1
|
Bartish M, Abraham MJ, Gonçalves C, Larsson O, Rolny C, Del Rincón SV. The role of eIF4F-driven mRNA translation in regulating the tumour microenvironment. Nat Rev Cancer 2023; 23:408-425. [PMID: 37142795 DOI: 10.1038/s41568-023-00567-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/06/2023]
Abstract
Cells can rapidly adjust their proteomes in dynamic environments by regulating mRNA translation. There is mounting evidence that dysregulation of mRNA translation supports the survival and adaptation of cancer cells, which has stimulated clinical interest in targeting elements of the translation machinery and, in particular, components of the eukaryotic initiation factor 4F (eIF4F) complex such as eIF4E. However, the effect of targeting mRNA translation on infiltrating immune cells and stromal cells in the tumour microenvironment (TME) has, until recently, remained unexplored. In this Perspective article, we discuss how eIF4F-sensitive mRNA translation controls the phenotypes of key non-transformed cells in the TME, with an emphasis on the underlying therapeutic implications of targeting eIF4F in cancer. As eIF4F-targeting agents are in clinical trials, we propose that a broader understanding of their effect on gene expression in the TME will reveal unappreciated therapeutic vulnerabilities that could be used to improve the efficacy of existing cancer therapies.
Collapse
Affiliation(s)
- Margarita Bartish
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Segal Cancer Center, Lady Davis Institute and Jewish General Hospital, Montreal, QC, Canada
- Science for Life Laboratory, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Madelyn J Abraham
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Segal Cancer Center, Lady Davis Institute and Jewish General Hospital, Montreal, QC, Canada
| | - Christophe Gonçalves
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Segal Cancer Center, Lady Davis Institute and Jewish General Hospital, Montreal, QC, Canada
| | - Ola Larsson
- Science for Life Laboratory, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte Rolny
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| | - Sonia V Del Rincón
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada.
- Segal Cancer Center, Lady Davis Institute and Jewish General Hospital, Montreal, QC, Canada.
| |
Collapse
|
2
|
Yang M, Lu Y, Piao W, Jin H. The Translational Regulation in mTOR Pathway. Biomolecules 2022; 12:biom12060802. [PMID: 35740927 PMCID: PMC9221026 DOI: 10.3390/biom12060802] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
The mechanistic/mammalian target of rapamycin (mTOR) plays a master role in cell proliferation and growth in response to insulin, amino acids, energy levels, and oxygen. mTOR can coordinate upstream signals with downstream effectors, including transcriptional and translational apparatuses to regulate fundamental cellular processes such as energy utilization, protein synthesis, autophagy, cell growth, and proliferation. Of the above, protein synthesis is highly energy-consuming; thus, mRNA translation is under the tight and immediate control of mTOR signaling. The translational regulation driven by mTOR signaling mainly relies on eukaryotic translation initiation factor 4E (eIF4E)-binding protein (4E-BP), ribosomal protein S6 kinase (S6K), and its downstream players, which are significant in rapid cellular response to environmental change. mTOR signaling not only controls the general mRNA translation, but preferential mRNA translation as well. This means that mTOR signaling shows the stronger selectivity to particular target mRNAs. Some evidence has supported the contribution of 4E-BP and La-related proteins 1 (LARP1) to such translational regulation. In this review, we summarize the mTOR pathway and mainly focus on mTOR-mediated mRNA translational regulation. We introduce the major components of mTOR signaling and their functions in translational control in a general or particular manner, and describe how the specificity of regulation is coordinated. Furthermore, we summarize recent research progress and propose additional ideas for reference. Because the mTOR pathway is on the center of cell growth and metabolism, comprehensively understanding this pathway will contribute to the therapy of related diseases, including cancers, type 2 diabetes, obesity, and neurodegeneration.
Collapse
Affiliation(s)
| | | | | | - Hua Jin
- Correspondence: (W.P.); (H.J.)
| |
Collapse
|
3
|
Translation of Human β-Actin mRNA is Regulated by mTOR Pathway. Genes (Basel) 2019; 10:genes10020096. [PMID: 30700035 PMCID: PMC6410274 DOI: 10.3390/genes10020096] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 01/09/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) kinase is a well-known master regulator of growth-dependent gene expression in higher eukaryotes. Translation regulation is an important function of the mTORC1 pathway that controls the synthesis of many ribosomal proteins and translation factors. Housekeeping genes such as β-actin (ACTB) are widely used as negative control genes in studies of growth-dependent translation. Here we demonstrate that translation of both endogenous and reporter ACTB mRNA is inhibited in the presence of mTOR kinase inhibitor (Torin1) and under amino acid starvation. Notably, 5’UTR and promoter of ACTB are sufficient for the mTOR-dependent translational response, and the degree of mTOR-sensitivity of ACTB mRNA translation is cell type-dependent.
Collapse
|
4
|
Abstract
Translation is a key step in the regulation of gene expression and one of the most energy-consuming processes in the cell. In response to various stimuli, multiple signaling pathways converge on the translational machinery to regulate its function. To date, the roles of phosphoinositide 3-kinase (PI3K)/AKT and the mitogen-activated protein kinase (MAPK) pathways in the regulation of translation are among the best understood. Both pathways engage the mechanistic target of rapamycin (mTOR) to regulate a variety of components of the translational machinery. While these pathways regulate protein synthesis in homeostasis, their dysregulation results in aberrant translation leading to human diseases, including diabetes, neurological disorders, and cancer. Here we review the roles of the PI3K/AKT and MAPK pathways in the regulation of mRNA translation. We also highlight additional signaling mechanisms that have recently emerged as regulators of the translational apparatus.
Collapse
|
5
|
Abstract
Type-I interferon (IFN)-induced activation of the mammalian target of rapamycin (mTOR) signaling pathway has been implicated in translational control of mRNAs encoding interferon-stimulated genes (ISGs). However, mTOR-sensitive translatomes commonly include mRNAs with a 5’ terminal oligopyrimidine tract (TOP), such as those encoding ribosomal proteins, but not ISGs. Because these translatomes were obtained under conditions when ISG expression is not induced, we examined the mTOR-sensitive translatome in human WISH cells stimulated with IFN β. The mTOR inhibitor Torin1 resulted in a repression of global protein synthesis, including that of ISG products, and translation of all but 3 ISG mRNAs (TLR3, NT5C3A, and RNF19B) was not selectively more sensitive to mTOR inhibition. Detailed studies of NT5C3A revealed an IFN-induced change in transcription start site resulting in a switch from a non-TOP to a TOP-like transcript variant and mTOR sensitive translation. Thus, we show that, in the cell model used, translation of the vast majority of ISG mRNAs is not selectively sensitive to mTOR activity and describe an uncharacterized mechanism wherein the 5’-UTR of an mRNA is altered in response to a cytokine, resulting in a shift from mTOR-insensitive to mTOR-sensitive translation.
Collapse
|
6
|
MNKs act as a regulatory switch for eIF4E1 and eIF4E3 driven mRNA translation in DLBCL. Nat Commun 2014; 5:5413. [PMID: 25403230 PMCID: PMC4238046 DOI: 10.1038/ncomms6413] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/29/2014] [Indexed: 02/08/2023] Open
Abstract
The phosphorylation of eIF4E1 at serine 209 by MNK1 or MNK2 has been shown to initiate oncogenic mRNA translation, a process that favours cancer development and maintenance. Here, we interrogate the MNK-eIF4E axis in diffuse large B-cell lymphoma (DLBCL) and show a distinct distribution of MNK1 and MNK2 in germinal centre B-cell (GCB) and activated B-cell (ABC) DLBCL. Despite displaying a differential distribution in GCB and ABC, both MNKs functionally complement each other to sustain cell survival. MNK inhibition ablates eIF4E1 phosphorylation and concurrently enhances eIF4E3 expression. Loss of MNK protein itself downregulates total eIF4E1 protein level by reducing eIF4E1 mRNA polysomal loading without affecting total mRNA level or stability. Enhanced eIF4E3 expression marginally suppresses eIF4E1-driven translation but exhibits a unique translatome that unveils a novel role for eIF4E3 in translation initiation. We propose that MNKs can modulate oncogenic translation by regulating eIF4E1-eIF4E3 levels and activity in DLBCL. Diffuse large B-cell lymphoma (DLBCL) is a highly aggressive and heterogeneous type of non-Hodgkin’s lymphoma. Here the authors demonstrate that the differential regulation of eIF4E1 and eIF4E3 by the MAPK-interacting kinases is involved in DLBCL aetiology through modification of the cellular translatome.
Collapse
|
7
|
Lyabin DN, Doronin AN, Eliseeva IA, Guens GP, Kulakovskiy IV, Ovchinnikov LP. Alternative forms of Y-box binding protein 1 and YB-1 mRNA. PLoS One 2014; 9:e104513. [PMID: 25116735 PMCID: PMC4130533 DOI: 10.1371/journal.pone.0104513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/09/2014] [Indexed: 01/27/2023] Open
Abstract
The multifunctional eukaryotic protein YB-1 (Y-box binding protein 1) plays a role in DNA reparation, transcription regulation, splicing, and mRNA translation, thereby participating in many crucial events in cells. Its effect is dependent mostly on its amount, and hence, on regulation of its synthesis. Published data on regulation of synthesis of YB-1 mediated by its mRNA 5' UTR, and specifically on the 5' UTR length and the presence of TOP-like motifs in this region, are contradictory. Here we report that 5' UTRs of major forms of human, rabbit, and mouse YB-1 mRNAs are about 140 nucleotides long and contain no TOP-like motifs mentioned in the literature. Also, we have found that YB-1 specifically interacts with the 5' UTR of its own mRNA within a region of about 100 nucleotides upstream from the start codon. Apart from YB-1, translation of YB-1 mRNA in a cell free system gives an additional product with an extended N-terminus and lower electrophoretic mobility. The start codon for synthesis of the additional product is AUC at position -(60-58) of the same open reading frame as that for the major product. Also, in the cell there is an alternative YB-1 mRNA with exon 1 replaced by a part of intron 1; YB-1 synthesized in vitro from this mRNA contains, instead of its N-terminal A/P domain, 10-11 amino acids encoded by intron 1.
Collapse
Affiliation(s)
- Dmitry N. Lyabin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - Alexander N. Doronin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - Irina A. Eliseeva
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - Gelena P. Guens
- Department of Oncology and Radiation Therapy, Moscow State University of Medicine and Dentistry, Moscow, Russian Federation
| | - Ivan V. Kulakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
- Department of Computational Systems Biology, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Lev P. Ovchinnikov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
- * E-mail:
| |
Collapse
|
8
|
Translational control of immune responses: from transcripts to translatomes. Nat Immunol 2014; 15:503-11. [DOI: 10.1038/ni.2891] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 04/08/2014] [Indexed: 12/13/2022]
|