1
|
Differential Subcellular Distribution and Translocation of Seven 14-3-3 Isoforms in Response to EGF and During the Cell Cycle. Int J Mol Sci 2020; 21:ijms21010318. [PMID: 31906564 PMCID: PMC6981507 DOI: 10.3390/ijms21010318] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/05/2019] [Accepted: 12/28/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple isoforms of 14-3-3 proteins exist in different organisms. In mammalian cells, 14-3-3 protein has seven isoforms (α/β, ε, η, γ, σ, θ/τ, and δ/ζ), with α and δ representing the phosphorylated versions of β and ζ, respectively. While the existence of multiple isoforms may represent one more level of regulation in 14-3-3 signaling, our knowledge regarding the isoform-specific functions of 14-3-3 proteins is very limited. Determination of the subcellular localization of the different 14-3-3 isoforms could give us important clues of their specific functions. In this study, by using indirect immunofluorescence, subcellular fractionation, and immunoblotting, we studied the subcellular localization of the total 14-3-3 protein and each of the seven 14-3-3 isoforms; their redistribution throughout the cell cycle; and their translocation in response to EGF in Cos-7 cells. We showed that 14-3-3 proteins are broadly distributed throughout the cell and associated with many subcellular structures/organelles, including the plasma membrane (PM), mitochondria, ER, nucleus, microtubules, and actin fibers. This broad distribution underlines the multiple functions identified for 14-3-3 proteins. The different isoforms of 14-3-3 proteins have distinctive subcellular localizations, which suggest their distinctive cellular functions. Most notably, 14-3-3ƞ is almost exclusively localized to the mitochondria, 14-3-3γ is only localized to the nucleus, and 14-3-3σ strongly and specifically associated with the centrosome during mitosis. We also examined the subcellular localization of the seven 14-3-3 isoforms in other cells, including HEK-293, MDA-MB-231, and MCF-7 cells, which largely confirmed our findings with Cos-7 cells.
Collapse
|
2
|
Chiu SC, Chen KC, Hsia JY, Chuang CY, Wan CX, Wei TYW, Huang YRJ, Chen JMM, Liao YTA, Yu CTR. Overexpression of Aurora-A bypasses cytokinesis through phosphorylation of suppressed in lung cancer. Am J Physiol Cell Physiol 2019; 317:C600-C612. [PMID: 31314582 DOI: 10.1152/ajpcell.00032.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitosis is a complicated process by which eukaryotic cells segregate duplicated genomes into two daughter cells. To achieve the goal, numerous regulators have been revealed to control mitosis. The oncogenic Aurora-A is a versatile kinase responsible for the regulation of mitosis including chromosome condensation, spindle assembly, and centrosome maturation through phosphorylating a range of substrates. However, overexpression of Aurora-A bypasses cytokinesis, thereby generating multiple nuclei by unknown the mechanisms. To explore the underlying mechanisms, we found that SLAN, a potential tumor suppressor, served as a substrate of Aurora-A and knockdown of SLAN induced immature cytokinesis. Aurora-A phosphorylates SLAN at T573 under the help of the scaffold protein 14-3-3η. The SLAN phosphorylation-mimicking mutants T573D or T573E, in contrast to the phosphorylation-deficiency mutant T573A, induced higher level of multinucleated cells, and the endogenous SLAN p573 resided at spindle midzone and midbody with the help of the microtubule motor MKLP1. The Aurora-A- or SLAN-induced multiple nuclei was prevented by the knockdown of 14-3-3η or Aurora-A respectively, thereby revealing a 14-3-3η/Aurora-A/SLAN cascade negatively controlling cytokinesis. Intriguingly, SLAN T573D or T573E inactivated and T573A activated the key cytokinesis regulator RhoA. RhoA interacted with SLAN np573, i.e., the nonphosphorylated form of SLAN at T573, which localized to the spindle midzone dictated by RhoA and ECT2. Therefore, we report here that SLAN mediates the Aurora-A-triggered cytokinesis bypass and SLAN plays dual roles in that process depending on its phosphorylation status.
Collapse
Affiliation(s)
- Shao-Chih Chiu
- Center for Cell Therapy, China Medical University Hospital, Taichung, Taiwan, Republic of China.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, Republic of China
| | - Kun-Chieh Chen
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China.,Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Jiun-Yi Hsia
- Department of Surgery, Chung Shan Hospital, Taichung, Taiwan, Republic of China.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Cheng-Yen Chuang
- Division of Thoracic Surgery, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China.,Institute of Medical and Molecular Toxicology, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Chang-Xin Wan
- Department of Applied Chemistry, National Chi Nan University, Taiwan, Republic of China
| | - Tong-You Wade Wei
- Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Taiwan, Republic of China.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yun-Ru Jaoying Huang
- Department of Applied Chemistry, National Chi Nan University, Taiwan, Republic of China
| | - Jo-Mei Maureen Chen
- Department of Applied Chemistry, National Chi Nan University, Taiwan, Republic of China
| | - Yu-Ting Amber Liao
- Center for Cell Therapy, China Medical University Hospital, Taichung, Taiwan, Republic of China.,Department of Applied Chemistry, National Chi Nan University, Taiwan, Republic of China
| | - Chang-Tze Ricky Yu
- Department of Applied Chemistry, National Chi Nan University, Taiwan, Republic of China.,Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Taiwan, Republic of China
| |
Collapse
|
3
|
West-Foyle H, Kothari P, Osborne J, Robinson DN. 14-3-3 proteins tune non-muscle myosin II assembly. J Biol Chem 2018; 293:6751-6761. [PMID: 29549125 DOI: 10.1074/jbc.m117.819391] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/12/2018] [Indexed: 11/06/2022] Open
Abstract
The 14-3-3 family comprises a group of small proteins that are essential, ubiquitous, and highly conserved across eukaryotes. Overexpression of the 14-3-3 proteins σ, ϵ, ζ, and η correlates with high metastatic potential in multiple cancer types. In Dictyostelium, 14-3-3 promotes myosin II turnover in the cell cortex and modulates cortical tension, cell shape, and cytokinesis. In light of the important roles of 14-3-3 proteins across a broad range of eukaryotic species, we sought to determine how 14-3-3 proteins interact with myosin II. Here, conducting in vitro and in vivo studies of both Dictyostelium (one 14-3-3 and one myosin II) and human proteins (seven 14-3-3s and three nonmuscle myosin IIs), we investigated the mechanism by which 14-3-3 proteins regulate myosin II assembly. Using in vitro assembly assays with purified myosin II tail fragments and 14-3-3, we demonstrate that this interaction is direct and phosphorylation-independent. All seven human 14-3-3 proteins also altered assembly of at least one paralog of myosin II. Our findings indicate a mechanism of myosin II assembly regulation that is mechanistically conserved across a billion years of evolution from amebas to humans. We predict that altered 14-3-3 expression in humans inhibits the tumor suppressor myosin II, contributing to the changes in cell mechanics observed in many metastatic cancers.
Collapse
Affiliation(s)
| | | | | | - Douglas N Robinson
- From the Departments of Cell Biology, .,Pharmacology and Molecular Sciences, and.,Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
4
|
Jahan MGS, Yumura S. Traction force and its regulation during cytokinesis in Dictyostelium cells. Eur J Cell Biol 2017. [PMID: 28633918 DOI: 10.1016/j.ejcb.2017.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cytokinesis is the final stage of cell division. Dictyostelium cells have multiple modes of cytokinesis, including cytokinesis A, B and C. Cytokinesis A is a conventional mode, which depends on myosin II in the contractile ring. Myosin II null cells divide depending on substratum-attachment (cytokinesis B) or in a multi-polar fashion independent of the cell cycle (cytokinesis C). We investigated the traction stress exerted by dividing cells in the three different modes using traction force microscopy. In all cases, the traction forces were directed inward from both poles. Interestingly, the traction stress of cytokinesis A was the smallest of the three modes. Latrunculin B, an inhibitor of actin polymerization, completely diminished the traction stress of dividing cells, but blebbistatin, an inhibitor of myosin II ATPase, increased the traction stress. Myosin II is proposed to contribute to the detachment of cell body from the substratum. When the cell-substratum attachment was artificially strengthened by a poly-lysine coating, wild type cells increased their traction stress in contrast to myosin II null and other cytokinesis-deficient mutant cells, which suggests that wild type cells may increase their own power to conduct their cytokinesis. The cytokinesis-deficient mutants frequently divided unequally, whereas wild type cells divided equally. A traction stress imbalance between two daughter halves was correlated with cytokinesis failure. We discuss the regulation of cell shape changes during cell division through mechanosensing.
Collapse
Affiliation(s)
- Md Golam Sarowar Jahan
- Department of Functional Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan; Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Shigehiko Yumura
- Department of Functional Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan.
| |
Collapse
|
5
|
Abstract
Modulation of protein-protein interactions (PPIs) is becoming increasingly important in drug discovery and chemical biology. While a few years ago this 'target class' was deemed to be largely undruggable an impressing number of publications and success stories now show that targeting PPIs with small, drug-like molecules indeed is a feasible approach. Here, we summarize the current state of small-molecule inhibition and stabilization of PPIs and review the active molecules from a structural and medicinal chemistry angle, especially focusing on the key examples of iNOS, LFA-1 and 14-3-3.
Collapse
|
6
|
Ren Y, West-Foyle H, Surcel A, Miller C, Robinson DN. Genetic suppression of a phosphomimic myosin II identifies system-level factors that promote myosin II cleavage furrow accumulation. Mol Biol Cell 2014; 25:4150-65. [PMID: 25318674 PMCID: PMC4263456 DOI: 10.1091/mbc.e14-08-1322] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
How myosin II localizes to the cleavage furrow in Dictyostelium and metazoan cells remains largely unknown despite significant advances in understanding its regulation. We designed a genetic selection using cDNA library suppression of 3xAsp myosin II to identify factors involved in myosin cleavage furrow accumulation. The 3xAsp mutant is deficient in bipolar thick filament assembly, fails to accumulate at the cleavage furrow, cannot rescue myoII-null cytokinesis, and has impaired mechanosensitive accumulation. Eleven genes suppressed this dominant cytokinesis deficiency when 3xAsp was expressed in wild-type cells. 3xAsp myosin II's localization to the cleavage furrow was rescued by constructs encoding rcdBB, mmsdh, RMD1, actin, one novel protein, and a 14-3-3 hairpin. Further characterization showed that RMD1 is required for myosin II cleavage furrow accumulation, acting in parallel with mechanical stress. Analysis of several mutant strains revealed that different thresholds of myosin II activity are required for daughter cell symmetry than for furrow ingression dynamics. Finally, an engineered myosin II with a longer lever arm (2xELC), producing a highly mechanosensitive motor, could also partially suppress the intragenic 3xAsp. Overall, myosin II accumulation is the result of multiple parallel and partially redundant pathways that comprise a cellular contractility control system.
Collapse
Affiliation(s)
- Yixin Ren
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Hoku West-Foyle
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Alexandra Surcel
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Christopher Miller
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Summer Academic Research Experience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
7
|
De S, Kline D. Evidence for the requirement of 14-3-3eta (YWHAH) in meiotic spindle assembly during mouse oocyte maturation. BMC DEVELOPMENTAL BIOLOGY 2013; 13:10. [PMID: 23547714 PMCID: PMC3620909 DOI: 10.1186/1471-213x-13-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/13/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND The 14-3-3 (YWHA) proteins are central mediators in various cellular signaling pathways regulating development and growth, including cell cycle regulation. We previously reported that all seven mammalian 14-3-3 isoforms are expressed in mouse oocytes and eggs and that, 14-3-3η (YWHAH) accumulates and co-localizes in the region of meiotic spindle in mouse eggs matured in vivo. Therefore, we investigated the role of 14-3-3η in spindle formation during mouse oocyte maturation. RESULTS Examination of oocytes matured in vitro demonstrated that 14-3-3η accumulates in both meiosis I and II spindles. To explore if 14-3-3η interacts directly with α-tubulin in meiotic spindles, we performed an in situ proximity ligation assay that can detect intracellular protein-protein interactions at the single molecule level and which allows visualization of the actual interaction sites. This assay revealed a marked interaction between 14-3-3η and α-tubulin at the metaphase II spindle. To demonstrate a functional role for 14-3-3η in oocyte maturation, mouse oocytes were microinjected with a translation-blocking morpholino oligonucleotide against 14-3-3η mRNA to reduce 14-3-3η protein synthesis during oocyte maturation. Meiotic spindles in those cells were examined by immunofluorescence staining of 14-3-3η and α-tubulin along with observation of DNA. In 76% of cells injected with the morpholino, meiotic spindles were found to be deformed or absent and there was reduced or no accumulation of 14-3-3η in the spindle region. Those cells contained clumped chromosomes, with no polar body formation. Immunofluorescence staining of 14-3-3η and α-tubulin in control eggs matured in vitro from uninjected oocytes and oocytes microinjected with the ineffective, inverted form of a morpholino against 14-3-3η, a morpholino against 14-3-3γ, or deionized water showed normal, bipolar spindles. CONCLUSIONS The results indicate that 14-3-3η is essential for normal meiotic spindle formation during in vitro maturation of mouse oocytes, in part by interacting with α-tubulin, to regulate the assembly of microtubules. These data add to our understanding of the roles of 14-3-3 proteins in mouse oocyte maturation and mammalian reproduction.
Collapse
Affiliation(s)
- Santanu De
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | | |
Collapse
|
8
|
Abstract
Much of our knowledge of molecular cellular functions is based on studies with a few number of model organisms that were established during the last 50 years. The social amoeba Dictyostelium discoideum is one such model, and has been particularly useful for the study of cell motility, chemotaxis, phagocytosis, endocytic vesicle traffic, cell adhesion, pattern formation, caspase-independent cell death, and, more recently, autophagy and social evolution. As nonmammalian model of human diseases D. discoideum is a newcomer, yet it has proven to be a powerful genetic and cellular model for investigating host-pathogen interactions and microbial infections, for mitochondrial diseases, and for pharmacogenetic studies. The D. discoideum genome harbors several homologs of human genes responsible for a variety of diseases, -including Chediak-Higashi syndrome, lissencephaly, mucolipidosis, Huntington disease, IBMPFD, and Shwachman-Diamond syndrome. A few genes have already been studied, providing new insights on the mechanism of action of the encoded proteins and in some cases on the defect underlying the disease. The opportunities offered by the organism and its place among the nonmammalian models for human diseases will be discussed.
Collapse
Affiliation(s)
- Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Turin, Italy.
| |
Collapse
|
9
|
Pilot and feasibility study: comparative proteomic analysis by 2-DE MALDI TOF/TOF MS reveals 14-3-3 proteins as putative biomarkers of response to neoadjuvant chemotherapy in ER-positive breast cancer. J Proteomics 2012; 75:2745-52. [PMID: 22498883 DOI: 10.1016/j.jprot.2012.03.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 03/23/2012] [Accepted: 03/27/2012] [Indexed: 12/20/2022]
Abstract
Neoadjuvant chemotherapy is used to treat oestrogen receptor-positive breast cancer however chemo-resistance is a major obstacle in this molecular subtype. The ability to predict tumour response would allow chemotherapy administration to be directed towards patients who would most benefit, thus maximising treatment efficacy. We aimed to identify protein biomarkers associated with response to neoadjuvant chemotherapy, in a pilot study using comparative 2-DE MALDI TOF/TOF MS proteomic analysis of breast tumour samples. A total of 3 comparative proteomic experiments were performed, comparing protein expression between chemotherapy-sensitive and chemotherapy-resistant oestrogen receptor-positive invasive ductal carcinoma tissue samples. This identified a list of 132 unique proteins that were significantly differentially expressed (≥ 2 fold) in chemotherapy resistant samples, 57 of which were identified in at least two experiments. Ingenuity® Pathway Analysis was used to map the 57 DEPs onto canonical signalling pathways. We implicate several isoforms of 14-3-3 family proteins (theta/tau, gamma, epsilon, beta/alpha and zeta/delta), which have previously been associated with chemotherapy resistance in breast cancer. Extensive clinical validation is now required to fully assess the role of these proteins as putative markers of chemotherapy response in luminal breast cancer subtypes.
Collapse
|
10
|
Kee YS, Ren Y, Dorfman D, Iijima M, Firtel R, Iglesias PA, Robinson DN. A mechanosensory system governs myosin II accumulation in dividing cells. Mol Biol Cell 2012; 23:1510-23. [PMID: 22379107 PMCID: PMC3327329 DOI: 10.1091/mbc.e11-07-0601] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 02/15/2012] [Accepted: 02/24/2012] [Indexed: 01/14/2023] Open
Abstract
The mitotic spindle is generally considered the initiator of furrow ingression. However, recent studies suggest that furrows can form without spindles, particularly during asymmetric cell division. In Dictyostelium, the mechanoenzyme myosin II and the actin cross-linker cortexillin I form a mechanosensor that responds to mechanical stress, which could account for spindle-independent contractile protein recruitment. Here we show that the regulatory and contractility network composed of myosin II, cortexillin I, IQGAP2, kinesin-6 (kif12), and inner centromeric protein (INCENP) is a mechanical stress-responsive system. Myosin II and cortexillin I form the core mechanosensor, and mechanotransduction is mediated by IQGAP2 to kif12 and INCENP. In addition, IQGAP2 is antagonized by IQGAP1 to modulate the mechanoresponsiveness of the system, suggesting a possible mechanism for discriminating between mechanical and biochemical inputs. Furthermore, IQGAP2 is important for maintaining spindle morphology and kif12 and myosin II cleavage furrow recruitment. Cortexillin II is not directly involved in myosin II mechanosensitive accumulation, but without cortexillin I, cortexillin II's role in membrane-cortex attachment is revealed. Finally, the mitotic spindle is dispensable for the system. Overall, this mechanosensory system is structured like a control system characterized by mechanochemical feedback loops that regulate myosin II localization at sites of mechanical stress and the cleavage furrow.
Collapse
Affiliation(s)
- Yee-Seir Kee
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Yixin Ren
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Danielle Dorfman
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Richard Firtel
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093
| | - Pablo A. Iglesias
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Douglas N. Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|