have three conserved domains PAZ, MID and PIWI. In addition to three conserved domains namely, PAZ, MID, and PIWI, we identified few more domains in AGO of some plant species. Expression profile analysis of Argonaute proteins showed that expression of these genes varies in most of tissues, which means that these proteins are involved in regulation of most pathways of the plant system. Numbers of alternative transcripts of Argonaute genes were highly variable among the plants. A thorough analysis of large number of putative Argonaute genes revealed several interesting aspects associated with this protein and brought novel information with promising usefulness for both basic and biotechnological applications.
Collapse
|
28
|
Fu CJ, Sheikh S, Miao W, Andersson SGE, Baldauf SL. Missing genes, multiple ORFs, and C-to-U type RNA editing in Acrasis kona (Heterolobosea, Excavata) mitochondrial DNA. Genome Biol Evol 2014; 6:2240-57. [PMID: 25146648 PMCID: PMC4202320 DOI: 10.1093/gbe/evu180] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Discoba (Excavata) is an ancient group of eukaryotes with great morphological and ecological diversity. Unlike the other major divisions of Discoba (Jakobida and Euglenozoa), little is known about the mitochondrial DNAs (mtDNAs) of Heterolobosea. We have assembled a complete mtDNA genome from the aggregating heterolobosean amoeba, Acrasis kona, which consists of a single circular highly AT-rich (83.3%) molecule of 51.5 kb. Unexpectedly, A. kona mtDNA is missing roughly 40% of the protein-coding genes and nearly half of the transfer RNAs found in the only other sequenced heterolobosean mtDNAs, those of Naegleria spp. Instead, over a quarter of A. kona mtDNA consists of novel open reading frames. Eleven of the 16 protein-coding genes missing from A. kona mtDNA were identified in its nuclear DNA and polyA RNA, and phylogenetic analyses indicate that at least 10 of these 11 putative nuclear-encoded mitochondrial (NcMt) proteins arose by direct transfer from the mitochondrion. Acrasis kona mtDNA also employs C-to-U type RNA editing, and 12 homologs of DYW-type pentatricopeptide repeat (PPR) proteins implicated in plant organellar RNA editing are found in A. kona nuclear DNA. A mapping of mitochondrial gene content onto a consensus phylogeny reveals a sporadic pattern of relative stasis and rampant gene loss in Discoba. Rampant loss occurred independently in the unique common lineage leading to Heterolobosea + Tsukubamonadida and later in the unique lineage leading to Acrasis. Meanwhile, mtDNA gene content appears to be remarkably stable in the Acrasis sister lineage leading to Naegleria and in their distant relatives Jakobida.
Collapse
Affiliation(s)
- Cheng-Jie Fu
- Program in Systematic Biology, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Sweden
| | - Sanea Sheikh
- Program in Systematic Biology, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Sweden
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Siv G E Andersson
- Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Sweden
| | - Sandra L Baldauf
- Program in Systematic Biology, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Sweden
| |
Collapse
|
29
|
Gawryluk RMR, Chisholm KA, Pinto DM, Gray MW. Compositional complexity of the mitochondrial proteome of a unicellular eukaryote (Acanthamoeba castellanii, supergroup Amoebozoa) rivals that of animals, fungi, and plants. J Proteomics 2014; 109:400-16. [PMID: 25026440 DOI: 10.1016/j.jprot.2014.07.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 06/09/2014] [Accepted: 07/04/2014] [Indexed: 12/22/2022]
Abstract
UNLABELLED We present a combined proteomic and bioinformatic investigation of mitochondrial proteins from the amoeboid protist Acanthamoeba castellanii, the first such comprehensive investigation in a free-living member of the supergroup Amoebozoa. This protist was chosen both for its phylogenetic position (as a sister to animals and fungi) and its ecological ubiquity and physiological flexibility. We report 1033 A. castellanii mitochondrial protein sequences, 709 supported by mass spectrometry data (676 nucleus-encoded and 33 mitochondrion-encoded), including two previously unannotated mtDNA-encoded proteins, which we identify as highly divergent mitochondrial ribosomal proteins. Other notable findings include duplicate proteins for all of the enzymes of the tricarboxylic acid (TCA) cycle-which, along with the identification of a mitochondrial malate synthase-isocitrate lyase fusion protein, suggests the interesting possibility that the glyoxylate cycle operates in A. castellanii mitochondria. Additionally, the A. castellanii genome encodes an unusually high number (at least 29) of mitochondrion-targeted pentatricopeptide repeat (PPR) proteins, organellar RNA metabolism factors in other organisms. We discuss several key mitochondrial pathways, including DNA replication, transcription and translation, protein degradation, protein import and Fe-S cluster biosynthesis, highlighting similarities and differences in these pathways in other eukaryotes. In compositional and functional complexity, the mitochondrial proteome of A. castellanii rivals that of multicellular eukaryotes. BIOLOGICAL SIGNIFICANCE Comprehensive proteomic surveys of mitochondria have been undertaken in a limited number of predominantly multicellular eukaryotes. This phylogenetically narrow perspective constrains and biases our insights into mitochondrial function and evolution, as it neglects protists, which account for most of the evolutionary and functional diversity within eukaryotes. We report here the first comprehensive investigation of the mitochondrial proteome in a member (A. castellanii) of the eukaryotic supergroup Amoebozoa. Through a combination of tandem mass spectrometry (MS/MS) and in silico data mining, we have retrieved 1033 candidate mitochondrial protein sequences, 709 having MS support. These data were used to reconstruct the metabolic pathways and protein complexes of A. castellanii mitochondria, and were integrated with data from other characterized mitochondrial proteomes to augment our understanding of mitochondrial proteome evolution. Our results demonstrate the power of combining direct proteomic and bioinformatic approaches in the discovery of novel mitochondrial proteins, both nucleus-encoded and mitochondrion-encoded, and highlight the compositional complexity of the A. castellanii mitochondrial proteome, which rivals that of animals, fungi and plants.
Collapse
Affiliation(s)
- Ryan M R Gawryluk
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kenneth A Chisholm
- Mass Spectrometry and Proteomics Group, National Research Council of Canada, Halifax, Nova Scotia, Canada
| | - Devanand M Pinto
- Mass Spectrometry and Proteomics Group, National Research Council of Canada, Halifax, Nova Scotia, Canada
| | - Michael W Gray
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
30
|
Yagi Y, Nakamura T, Small I. The potential for manipulating RNA with pentatricopeptide repeat proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:772-82. [PMID: 24471963 DOI: 10.1111/tpj.12377] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 10/29/2013] [Accepted: 11/04/2013] [Indexed: 05/04/2023]
Abstract
The pentatricopeptide repeat (PPR) protein family, which is particularly prevalent in plants, includes many sequence-specific RNA-binding proteins involved in all aspects of organelle RNA metabolism, including RNA stability, processing, editing and translation. PPR proteins consist of a tandem array of 2-30 PPR motifs, each of which aligns to one nucleotide in the RNA target. The amino acid side chains at two or three specific positions in each motif confer nucleotide specificity in a predictable and programmable manner. Thus, PPR proteins appear to provide an extremely promising opportunity to create custom RNA-binding proteins with tailored specificity. We summarize recent progress in understanding RNA recognition by PPR proteins, with a particular focus on potential applications of PPR-based tools for manipulating RNA, and on the challenges that remain to be overcome before these tools may be routinely used by the scientific community.
Collapse
Affiliation(s)
- Yusuke Yagi
- Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan
| | | | | |
Collapse
|
31
|
Takenaka M, Verbitskiy D, Zehrmann A, Härtel B, Bayer-Császár E, Glass F, Brennicke A. RNA editing in plant mitochondria—connecting RNA target sequences and acting proteins. Mitochondrion 2014; 19 Pt B:191-7. [PMID: 24732437 DOI: 10.1016/j.mito.2014.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/27/2014] [Accepted: 04/04/2014] [Indexed: 12/31/2022]
Abstract
RNA editing changes several hundred cytidines to uridines in the mRNAs of mitochondria in flowering plants. The target cytidines are identified by a subtype of PPR proteins characterized by tandem modules which each binds with a specific upstream nucleotide. Recent progress in correlating repeat structures with nucleotide identities allows to predict and identify target sites in mitochondrial RNAs. Additional proteins have been found to play a role in RNA editing; their precise function still needs to be elucidated. The enzymatic activity performing the C to U reaction may reside in the C-terminal DYW extensions of the PPR proteins; however, this still needs to be proven. Here we update recent progress in understanding RNA editing in flowering plant mitochondria.
Collapse
Affiliation(s)
| | | | - Anja Zehrmann
- Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany
| | | | | | | | | |
Collapse
|
32
|
Abstract
Pentatricopeptide repeat (PPR) proteins constitute one of the largest protein families in land plants, with more than 400 members in most species. Over the past decade, much has been learned about the molecular functions of these proteins, where they act in the cell, and what physiological roles they play during plant growth and development. A typical PPR protein is targeted to mitochondria or chloroplasts, binds one or several organellar transcripts, and influences their expression by altering RNA sequence, turnover, processing, or translation. Their combined action has profound effects on organelle biogenesis and function and, consequently, on photosynthesis, respiration, plant development, and environmental responses. Recent breakthroughs in understanding how PPR proteins recognize RNA sequences through modular base-specific contacts will help match proteins to potential binding sites and provide a pathway toward designing synthetic RNA-binding proteins aimed at desired targets.
Collapse
Affiliation(s)
- Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97405;
| | | |
Collapse
|
33
|
Hayes ML, Giang K, Berhane B, Mulligan RM. Identification of two pentatricopeptide repeat genes required for RNA editing and zinc binding by C-terminal cytidine deaminase-like domains. J Biol Chem 2013; 288:36519-29. [PMID: 24194514 DOI: 10.1074/jbc.m113.485755] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many transcripts expressed from plant organelle genomes are modified by C-to-U RNA editing. Nuclear encoded pentatricopeptide repeat (PPR) proteins are required as RNA binding specificity determinants in the RNA editing mechanism. Bioinformatic analysis has shown that most of the Arabidopsis PPR proteins necessary for RNA editing events include a C-terminal portion that shares structural characteristics with a superfamily of deaminases. The DYW deaminase domain includes a highly conserved zinc binding motif that shares characteristics with cytidine deaminases. The Arabidopsis PPR genes, ELI1 and DOT4, both have DYW deaminase domains and are required for single RNA editing events in chloroplasts. The ELI1 DYW deaminase domain was expressed as a recombinant protein in Escherichia coli and was shown to bind two zinc atoms per polypeptide. Thus, the DYW deaminase domain binds a zinc metal ion, as expected for a cytidine deaminase, and is potentially the catalytic component of an editing complex. Genetic complementation experiments demonstrate that large portions of the DYW deaminase domain of ELI1 may be eliminated, but the truncated genes retain the ability to restore editing site conversion in a mutant plant. These results suggest that the catalytic activity can be supplied in trans by uncharacterized protein(s) of the editosome.
Collapse
|