1
|
Tripathi D, Oldenburg DJ, Bendich AJ. Analysis of the Plastid Genome Sequence During Maize Seedling Development. Front Genet 2022; 13:870115. [PMID: 35559017 PMCID: PMC9086435 DOI: 10.3389/fgene.2022.870115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Shoot development in maize progresses from small, non-pigmented meristematic cells to expanded cells in the green leaf. During this transition, large plastid DNA (ptDNA) molecules in proplastids become fragmented in the photosynthetically-active chloroplasts. The genome sequences were determined for ptDNA obtained from Zea mays B73 plastids isolated from four tissues: base of the stalk (the meristem region); fully-developed first green leaf; first three leaves from light-grown seedlings; and first three leaves from dark-grown (etiolated) seedlings. These genome sequences were then compared to the Z. mays B73 plastid reference genome sequence that was previously obtained from green leaves. The assembled plastid genome was identical among these four tissues to the reference genome. Furthermore, there was no difference among these tissues in the sequence at and around the previously documented 27 RNA editing sites. There were, however, more sequence variants (insertions/deletions and single-nucleotide polymorphisms) for leaves grown in the dark than in the light. These variants were tightly clustered into two areas within the inverted repeat regions of the plastid genome. We propose a model for how these variant clusters could be generated by replication-transcription conflict.
Collapse
Affiliation(s)
- Diwaker Tripathi
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Delene J Oldenburg
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Arnold J Bendich
- Department of Biology, University of Washington, Seattle, WA, United States
| |
Collapse
|
2
|
da Silva MS, Cayres-Silva GR, Vitarelli MO, Marin PA, Hiraiwa PM, Araújo CB, Scholl BB, Ávila AR, McCulloch R, Reis MS, Elias MC. Transcription activity contributes to the firing of non-constitutive origins in African trypanosomes helping to maintain robustness in S-phase duration. Sci Rep 2019; 9:18512. [PMID: 31811174 PMCID: PMC6898680 DOI: 10.1038/s41598-019-54366-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 11/04/2019] [Indexed: 12/31/2022] Open
Abstract
The co-synthesis of DNA and RNA potentially generates conflicts between replication and transcription, which can lead to genomic instability. In trypanosomatids, eukaryotic parasites that perform polycistronic transcription, this phenomenon and its consequences are still little studied. Here, we showed that the number of constitutive origins mapped in the Trypanosoma brucei genome is less than the minimum required to complete replication within S-phase duration. By the development of a mechanistic model of DNA replication considering replication-transcription conflicts and using immunofluorescence assays and DNA combing approaches, we demonstrated that the activation of non-constitutive (backup) origins are indispensable for replication to be completed within S-phase period. Together, our findings suggest that transcription activity during S phase generates R-loops, which contributes to the emergence of DNA lesions, leading to the firing of backup origins that help maintain robustness in S-phase duration. The usage of this increased pool of origins, contributing to the maintenance of DNA replication, seems to be of paramount importance for the survival of this parasite that affects million people around the world.
Collapse
Affiliation(s)
- Marcelo S da Silva
- Laboratório Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Gustavo R Cayres-Silva
- Laboratório Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Marcela O Vitarelli
- Laboratório Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Paula A Marin
- Laboratório Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Priscila M Hiraiwa
- Plataforma de citometria de fluxo, Instituto Carlos Chagas, FIOCRUZ, Paraná, Brazil
| | - Christiane B Araújo
- Laboratório Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Bruno B Scholl
- Laboratório Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Andrea R Ávila
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, FIOCRUZ, Paraná, Brazil
| | - Richard McCulloch
- The Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Marcelo S Reis
- Laboratório Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil.
| | - Maria Carolina Elias
- Laboratório Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil.
| |
Collapse
|
3
|
Ragheb M, Merrikh H. The enigmatic role of Mfd in replication-transcription conflicts in bacteria. DNA Repair (Amst) 2019; 81:102659. [PMID: 31311770 PMCID: PMC6892258 DOI: 10.1016/j.dnarep.2019.102659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Conflicts between replication and transcription can have life-threatening consequences. RNA polymerase (RNAP) is the major impediment to replication progression, and its efficient removal from DNA should mitigate the consequences of collisions with replication. Cells have various proteins that can resolve conflicts by removing stalled (or actively translocating) RNAP from DNA. It would therefore seem logical that RNAP-associated factors, such as the bacterial DNA translocase Mfd, would minimize the effects of conflicts. Despite seemingly conclusive statements in most textbooks, the role of Mfd in conflicts remains an enigma. In this review, we will discuss the different physical states of RNAP during transcription, and how each distinct state can influence conflict severity and potentially trigger the involvement of Mfd. We propose models to explain the contradictory conclusions from published studies on the potential role of Mfd in resolving conflicts.
Collapse
Affiliation(s)
- Mark Ragheb
- Molecular and Cellular Biology Graduate Program and Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Houra Merrikh
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37205, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
4
|
Joseph A, Nagaraja V, Natesh R. MSMEG_6292, a Mycobacterium smegmatis RNA polymerase secondary channel-binding protein: purification, crystallization and X-ray diffraction analysis. Acta Crystallogr F Struct Biol Commun 2018; 74:543-548. [PMID: 30198886 PMCID: PMC6130422 DOI: 10.1107/s2053230x18009755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/09/2018] [Indexed: 11/10/2022] Open
Abstract
The transcriptional activity of RNA polymerase (RNAP) is controlled by a diverse set of regulatory factors. A subset of these regulators modulate the activity of RNAP through its secondary channel. Gre factors reactivate stalled elongation complexes by enhancing the intrinsic cleavage activity of RNAP. In the present study, the protein MSMEG_6292, a Gre-factor homologue from Mycobacterium smegmatis, was expressed heterologously in Escherichia coli and purified using standard chromatographic techniques. The hanging-drop vapour-diffusion crystallization method yielded diffraction-quality crystals. The crystals belonged to the trigonal space group P3121 (or its enantiomorph P3221), with unit-cell parameters a = b = 83.15, c = 107.07 Å, α = β = 90, γ = 120°. The crystals diffracted to better than 3.0 Å resolution. Molecular-replacement attempts did not yield any phasing models; hence, platinum derivatization was carried out with K2PtCl4 and derivative data were collected to 3.4 Å resolution.
Collapse
Affiliation(s)
- Abyson Joseph
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum, Kerala 695 016, India
| | - Valakunja Nagaraja
- Microbiology and Cell Biology Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ramanathan Natesh
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum, Kerala 695 016, India
| |
Collapse
|
5
|
Shao Q, Cortes MG, Trinh JT, Guan J, Balázsi G, Zeng L. Coupling of DNA Replication and Negative Feedback Controls Gene Expression for Cell-Fate Decisions. iScience 2018; 6:1-12. [PMID: 30240603 PMCID: PMC6137276 DOI: 10.1016/j.isci.2018.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/21/2018] [Accepted: 07/09/2018] [Indexed: 11/16/2022] Open
Abstract
Cellular decision-making arises from the expression of genes along a regulatory cascade, which leads to a choice between distinct phenotypic states. DNA dosage variations, often introduced by replication, can significantly affect gene expression to ultimately bias decision outcomes. The bacteriophage lambda system has long served as a paradigm for cell-fate determination, yet the effect of DNA replication remains largely unknown. Here, through single-cell studies and mathematical modeling we show that DNA replication drastically boosts cI expression to allow lysogenic commitment by providing more templates. Conversely, expression of CII, the upstream regulator of cI, is surprisingly robust to DNA replication due to the negative autoregulation of the Cro repressor. Our study exemplifies how living organisms can not only utilize DNA replication for gene expression control but also implement mechanisms such as negative feedback to allow the expression of certain genes to be robust to dosage changes resulting from DNA replication.
Collapse
Affiliation(s)
- Qiuyan Shao
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Michael G Cortes
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA; Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Jimmy T Trinh
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Jingwen Guan
- Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA; Molecular and Environmental Plant Science, Texas A&M University, College Station, TX 77843, USA
| | - Gábor Balázsi
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.
| | - Lanying Zeng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA; Molecular and Environmental Plant Science, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
6
|
Mangiameli SM, Merrikh CN, Wiggins PA, Merrikh H. Transcription leads to pervasive replisome instability in bacteria. eLife 2017; 6. [PMID: 28092263 PMCID: PMC5305214 DOI: 10.7554/elife.19848] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/15/2017] [Indexed: 12/19/2022] Open
Abstract
The canonical model of DNA replication describes a highly-processive and largely continuous process by which the genome is duplicated. This continuous model is based upon in vitro reconstitution and in vivo ensemble experiments. Here, we characterize the replisome-complex stoichiometry and dynamics with single-molecule resolution in bacterial cells. Strikingly, the stoichiometries of the replicative helicase, DNA polymerase, and clamp loader complexes are consistent with the presence of only one active replisome in a significant fraction of cells (>40%). Furthermore, many of the observed complexes have short lifetimes (<8 min), suggesting that replisome disassembly is quite prevalent, possibly occurring several times per cell cycle. The instability of the replisome complex is conflict-induced: transcription inhibition stabilizes these complexes, restoring the second replisome in many of the cells. Our results suggest that, in contrast to the canonical model, DNA replication is a largely discontinuous process in vivo due to pervasive replication-transcription conflicts. DOI:http://dx.doi.org/10.7554/eLife.19848.001
Collapse
Affiliation(s)
| | | | - Paul A Wiggins
- Department of Physics, University of Washington, Seattle, United States.,Department of Microbiology, University of Washington, Seattle, United States.,Department of Bioengineering, University of Washington, Seattle, United States
| | - Houra Merrikh
- Department of Microbiology, University of Washington, Seattle, United States.,Department of Genome Sciences, University of Washington, Seattle, United States
| |
Collapse
|
7
|
Mangiameli SM, Merrikh CN, Wiggins PA, Merrikh H. Transcription leads to pervasive replisome instability in bacteria. eLife 2017; 6. [PMID: 28092263 DOI: 10.7554/elife.19848.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/15/2017] [Indexed: 05/21/2023] Open
Abstract
The canonical model of DNA replication describes a highly-processive and largely continuous process by which the genome is duplicated. This continuous model is based upon in vitro reconstitution and in vivo ensemble experiments. Here, we characterize the replisome-complex stoichiometry and dynamics with single-molecule resolution in bacterial cells. Strikingly, the stoichiometries of the replicative helicase, DNA polymerase, and clamp loader complexes are consistent with the presence of only one active replisome in a significant fraction of cells (>40%). Furthermore, many of the observed complexes have short lifetimes (<8 min), suggesting that replisome disassembly is quite prevalent, possibly occurring several times per cell cycle. The instability of the replisome complex is conflict-induced: transcription inhibition stabilizes these complexes, restoring the second replisome in many of the cells. Our results suggest that, in contrast to the canonical model, DNA replication is a largely discontinuous process in vivo due to pervasive replication-transcription conflicts.
Collapse
Affiliation(s)
| | | | - Paul A Wiggins
- Department of Physics, University of Washington, Seattle, United States
- Department of Microbiology, University of Washington, Seattle, United States
- Department of Bioengineering, University of Washington, Seattle, United States
| | - Houra Merrikh
- Department of Microbiology, University of Washington, Seattle, United States
- Department of Genome Sciences, University of Washington, Seattle, United States
| |
Collapse
|
8
|
Petzold C, Marceau AH, Miller KH, Marqusee S, Keck JL. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity. J Biol Chem 2015; 290:14626-36. [PMID: 25903123 PMCID: PMC4505529 DOI: 10.1074/jbc.m115.655134] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 04/16/2015] [Indexed: 12/21/2022] Open
Abstract
Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome.
Collapse
Affiliation(s)
- Christine Petzold
- From the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706 and
| | - Aimee H Marceau
- From the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706 and
| | - Katherine H Miller
- California Institute for Quantitative Biosciences, QB3 and Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Susan Marqusee
- California Institute for Quantitative Biosciences, QB3 and Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - James L Keck
- From the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706 and
| |
Collapse
|
9
|
Okada N, Shimizu N. Dissection of the beta-globin replication-initiation region reveals specific requirements for replicator elements during gene amplification. PLoS One 2013; 8:e77350. [PMID: 24124615 PMCID: PMC3790722 DOI: 10.1371/journal.pone.0077350] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/06/2013] [Indexed: 11/18/2022] Open
Abstract
Gene amplification plays a pivotal role in malignant transformation of human cells. A plasmid with both a mammalian replication-initiation region (IR)/origin/replicator and a nuclear matrix-attachment region (MAR) is spontaneously amplified in transfected cells by a mechanism that involves amplification at the extrachromosomal site, followed by amplification at the chromosomal arm, ultimately generating a long homogeneously staining region (HSR). Several observations suggest that replication initiation from IR sequences might mediate amplification. To test this idea, we previously dissected c-myc and DHFR IRs to identify the minimum sequence required to support amplification. In this study, we applied an improved analysis that discriminates between two amplification steps to the ß-globin RepP IR, which contains separate elements already known to be essential for initiation on the chromosome arm. The IR sequence was required at least for the extrachromosomal amplification step. In addition to the vector-encoded MAR, amplification also required an AT-rich region and a MAR-like element, consistent with the results regarding replicator activity on the chromosome. However, amplification did not require the AG-rich tract necessary for replicator activity, but instead required a novel sequence containing another AG-rich tract. The differential sequence requirement might be a consequence of extrachromosomal replication.
Collapse
Affiliation(s)
- Naoya Okada
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, Japan
| | - Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
10
|
SHARMA AJEETK, CHOWDHURY DEBASHISH. TEMPLATE-DIRECTED BIOPOLYMERIZATION: TAPE-COPYING TURING MACHINES. ACTA ACUST UNITED AC 2013. [DOI: 10.1142/s1793048012300083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
DNA, RNA and proteins are among the most important macromolecules in a living cell. These molecules are polymerized by molecular machines. These natural nano-machines polymerize such macromolecules, adding one monomer at a time, using another linear polymer as the corresponding template. The machine utilizes input chemical energy to move along the template which also serves as a track for the movements of the machine. In the Alan Turing year 2012, it is worth pointing out that these machines are "tape-copying Turing machines". We review the operational mechanisms of the polymerizer machines and their collective behavior from the perspective of statistical physics, emphasizing their common features in spite of the crucial differences in their biological functions. We also draw the attention of the physics community to another class of modular machines that carry out a different type of template-directed polymerization. We hope this review will inspire new kinetic models for these modular machines.
Collapse
Affiliation(s)
- AJEET K. SHARMA
- Department of Physics, Indian Institute of Technology, Kanpur 208016, India
| | | |
Collapse
|
11
|
Abstract
Much of our knowledge of the initiation of DNA replication comes from studies in the gram-negative model organism Escherichia coli. However, the location and structure of the origin of replication within the E. coli genome and the identification and study of the proteins which constitute the E. coli initiation complex suggest that it might not be as universal as once thought. The archetypal low-G+C-content gram-positive Firmicutes initiate DNA replication via a unique primosomal machinery, quite distinct from that seen in E. coli, and an examination of oriC in the Firmicutes species Bacillus subtilis indicates that it might provide a better model for the ancestral bacterial origin of replication. Therefore, the study of replication initiation in organisms other than E. coli, such as B. subtilis, will greatly advance our knowledge and understanding of these processes as a whole. In this minireview, we highlight the structure-function relationships of the Firmicutes primosomal proteins, discuss the significance of their oriC architecture, and present a model for replication initiation at oriC.
Collapse
|
12
|
Abstract
There is mounting evidence that there are frequent conflicts between complexes that replicate DNA and those that transcribe the same template, and that these conflicts lead to blockage of replication and genome instability. Such problems are perhaps best understood in bacteria, but it is becoming apparent that replicative barriers associated with transcription are a universal feature of life. This review summarizes what is currently known about how collisions between replisomes and transcription complexes are minimized and the mechanisms that help to resolve such collisions when they do occur. Although our understanding of these processes is still far from complete, a picture is emerging of a wide variety of different types of transcriptional blocks to replication that have resulted in a complex, overlapping system of mechanisms to avoid or tolerate such collisions.
Collapse
Affiliation(s)
- Peter McGlynn
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK.
| | | | | |
Collapse
|
13
|
Abstract
Threading of DNA through the central channel of a replicative ring helicase is known as helicase loading, and is a pivotal event during replication initiation at replication origins. Once loaded, the helicase recruits the primase through a direct protein-protein interaction to complete the initial 'priming step' of DNA replication. Subsequent assembly of the polymerases and processivity factors completes the structure of the replisome. Two replisomes are assembled, one on each strand, and move in opposite directions to replicate the parental DNA during the 'elongation step' of DNA replication. Replicative helicases are the motor engines of replisomes powered by the conversion of chemical energy to mechanical energy through ATP binding and hydrolysis. Bidirectional loading of two ring helicases at a replication origin is achieved by strictly regulated and intricately choreographed mechanisms, often through the action of replication initiation and helicase-loader proteins. Current structural and biochemical data reveal a wide range of different helicase-loading mechanisms. Here we review advances in this area and discuss their implications.
Collapse
Affiliation(s)
- Panos Soultanas
- School of Chemistry, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| |
Collapse
|