1
|
Zakariya F, Salem FK, Alamrain AA, Sanker V, Abdelazeem ZG, Hosameldin M, Tan JK, Howard R, Huang H, Awuah WA. Refining mutanome-based individualised immunotherapy of melanoma using artificial intelligence. Eur J Med Res 2024; 29:25. [PMID: 38183141 PMCID: PMC10768232 DOI: 10.1186/s40001-023-01625-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/25/2023] [Indexed: 01/07/2024] Open
Abstract
Using the particular nature of melanoma mutanomes to develop medicines that activate the immune system against specific mutations is a game changer in immunotherapy individualisation. It offers a viable solution to the recent rise in resistance to accessible immunotherapy alternatives, with some patients demonstrating innate resistance to these drugs despite past sensitisation to these agents. However, various obstacles stand in the way of this method, most notably the practicality of sequencing each patient's mutanome, selecting immunotherapy targets, and manufacturing specific medications on a large scale. With the robustness and advancement in research techniques, artificial intelligence (AI) is a potential tool that can help refine the mutanome-based immunotherapy for melanoma. Mutanome-based techniques are being employed in the development of immune-stimulating vaccines, improving current options such as adoptive cell treatment, and simplifying immunotherapy responses. Although the use of AI in these approaches is limited by data paucity, cost implications, flaws in AI inference capabilities, and the incapacity of AI to apply data to a broad population, its potential for improving immunotherapy is limitless. Thus, in-depth research on how AI might help the individualisation of immunotherapy utilising knowledge of mutanomes is critical, and this should be at the forefront of melanoma management.
Collapse
Affiliation(s)
- Farida Zakariya
- Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Nigeria
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Fatma K Salem
- Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | | | - Vivek Sanker
- Research Assistant, Dept. Of Neurosurgery, Trivandrum Medical College, Trivandrum, India
| | - Zainab G Abdelazeem
- Division of Molecular Biology, Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | | | | - Rachel Howard
- School of Clinical Medicine, University of Cambridge, Cambridge, England
| | - Helen Huang
- Faculty of Medicine and Health Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Wireko Andrew Awuah
- Medical Institute, Sumy State University, Zamonstanksya 7, Sumy, 40007, Ukraine.
| |
Collapse
|
2
|
Rujchanarong D, Lefler J, Saunders JE, Pippin S, Spruill L, Bethard JR, Ball LE, Mehta AS, Drake RR, Ostrowski MC, Angel PM. Defining the Tumor Microenvironment by Integration of Immunohistochemistry and Extracellular Matrix Targeted Imaging Mass Spectrometry. Cancers (Basel) 2021; 13:4419. [PMID: 34503228 PMCID: PMC8430776 DOI: 10.3390/cancers13174419] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 12/11/2022] Open
Abstract
Breast stroma plays a significant role in breast cancer risk and progression yet remains poorly understood. In breast stroma, collagen is the most abundantly expressed protein and its increased deposition and alignment contributes to progression and poor prognosis. Collagen post-translation modifications such as hydroxylated-proline (HYP) control deposition and stromal organization. The clinical relevance of collagen HYP site modifications in cancer processes remains undefined due to technical issues accessing collagen from formalin-fixed, paraffin-embedded (FFPE) tissues. We previously developed a targeted approach for investigating collagen and other extracellular matrix proteins from FFPE tissue. Here, we hypothesized that immunohistochemistry staining for fibroblastic markers would not interfere with targeted detection of collagen stroma peptides and could reveal peptide regulation influenced by specific cell types. Our initial work demonstrated that stromal peptide peak intensities when using MALD-IMS following IHC staining (αSMA, FAP, P4HA3 and PTEN) were comparable to serial sections of nonstained tissue. Analysis of histology-directed IMS using PTEN on breast tissues and TMAs revealed heterogeneous PTEN staining patterns and suggestive roles in stromal protein regulation. This study sets the foundation for investigations of target cell types and their unique contribution to collagen regulation within extracellular matrix niches.
Collapse
Affiliation(s)
- Denys Rujchanarong
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC 29425, USA; (D.R.); (J.E.S.); (S.P.); (J.R.B.); (L.E.B.); (A.S.M.); (R.R.D.)
| | - Julia Lefler
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (J.L.); (M.C.O.)
| | - Janet E. Saunders
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC 29425, USA; (D.R.); (J.E.S.); (S.P.); (J.R.B.); (L.E.B.); (A.S.M.); (R.R.D.)
| | - Sarah Pippin
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC 29425, USA; (D.R.); (J.E.S.); (S.P.); (J.R.B.); (L.E.B.); (A.S.M.); (R.R.D.)
| | - Laura Spruill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Jennifer R. Bethard
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC 29425, USA; (D.R.); (J.E.S.); (S.P.); (J.R.B.); (L.E.B.); (A.S.M.); (R.R.D.)
| | - Lauren E. Ball
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC 29425, USA; (D.R.); (J.E.S.); (S.P.); (J.R.B.); (L.E.B.); (A.S.M.); (R.R.D.)
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC 29425, USA; (D.R.); (J.E.S.); (S.P.); (J.R.B.); (L.E.B.); (A.S.M.); (R.R.D.)
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC 29425, USA; (D.R.); (J.E.S.); (S.P.); (J.R.B.); (L.E.B.); (A.S.M.); (R.R.D.)
| | - Michael C. Ostrowski
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (J.L.); (M.C.O.)
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, Charleston, SC 29425, USA; (D.R.); (J.E.S.); (S.P.); (J.R.B.); (L.E.B.); (A.S.M.); (R.R.D.)
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (J.L.); (M.C.O.)
| |
Collapse
|
3
|
Strashilov S, Yordanov A. Aetiology and Pathogenesis of Cutaneous Melanoma: Current Concepts and Advances. Int J Mol Sci 2021; 22:6395. [PMID: 34203771 PMCID: PMC8232613 DOI: 10.3390/ijms22126395] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022] Open
Abstract
Melanoma develops from malignant transformations of the pigment-producing melanocytes. If located in the basal layer of the skin epidermis, melanoma is referred to as cutaneous, which is more frequent. However, as melanocytes are be found in the eyes, ears, gastrointestinal tract, genitalia, urinary system, and meninges, cases of mucosal melanoma or other types (e.g., ocular) may occur. The incidence and morbidity of cutaneous melanoma (cM) are constantly increasing worldwide. Australia and New Zealand are world leaders in this regard with a morbidity rate of 54/100,000 and a mortality rate of 5.6/100,000 for 2015. The aim of this review is to consolidate and present the data related to the aetiology and pathogenesis of cutaneous melanoma, thus rendering them easier to understand. In this article we will discuss these problems and the possible impacts on treatment for this disease.
Collapse
Affiliation(s)
- Strahil Strashilov
- Department of Plastic Restorative, Reconstructive and Aesthetic Surgery, University Hospital “Dr. Georgi Stranski”, Medical University Pleven, 5800 Pleven, Bulgaria
| | - Angel Yordanov
- Clinic of Gynecologic Oncology, University Hospital “Dr. Georgi Stranski”, Medical University Pleven, 5800 Pleven, Bulgaria;
| |
Collapse
|
4
|
Ishibashi T, Kajihara I, Mizuhashi S, Kuriyama H, Kimura T, Kanemaru H, Makino K, Miyashita A, Aoi J, Makino T, Fukushima S, Kita K, Ihn H. Methyl-CpG binding domain protein 3: a new diagnostic marker and potential therapeutic target of melanoma. Biosci Trends 2020; 14:390-395. [PMID: 32963182 DOI: 10.5582/bst.2020.01048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Methyl-CpG binding domain protein 3 (MBD3) belongs to the methyl-CpG binding protein family. MBD3 facilitates the initiation of neural stem cell reprogramming. Melanoma originates in melanocytes derived from neural crest stem cells; therefore, we investigated the role of MBD3 in melanoma. MBD3 was overexpressed in melanoma compared with pigmented nevi. MBD3 knockdown had no effect on the proliferation of melanoma cells (A375 and A2058 cells). Contrarily, it significantly reduced the migration and invasion of A375 cells, but had no significant effect on A2058 cells. Furthermore, MBD3 knockdown reduced N-cadherin protein levels and matrix metalloproteinase-2 (MMP-2) activity in A375 cells, but had no significant effect on A2058 cells. Based on these results, the MBD3 expression level may be a useful biomarker for the diagnosis of melanoma. Thus, MBD3 has potential as a novel therapeutic target for some melanoma patients.
Collapse
Affiliation(s)
- Takayuki Ishibashi
- Department of Dermatology and Plastic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ikko Kajihara
- Department of Dermatology and Plastic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoru Mizuhashi
- Department of Dermatology and Plastic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Haruka Kuriyama
- Department of Dermatology and Plastic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Toshihiro Kimura
- Department of Dermatology and Plastic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hisashi Kanemaru
- Department of Dermatology and Plastic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Katsunari Makino
- Department of Dermatology and Plastic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Azusa Miyashita
- Department of Dermatology and Plastic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jun Aoi
- Department of Dermatology and Plastic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takamitsu Makino
- Department of Dermatology and Plastic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoshi Fukushima
- Department of Dermatology and Plastic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kanako Kita
- Department of Molecular Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hironobu Ihn
- Department of Dermatology and Plastic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
5
|
Anvekar RA, Asciolla JJ, Missert DJ, Chipuk JE. Born to be alive: a role for the BCL-2 family in melanoma tumor cell survival, apoptosis, and treatment. Front Oncol 2011; 1. [PMID: 22268005 PMCID: PMC3260552 DOI: 10.3389/fonc.2011.00034] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The global incidence of melanoma has dramatically increased during the recent decades, yet the advancement of primary and adjuvant therapies has not kept a similar pace. The development of melanoma is often centered on cellular signaling that hyper-activates survival pathways, while inducing a concomitant blockade to cell death. Aberrations in cell death signaling not only promote tumor survival and enhanced metastatic potential, but also create resistance to anti-tumor strategies. Chemotherapeutic agents target melanoma tumor cells by inducing a form of cell death called apoptosis, which is governed by the BCL-2 family of proteins. The BCL-2 family is comprised of anti-apoptotic proteins (e.g., BCL-2, BCL-xL, and MCL-1) and pro-apoptotic proteins (e.g., BAK, BAX, and BIM), and their coordinated regulation and function are essential for optimal responses to chemotherapeutics. Here we will discuss what is currently known about the mechanisms of BCL-2 family function with a focus on the signaling pathways that maintain melanoma tumor cell survival. Importantly, we will critically evaluate the literature regarding how chemotherapeutic strategies directly impact on BCL-2 family function and offer several suggestions for future regimens to target melanoma and enhance patient survival.
Collapse
Affiliation(s)
- Rina A Anvekar
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | |
Collapse
|