1
|
Ferrara Muñiz X, García E, Blanco FC, Garbaccio S, Garro C, Zumárraga M, Dellagostin O, Trangoni M, Marfil MJ, Bianco MV, Abdala A, Revelli J, Bergamasco M, Soutullo A, Marini R, Rocha RV, Sánchez A, Bigi F, Canal AM, Eirin ME, Cataldi AA. Field Trial with Vaccine Candidates Against Bovine Tuberculosis Among Likely Infected Cattle in a Natural Transmission Setting. Vaccines (Basel) 2024; 12:1173. [PMID: 39460339 PMCID: PMC11512252 DOI: 10.3390/vaccines12101173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Vaccines may improve the control and eradication of bovine tuberculosis. However, the evaluation of experimental candidates requires the assessment of the protection, excretion, transmission and biosafety. A natural transmission trial among likely infected animals was conducted. Methods: Seventy-four male heifers were randomly distributed (five groups) and vaccinated subcutaneously with attenuated strains (M. bovis Δmce2 or M. bovis Δmce2-phoP), a recombinant M. bovis BCG Pasteur (BCGr) or M. bovis BCG Pasteur. Then, they cohoused with a naturally infected bTB cohort under field conditions exposed to the infection. Results: A 23% of transmission of wild-type strains was confirmed (non-vaccinated group). Strikingly, first vaccination did not induce immune response (caudal fold test and IFN-gamma release assay). However, after 74 days of exposure to bTB, animals were re-vaccinated. Although their sensitization increased throughout the trial, the vaccines did not confer significant protection, when compared to the non-vaccinated group, as demonstrated by pathology progression of lesions and confirmatory tools. Besides, the likelihood of acquiring the infection was similar in all groups compared to the non-vaccinated group (p > 0.076). Respiratory and digestive excretion of viable vaccine candidates was undetectable. To note, the group vaccinated with M. bovis Δmce2-phoP exhibited the highest proportion of animals without macroscopic lesions, compared to the one vaccinated with BCG, although this was not statistically supported. Conclusions: This highlights that further evaluation of these vaccines would not guarantee better protection. The limitations detected during the trial are discussed regarding the transmission rate of M. bovis wild-type, the imperfect test for studying sensitization, the need for a DIVA diagnosis and management conditions of the trials performed under routine husbandry conditions. Re-vaccination of likely infected bovines did not highlight a conclusive result, even suggesting a detrimental effect on those vaccinated with M. bovis BCG.
Collapse
Affiliation(s)
- Ximena Ferrara Muñiz
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), UEDD CONICET-INTA, Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVyA)-CNIA, Hurlingham 1686, Buenos Aires Province, Argentina
| | - Elizabeth García
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), UEDD CONICET-INTA, Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVyA)-CNIA, Hurlingham 1686, Buenos Aires Province, Argentina
| | - Federico Carlos Blanco
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), UEDD CONICET-INTA, Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVyA)-CNIA, Hurlingham 1686, Buenos Aires Province, Argentina
| | - Sergio Garbaccio
- Instituto de Patobiología Veterinaria (IPVet), UEDD CONICET-INTA, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham 1686, Buenos Aires Province, Argentina
| | - Carlos Garro
- Instituto de Patobiología Veterinaria (IPVet), UEDD CONICET-INTA, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham 1686, Buenos Aires Province, Argentina
| | - Martín Zumárraga
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), UEDD CONICET-INTA, Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVyA)-CNIA, Hurlingham 1686, Buenos Aires Province, Argentina
| | - Odir Dellagostin
- Núcleo de Biotecnología, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-770, Río Grande do Soul, Brazil
| | - Marcos Trangoni
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), UEDD CONICET-INTA, Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVyA)-CNIA, Hurlingham 1686, Buenos Aires Province, Argentina
| | - María Jimena Marfil
- Cátedra de Enfermedades Infecciosas, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires 1113, Argentina
| | - Maria Verónica Bianco
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Fisiología y Recursos Genéticos Vegetales, Córdoba 5119, Córdoba Province, Argentina
| | - Alejandro Abdala
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela, Rafaela 2300, Santa Fe Province, Argentina
| | - Javier Revelli
- Veterinary Practitioner, Private Activity, San Martín 20, San Guillermo 2347, Santa Fe Province, Argentina
| | - Maria Bergamasco
- Laboratorio de Diagnóstico e Investigaciones Agropecuarias, Ministerio de Desarrollo Productivo de Santa Fe, Santa Fe 1251, Santa Fe Province, Argentina
| | - Adriana Soutullo
- Cátedra de Inmunología Básica, Facultad de Ciencias Bioquímicas y Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Santa Fe Province, Argentina
| | - Rocío Marini
- Cátedra de Patología Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Esperanza 3080, Santa Fe Province, Argentina
| | - Rosana Valeria Rocha
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), UEDD CONICET-INTA, Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVyA)-CNIA, Hurlingham 1686, Buenos Aires Province, Argentina
| | - Amorina Sánchez
- Cátedra de Patología Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Esperanza 3080, Santa Fe Province, Argentina
| | - Fabiana Bigi
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), UEDD CONICET-INTA, Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVyA)-CNIA, Hurlingham 1686, Buenos Aires Province, Argentina
| | - Ana María Canal
- Cátedra de Patología Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Esperanza 3080, Santa Fe Province, Argentina
| | - María Emilia Eirin
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), UEDD CONICET-INTA, Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVyA)-CNIA, Hurlingham 1686, Buenos Aires Province, Argentina
| | - Angel Adrián Cataldi
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), UEDD CONICET-INTA, Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVyA)-CNIA, Hurlingham 1686, Buenos Aires Province, Argentina
| |
Collapse
|
2
|
Gomez-Buendia A, Romero B, Bezos J, Lozano F, de Juan L, Alvarez J. Spoligotype-specific risk of finding lesions in tissues from cattle infected by Mycobacterium bovis. BMC Vet Res 2021; 17:148. [PMID: 33827573 PMCID: PMC8028093 DOI: 10.1186/s12917-021-02848-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/24/2021] [Indexed: 11/17/2022] Open
Abstract
Background Although the pathogenic effect of members of the Mycobacterium tuberculosis complex in susceptible hosts is well known, differences in clinical signs and pathological findings observed in infected animals have been reported, likely due to a combination of host and pathogen-related factors. Here, we investigated whether Mycobacterium bovis strains belonging to different spoligotypes were associated with a higher risk of occurrence of visible/more severe lesions in target organs (lungs and/or lymph nodes) from infected animals. A large collection of 8889 samples belonging to cattle were classified depending on the presence/absence of tuberculosis-like lesions and its degree of severity. All samples were subjected to culture irrespective of the presence of lesions, and isolates retrieved were identified and subjected to spoligotyping. The association between the presence/severity of the lesions and the isolation of strains from a given spoligotype was assessed using non-parametric tests and Bayesian mixed multivariable logistic regression models that accounted for origin (region and herd) effects. Results Results suggested a difference in severity in lesioned samples depending on the strain’s spoligotype. An association between specific spoligotypes and presence of lesions was observed, with a higher risk of finding lesions in animals infected with strains with spoligotypes SB0120, SB0295 and SB1142 compared with SB0121, and in those coming from certain regions in Spain. Conclusions Our results suggest that strains belonging to certain spoligotypes may be associated with a higher probability in the occurrence of gross/macroscopic lesions in infected cattle, although these observational findings should be confirmed in further studies that allow accounting for the effect of other possible confounders not considered here, and ultimately through experimental studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-02848-3.
Collapse
Affiliation(s)
- Alberto Gomez-Buendia
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Beatriz Romero
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Javier Bezos
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Lozano
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Lucía de Juan
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Julio Alvarez
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain. .,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
3
|
Meiring C, Higgitt R, Dippenaar A, Roos E, Buss P, Hewlett J, Cooper D, Rogers P, Klerk‐Lorist L, Schalkwyk L, Hausler G, Helden P, Möller M, Warren R, Miller M. Characterizing epidemiological and genotypic features of
Mycobacterium bovis
infection in wild dogs (
Lycaon pictus
). Transbound Emerg Dis 2020. [DOI: 10.1111/tbed.13947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Christina Meiring
- DSI‐NRF Centre of Excellence for Biomedical Tuberculosis Research Cape Town South Africa
- South African Medical Research Council Centre for Tuberculosis Research Cape Town South Africa
- Division of Molecular Biology and Human Genetics Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| | - Roxanne Higgitt
- DSI‐NRF Centre of Excellence for Biomedical Tuberculosis Research Cape Town South Africa
- South African Medical Research Council Centre for Tuberculosis Research Cape Town South Africa
- Division of Molecular Biology and Human Genetics Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| | - Anzaan Dippenaar
- DSI‐NRF Centre of Excellence for Biomedical Tuberculosis Research Cape Town South Africa
- South African Medical Research Council Centre for Tuberculosis Research Cape Town South Africa
- Division of Molecular Biology and Human Genetics Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| | - Eduard Roos
- DSI‐NRF Centre of Excellence for Biomedical Tuberculosis Research Cape Town South Africa
- South African Medical Research Council Centre for Tuberculosis Research Cape Town South Africa
- Division of Molecular Biology and Human Genetics Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| | - Peter Buss
- Veterinary Wildlife Services South African National Parks Skukuza South Africa
| | - Jennie Hewlett
- Veterinary Wildlife Services South African National Parks Skukuza South Africa
- Paraclinical Department Faculty of Veterinary Science University of Pretoria Onderstepoort South Africa
| | - Dave Cooper
- Ezemvelo KZN Wildlife Mtubatuba South Africa
| | - Peter Rogers
- Provet Wildlife Services & Companion Animal Hospital Hoedspruit South Africa
| | - Lin‐Mari Klerk‐Lorist
- Department of Agriculture, Forestry and FisheriesOffice of the State Veterinarian Skukuza South Africa
| | - Louis Schalkwyk
- Department of Agriculture, Forestry and FisheriesOffice of the State Veterinarian Skukuza South Africa
| | - Guy Hausler
- DSI‐NRF Centre of Excellence for Biomedical Tuberculosis Research Cape Town South Africa
- South African Medical Research Council Centre for Tuberculosis Research Cape Town South Africa
- Division of Molecular Biology and Human Genetics Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| | - Paul Helden
- DSI‐NRF Centre of Excellence for Biomedical Tuberculosis Research Cape Town South Africa
- South African Medical Research Council Centre for Tuberculosis Research Cape Town South Africa
- Division of Molecular Biology and Human Genetics Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| | - Marlo Möller
- DSI‐NRF Centre of Excellence for Biomedical Tuberculosis Research Cape Town South Africa
- South African Medical Research Council Centre for Tuberculosis Research Cape Town South Africa
- Division of Molecular Biology and Human Genetics Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| | - Rob Warren
- DSI‐NRF Centre of Excellence for Biomedical Tuberculosis Research Cape Town South Africa
- South African Medical Research Council Centre for Tuberculosis Research Cape Town South Africa
- Division of Molecular Biology and Human Genetics Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| | - Michele Miller
- DSI‐NRF Centre of Excellence for Biomedical Tuberculosis Research Cape Town South Africa
- South African Medical Research Council Centre for Tuberculosis Research Cape Town South Africa
- Division of Molecular Biology and Human Genetics Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| |
Collapse
|
4
|
Eirin M, Carignano H, Shimizu E, Pando MA, Zumárraga M, Magnano G, Macías A, Garbaccio S, Huertas P, Morsella C, Ferrara Muñiz X, Cataldi A, Paolicchi F, Poli M. BoLA-DRB3 exon2 polymorphisms among tuberculous cattle: Nucleotide and functional variability and their association with bovine tuberculosis pathology. Res Vet Sci 2020; 130:118-125. [PMID: 32172000 DOI: 10.1016/j.rvsc.2020.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 02/19/2020] [Accepted: 03/02/2020] [Indexed: 10/24/2022]
Abstract
Bovine tuberculosis (bTB) is caused by Mycobacterium bovis and disseminated worldwide. In Argentina, the highest prevalence occurs in dairy areas. BoLA DRB3.2 is related to the adaptive immunity in mycobacterial infections. Genetic polymorphisms of this marker have been associated with resistance or susceptibility to bovine diseases. We evaluated the association between BoLA DRB3.2 polymorphisms and bTB pathology scores in dairy and beef cattle breeds of Argentina. Most bovines exhibited visible lesions compatible with tuberculosis and, furthermore, 150 (85.7%) were also positive by bacteriology. A pathology index showed a variable degree of disease, from 3 to 76 (median pathology score = 9 (IQR: 7-15)). Thirty-five BoLA DRB3.2 alleles were identified with an associated frequency from 16% to 0.3%, distributed 73% (n = 128) in heterozygosis and 27% (n = 47) in homozygosis, with 12 BoLA DRB3.2 alleles (*0101, *1101, *1501, *0201, *2707 *1001, *1002, *1201, *14011, *0501 *0902 and *0701) representing the 74.7% of the population variability. A functional analysis grouped them in 4 out of 5 clusters (A-D), suggesting a functional overlapping. Among the 90 identified genotypes, *1101/*1101, *1101/*1501 and *0101/*0101 were the most frequent (10%, 8.9% and 8.9%, respectively). No association was detected between the pathology scores and a specific DRB3.2 allele (p > .05). Animals infected with M. bovis spoligotype SB0153 showed a significantly higher pathology score than those affected by the spoligotype SB0145 (p = .018). Furthermore, the Aberdeen Angus breed exhibited highest pathological scores (p < .0001), which were associated with disseminated lesion, thus suggesting that the host component could be important to the disease progression.
Collapse
Affiliation(s)
- M Eirin
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Biotecnología, IABIMO, INTA, CONICET, Buenos Aires, Argentina; CONICET, Argentina.
| | - H Carignano
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Genética, Buenos Aires, Argentina.
| | - E Shimizu
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Biotecnología, IABIMO, INTA, CONICET, Buenos Aires, Argentina.
| | - M A Pando
- CONICET, Argentina; Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), UBA-CONICET, Facultad de Medicina, Buenos Aires, Argentina.
| | - M Zumárraga
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Biotecnología, IABIMO, INTA, CONICET, Buenos Aires, Argentina; CONICET, Argentina.
| | - G Magnano
- Departamento de Patología Animal, Universidad Nacional de Río Cuarto, Facultad de Agronomía y Veterinaria, Córdoba, Argentina.
| | - A Macías
- Departamento de Patología Animal, Universidad Nacional de Río Cuarto, Facultad de Agronomía y Veterinaria, Córdoba, Argentina.
| | - S Garbaccio
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Patobiología Veterinaria (IPV), INTA, CONICET, Buenos Aires, Argentina.
| | - P Huertas
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Patobiología Veterinaria (IPV), INTA, CONICET, Buenos Aires, Argentina.
| | - C Morsella
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Balcarce, Buenos Aires, Argentina.
| | - X Ferrara Muñiz
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Biotecnología, IABIMO, INTA, CONICET, Buenos Aires, Argentina.
| | - A Cataldi
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Biotecnología, IABIMO, INTA, CONICET, Buenos Aires, Argentina; CONICET, Argentina.
| | - F Paolicchi
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Balcarce, Buenos Aires, Argentina.
| | - M Poli
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Genética, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Crispell J, Benton CH, Balaz D, De Maio N, Ahkmetova A, Allen A, Biek R, Presho EL, Dale J, Hewinson G, Lycett SJ, Nunez-Garcia J, Skuce RA, Trewby H, Wilson DJ, Zadoks RN, Delahay RJ, Kao RR. Combining genomics and epidemiology to analyse bi-directional transmission of Mycobacterium bovis in a multi-host system. eLife 2019; 8:e45833. [PMID: 31843054 PMCID: PMC6917503 DOI: 10.7554/elife.45833] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 10/15/2019] [Indexed: 01/02/2023] Open
Abstract
Quantifying pathogen transmission in multi-host systems is difficult, as exemplified in bovine tuberculosis (bTB) systems, but is crucial for control. The agent of bTB, Mycobacterium bovis, persists in cattle populations worldwide, often where potential wildlife reservoirs exist. However, the relative contribution of different host species to bTB persistence is generally unknown. In Britain, the role of badgers in infection persistence in cattle is highly contentious, despite decades of research and control efforts. We applied Bayesian phylogenetic and machine-learning approaches to bacterial genome data to quantify the roles of badgers and cattle in M. bovis infection dynamics in the presence of data biases. Our results suggest that transmission occurs more frequently from badgers to cattle than vice versa (10.4x in the most likely model) and that within-species transmission occurs at higher rates than between-species transmission for both. If representative, our results suggest that control operations should target both cattle and badgers.
Collapse
Affiliation(s)
- Joseph Crispell
- School of Veterinary Medicine, Veterinary Sciences CentreUniversity College DublinDublinIreland
| | - Clare H Benton
- National Wildlife Management CentreAnimal & Plant Health Agency (APHA)LondonUnited Kingdom
| | - Daniel Balaz
- Roslin InstituteUniversity of EdinburghEdinburghUnited Kingdom
| | - Nicola De Maio
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI)CambridgeUnited Kingdom
| | - Assel Ahkmetova
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life SciencesUniversity of GlasgowGlasgowUnited Kingdom
| | - Adrian Allen
- Agri-Food & Biosciences Institute Northern Ireland (AFBNI)BelfastUnited Kingdom
| | - Roman Biek
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life SciencesUniversity of GlasgowGlasgowUnited Kingdom
| | - Eleanor L Presho
- Agri-Food & Biosciences Institute Northern Ireland (AFBNI)BelfastUnited Kingdom
| | - James Dale
- Animal & Plant Health Agency (APHA)LondonUnited Kingdom
| | - Glyn Hewinson
- Centre for Bovine Tuberculosis, Institute of Biological, Environmental and Rural SciencesUniversity of AberystwythAberystwythUnited Kingdom
| | | | | | - Robin A Skuce
- Agri-Food & Biosciences Institute Northern Ireland (AFBNI)BelfastUnited Kingdom
| | | | - Daniel J Wilson
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population HealthUniversity of OxfordOxfordUnited Kingdom
| | - Ruth N Zadoks
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life SciencesUniversity of GlasgowGlasgowUnited Kingdom
| | - Richard J Delahay
- National Wildlife Management CentreAnimal & Plant Health Agency (APHA)LondonUnited Kingdom
| | - Rowland Raymond Kao
- Roslin InstituteUniversity of EdinburghEdinburghUnited Kingdom
- Royal (Dick) School of Veterinary StudiesUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
6
|
Benítez-Guzmán A, Esquivel-Solís H, Romero-Torres C, Arriaga-Díaz C, Gutiérrez-Pabello JA. Genetically Related Mycobacterium bovis Strains Displayed Differential Intracellular Growth in Bovine Macrophages. Vet Sci 2019; 6:vetsci6040081. [PMID: 31635257 PMCID: PMC6958473 DOI: 10.3390/vetsci6040081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 01/30/2023] Open
Abstract
Molecular typing of bacterial isolates provides a powerful approach for distinguishing Mycobacterium bovis (M. bovis) genotypes. It is known that M. bovis strain virulence plays a role in prevalence and spread of the disease, suggesting that strain virulence and prevailing genotypes are associated. However, it is not well understood whether strain virulence correlates with particular genotypes. In this study, we assessed the in vitro intracellular growth of 18 M. bovis isolates in bovine macrophages as an indicator of bacterial virulence and sought a relationship with the genotype identified by spoligotyping. We found 14 different spoligotypes—11 were already known and three spoligotypes had never been reported before. We identified 2 clusters that were phylogenetically related, containing 10 and 6 strains, respectively, and 2 orphan strains. Intracellular growth and phagocytic rates of 18 M. bovis strains were heterogeneous. Our results suggest that M. bovis intracellular growth and phagocytosis are independent of the bacterial lineage identified by spoligotyping.
Collapse
Affiliation(s)
- Alejandro Benítez-Guzmán
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | - Hugo Esquivel-Solís
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico.
| | - Cecilia Romero-Torres
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, CENID Microbiología, Ciudad de México 05110, Mexico.
| | - Camila Arriaga-Díaz
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, CENID Microbiología, Ciudad de México 05110, Mexico.
| | - José A Gutiérrez-Pabello
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| |
Collapse
|
7
|
Hlokwe TM, Michel AL, Mitchel E, Gcebe N, Reininghaus B. First detection of Mycobacterium bovis infection in Giraffe (Giraffa camelopardalis) in the Greater Kruger National Park Complex: Role and implications. Transbound Emerg Dis 2019; 66:2264-2270. [PMID: 31233666 DOI: 10.1111/tbed.13275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 06/07/2019] [Accepted: 06/16/2019] [Indexed: 01/02/2023]
Abstract
Bovine tuberculosis (bovine TB) caused by Mycobacterium bovis has become endemic in some wildlife populations in South Africa. The disease has been reported in 21 wildlife species in the country. In this study, we report M. bovis infection in two female giraffes (Giraffa camelopardalis) from two different nature reserves within the Greater Kruger National Park Complex (GKNPC). Mycobacterium bovis was isolated from tissue lesions consistent with macroscopic appearance of tuberculosis (TB) and confirmed by polymerase chain reactions (PCRs), targeting the RD4 region of difference on the genome of the isolates. Spoligotyping and variable number of tandem repeat (VNTR) typing revealed infection of one giraffe with a strain (SB0294) previously not detected in South Africa, while a resident M. bovis strain (SB0121) was detected from the other giraffe. Our work is first to report M. bovis infection in free-ranging giraffes in South Africa. We have further demonstrated the existence of at least three genetically unrelated strains currently infecting wildlife species within the GKNPC. This finding suggests that the epidemiological situation of M. bovis within the GKNPC is not only driven by internal sources from its established endemic presence, but can be additionally fuelled by strains introduced from external sources. It further emphasizes that regular wildlife disease surveillance is an essential prerequisite for the timely identification of new pathogens or strains in ecospheres of high conservation value.
Collapse
Affiliation(s)
- Tiny M Hlokwe
- Tuberculosis Laboratory, Diagnostic Services Programme, ARC-Onderstepoort Veterinary Research, Pretoria, South Africa
| | - Anita L Michel
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Sciences, Bovine TB and Brucellosis Research Programme, University of Pretoria, Pretoria, South Africa
| | - Emily Mitchel
- Department of Paraclinical Sciences, Faculty of Veterinary Sciences, University of Pretoria, Pretoria, South Africa.,National Zoological Gardens of South Africa, South African National Biodiversity Institute, Pretoria, South Africa
| | - Nomakorinte Gcebe
- Tuberculosis Laboratory, Diagnostic Services Programme, ARC-Onderstepoort Veterinary Research, Pretoria, South Africa
| | - Bjorn Reininghaus
- Department of Agriculture, Rural Development, Land and Environmental Affairs, Mpumalanga Veterinary Services, Thulamahashe, South Africa
| |
Collapse
|
8
|
Cheng G, Hussain T, Sabir N, Ni J, Li M, Zhao D, Zhou X. Comparative Study of the Molecular Basis of Pathogenicity of M. bovis Strains in a Mouse Model. Int J Mol Sci 2018; 20:ijms20010005. [PMID: 30577452 PMCID: PMC6337294 DOI: 10.3390/ijms20010005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/14/2022] Open
Abstract
It is widely accepted that different strains of Mycobacterium tuberculosis have variable degrees of pathogenicity and induce different immune responses in infected hosts. Similarly, different strains of Mycobacterium bovis have been identified but there is a lack of information regarding the degree of pathogenicity of these strains and their ability to provoke host immune responses. Therefore, in the current study, we used a mouse model to evaluate various factors involved in the severity of disease progression and the induction of immune responses by two strains of M. bovis isolated from cattle. Mice were infected with both strains of M. bovis at different colony-forming unit (CFU) via inhalation. Gross and histological findings revealed more severe lesions in the lung and spleen of mice infected with M. bovis N strain than those infected with M. bovis C68004 strain. In addition, high levels of interferon-γ (IFN-γ), interleukin-17 (IL-17), and IL-22 production were observed in the serum samples of mice infected with M. bovis N strain. Comparative genomic analysis showed the existence of 750 single nucleotide polymorphisms and 145 small insertions/deletions between the two strains. After matching with the Virulence Factors Database, mutations were found in 29 genes, which relate to 17 virulence factors. Moreover, we found an increased number of virulent factors in M. bovis N strain as compared to M. bovis C68004 strain. Taken together, our data reveal that variation in the level of pathogenicity is due to the mutation in the virulence factors of M. bovis N strain. Therefore, a better understanding of the mechanisms of mutation in the virulence factors will ultimately contribute to the development of new strategies for the control of M. bovis infection.
Collapse
Affiliation(s)
- Guangyu Cheng
- State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Tariq Hussain
- State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Naveed Sabir
- State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Jiamin Ni
- State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Miaoxuan Li
- State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Deming Zhao
- State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Xiangmei Zhou
- State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
9
|
Encinas M, Marfil M, Garbaccio S, Barandiaran S, Huertas P, Morsella C, Macías A, Magnano G, Zapata L, Bigi F, Cataldi A, Paolicchi F, Zumárraga M, Eirin M. Mycobacterium bovis ESAT-6, CFP-10 and EspC antigens show high conservation among field isolates. Tuberculosis (Edinb) 2018; 111:143-146. [DOI: 10.1016/j.tube.2018.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/04/2018] [Accepted: 06/07/2018] [Indexed: 11/26/2022]
|
10
|
Zimpel CK, Brandão PE, de Souza Filho AF, de Souza RF, Ikuta CY, Ferreira Neto JS, Camargo NCS, Heinemann MB, Guimarães AMS. Complete Genome Sequencing of Mycobacterium bovis SP38 and Comparative Genomics of Mycobacterium bovis and M. tuberculosis Strains. Front Microbiol 2017; 8:2389. [PMID: 29259589 PMCID: PMC5723337 DOI: 10.3389/fmicb.2017.02389] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/20/2017] [Indexed: 12/22/2022] Open
Abstract
Mycobacterium bovis causes bovine tuberculosis and is the main organism responsible for zoonotic tuberculosis in humans. We performed the sequencing, assembly and annotation of a Brazilian strain of M. bovis named SP38, and performed comparative genomics of M. bovis genomes deposited in GenBank. M. bovis SP38 has a traditional tuberculous mycobacterium genome of 4,347,648 bp, with 65.5% GC, and 4,216 genes. The majority of CDSs (2,805, 69.3%) have predictive function, while 1,206 (30.07%) are hypothetical. For comparative analysis, 31 M. bovis, 32 M. bovis BCG, and 23 Mycobacterium tuberculosis genomes available in GenBank were selected. M. bovis RDs (regions of difference) and Clonal Complexes (CC) were identified in silico. Genome dynamics of bacterial groups were analyzed by gene orthology and polymorphic sites identification. M. bovis polymorphic sites were used to construct a phylogenetic tree. Our RD analyses resulted in the exclusion of three genomes, mistakenly annotated as virulent M. bovis. M. bovis SP38 along with strain 35 represent the first report of CC European 2 in Brazil, whereas two other M. bovis strains failed to be classified within current CC. Results of M. bovis orthologous genes analysis suggest a process of genome remodeling through genomic decay and gene duplication. Quantification, pairwise comparisons and distribution analyses of polymorphic sites demonstrate greater genetic variability of M. tuberculosis when compared to M. bovis and M. bovis BCG (p ≤ 0.05), indicating that currently defined M. tuberculosis lineages are more genetically diverse than M. bovis CC and animal-adapted MTC (M. tuberculosis Complex) species. As expected, polymorphic sites annotation shows that M. bovis BCG are subjected to different evolutionary pressures when compared to virulent mycobacteria. Lastly, M. bovis phylogeny indicates that polymorphic sites may be used as markers of M. bovis lineages in association with CC. Our findings highlight the need to better understand host-pathogen co-evolution in genetically homogeneous and/or diverse host populations, considering the fact that M. bovis has a broader host range when compared to M. tuberculosis. Also, the identification of M. bovis genomes not classified within CC indicates that the diversity of M. bovis lineages may be larger than previously thought or that current classification should be reviewed.
Collapse
Affiliation(s)
- Cristina Kraemer Zimpel
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Paulo E Brandão
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Antônio F de Souza Filho
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Robson F de Souza
- Laboratory of Protein Structure and Evolution, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cássia Y Ikuta
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - José Soares Ferreira Neto
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Naila C Soler Camargo
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcos Bryan Heinemann
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana M S Guimarães
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Allen AR. One bacillus to rule them all? - Investigating broad range host adaptation in Mycobacterium bovis. INFECTION GENETICS AND EVOLUTION 2017; 53:68-76. [PMID: 28434972 DOI: 10.1016/j.meegid.2017.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/11/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Adrian R Allen
- Agri-Food and Biosciences Institute, AFBI Stormont, Department of Bacteriology, Lamont Building, Stoney Road, Belfast BT4 3SD, United Kingdom.
| |
Collapse
|
12
|
Vargas-Romero F, Mendoza-Hernández G, Suárez-Güemes F, Hernández-Pando R, Castañón-Arreola M. Secretome profiling of highly virulent Mycobacterium bovis 04-303 strain reveals higher abundance of virulence-associated proteins. Microb Pathog 2016; 100:305-311. [PMID: 27769937 DOI: 10.1016/j.micpath.2016.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 09/28/2016] [Accepted: 10/17/2016] [Indexed: 02/02/2023]
Abstract
Mycobacterium bovis is the causative agent of tuberculosis in farms, wildlife and causes sporadic disease in humans. Despite the high similitude in genome sequence between M. bovis strains, some strains like the wild boar 04-303 isolate show a highly virulent phenotype in animal models. Comparative studies will contribute to link protein expression with the virulence phenotype. In vitro, the 04-303 strain was more phagocytized by J774A.1 macrophages in comparison with 444 strain (a cow isolate with the same genotype) and BCG. The secretome of these strains showed a significant proportion of shared proteins (368 spots). Among the proteins only visualized in the secretome of the 04-303 strain, we identify the nine most abundant proteins by LC-MS/MS. The most relevant were EsxA and EsxB proteins, which are encoded in the RD1 region, deleted in BCG strains. These proteins are the major virulence factor of M. tuberculosis. The other proteins identified belong to functional categories of virulence, detoxification, and adaptation; lipid metabolism; and cell wall and cell processes. The relatively high proportion of proteins involved in the cell wall and cell process is consistent with the previously described variation among M. bovis genomes.
Collapse
Affiliation(s)
- Fernando Vargas-Romero
- Genomic Sciences Program, Universidad Autónoma de la Ciudad de México, San Lorenzo 290, Colonia Del Valle, Delegación Benito Juárez, CP 03100, Ciudad de México, Mexico
| | - Guillermo Mendoza-Hernández
- School of Medicine, Universidad Nacional Autónoma de México, Av Universidad 3000, Coyoacán, Copilco Universidad, 04510 Ciudad de México, Mexico
| | - Francisco Suárez-Güemes
- School of Veterinary Medicine and Zootechnics, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Coyoacán, Copilco Universidad, 04510 Ciudad de México, Mexico
| | - Rogelio Hernández-Pando
- Experimental Pathology Department, National Institute of Medical Sciences and Nutrition Salvador Zubirán (INCMNSZ), Av. Vasco de Quiroga 15, Tlalpan, Belisario Domínguez Sección XVI, 14080 Ciudad de México, Mexico
| | - Mauricio Castañón-Arreola
- Genomic Sciences Program, Universidad Autónoma de la Ciudad de México, San Lorenzo 290, Colonia Del Valle, Delegación Benito Juárez, CP 03100, Ciudad de México, Mexico.
| |
Collapse
|
13
|
El-Sayed A, El-Shannat S, Kamel M, Castañeda-Vazquez MA, Castañeda-Vazquez H. Molecular Epidemiology of Mycobacterium bovis in Humans and Cattle. Zoonoses Public Health 2015; 63:251-64. [PMID: 26684712 DOI: 10.1111/zph.12242] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 11/29/2022]
Abstract
Bovine tuberculosis (bTB), caused by Mycobacterium bovis (M. bovis), is a serious re-emerging disease in both animals and humans. The evolution of the Multi- and Extensively drug-resistant M. bovis strains (MDR-TB and XDR-TB) represents a global threat to public health. Worldwide, the disease is responsible for great economic losses in the veterinary field, serious threat to the ecosystem, and about 3.1% of human TB cases, up to 16% in Tanzania. Only thorough investigation to understand the pathogen's epidemiology can help in controlling the disease and minimizing its threat. For this purpose, various tools have been developed for use in advanced molecular epidemiological studies of bTB, either alone or in combination with standard conventional epidemiological approaches. These techniques enable the analysis of the intra- and inter-species transmission dynamics of bTB. The delivered data can reveal detailed insights into the source of infection, correlations among human and bovine isolates, strain diversity and evolution, spread, geographical localization, host preference, tracing of certain virulence factors such as antibiotic resistance genes, and finally the risk factors for the maintenance and spread of M. bovis. They also allow for the determination of epidemic and endemic strains. This, in turn, has a significant diagnostic impact and helps in vaccine development for bTB eradication programs. The present review discusses many topics including the aetiology, epidemiology and importance of M. bovis, the prevalence of bTB in humans and animals in various countries, the molecular epidemiology of M. bovis, and finally applied molecular epidemiological techniques.
Collapse
Affiliation(s)
- A El-Sayed
- Laboratory of Molecular Epidemiology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - S El-Shannat
- Laboratory of Molecular Epidemiology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - M Kamel
- Laboratory of Molecular Epidemiology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt.,Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - M A Castañeda-Vazquez
- Laboratory of Mastitis and Molecular Diagnostic, Department of Veterinary Medicine, Division of Veterinary Sciences, University of Guadalajara, Guadalajara, Mexico
| | - H Castañeda-Vazquez
- Laboratory of Mastitis and Molecular Diagnostic, Department of Veterinary Medicine, Division of Veterinary Sciences, University of Guadalajara, Guadalajara, Mexico
| |
Collapse
|
14
|
de la Fuente J, Díez-Delgado I, Contreras M, Vicente J, Cabezas-Cruz A, Tobes R, Manrique M, López V, Romero B, Bezos J, Dominguez L, Sevilla IA, Garrido JM, Juste R, Madico G, Jones-López E, Gortazar C. Comparative Genomics of Field Isolates of Mycobacterium bovis and M. caprae Provides Evidence for Possible Correlates with Bacterial Viability and Virulence. PLoS Negl Trop Dis 2015; 9:e0004232. [PMID: 26583774 PMCID: PMC4652870 DOI: 10.1371/journal.pntd.0004232] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/22/2015] [Indexed: 11/26/2022] Open
Abstract
Mycobacteria of the Mycobacterium tuberculosis complex (MTBC) greatly affect humans and animals worldwide. The life cycle of mycobacteria is complex and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Recently, comparative genomics analyses have provided new insights into the evolution and adaptation of the MTBC to survive inside the host. However, most of this information has been obtained using M. tuberculosis but not other members of the MTBC such as M. bovis and M. caprae. In this study, the genome of three M. bovis (MB1, MB3, MB4) and one M. caprae (MB2) field isolates with different lesion score, prevalence and host distribution phenotypes were sequenced. Genome sequence information was used for whole-genome and protein-targeted comparative genomics analysis with the aim of finding correlates with phenotypic variation with potential implications for tuberculosis (TB) disease risk assessment and control. At the whole-genome level the results of the first comparative genomics study of field isolates of M. bovis including M. caprae showed that as previously reported for M. tuberculosis, sequential chromosomal nucleotide substitutions were the main driver of the M. bovis genome evolution. The phylogenetic analysis provided a strong support for the M. bovis/M. caprae clade, but supported M. caprae as a separate species. The comparison of the MB1 and MB4 isolates revealed differences in genome sequence, including gene families that are important for bacterial infection and transmission, thus highlighting differences with functional implications between isolates otherwise classified with the same spoligotype. Strategic protein-targeted analysis using the ESX or type VII secretion system, proteins linking stress response with lipid metabolism, host T cell epitopes of mycobacteria, antigens and peptidoglycan assembly protein identified new genetic markers and candidate vaccine antigens that warrant further study to develop tools to evaluate risks for TB disease caused by M. bovis/M.caprae and for TB control in humans and animals. Mycobacteria belonging to the Mycobacterium tuberculosis complex infect humans and animals since pre-history and are a serious health problem worldwide. Whole-genome sequencing and comparative genomics generate information on the evolution and molecular basis of pathogenicity and transmissibility. However, while genomic information is increasingly available for the main human pathogens such as Mycobacterium tuberculosis, little is known about closely related bacteria, Mycobacterium bovis and Mycobacterium caprae. These mycobacteria infect humans causing zoonotic tuberculosis and are the main causative agents of animal tuberculosis. Although human-to-human transmission of zoonotic tuberculosis is limited, the infection often causes extra-pulmonary disease in humans and is still a major public health concern in developing countries, causing not only human disease but also severe effects on livelihoods. In this study, whole-genome sequences and targeted comparative genomics of three Mycobacterium bovis and one Mycobacterium caprae field isolates generated new information on the evolution and phenotypic variation of these mycobacteria. The results identified new genetic markers and candidate vaccine antigens that warrant further study to develop tools to evaluate risks for tuberculosis caused by M. bovis/M.caprae and for disease control in humans and animals.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Iratxe Díez-Delgado
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Joaquín Vicente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Alejandro Cabezas-Cruz
- Center for Infection and Immunity of Lille (CIIL), INSERM U1019 –CNRS UMR 8204, Université de Lille, Institut Pasteur de Lille, Lille, France
| | - Raquel Tobes
- Oh no sequences! Research Group, Era7 Bioinformatics, Granada, Spain
| | - Marina Manrique
- Oh no sequences! Research Group, Era7 Bioinformatics, Granada, Spain
| | - Vladimir López
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Beatriz Romero
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| | - Javier Bezos
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
- MAEVA SERVET S.L., Madrid, Spain
| | - Lucas Dominguez
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense de Madrid, Madrid, Spain
| | - Iker A. Sevilla
- NEIKER-Tecnalia, Instituto Vasco de Investigación y Desarrollo Agrario, Departamento de Sanidad Animal, Vizcaya, Spain
| | - Joseba M. Garrido
- NEIKER-Tecnalia, Instituto Vasco de Investigación y Desarrollo Agrario, Departamento de Sanidad Animal, Vizcaya, Spain
| | - Ramón Juste
- NEIKER-Tecnalia, Instituto Vasco de Investigación y Desarrollo Agrario, Departamento de Sanidad Animal, Vizcaya, Spain
| | - Guillermo Madico
- Section of Infectious Diseases, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Edward Jones-López
- Section of Infectious Diseases, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Christian Gortazar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
- * E-mail:
| |
Collapse
|
15
|
Uzoewulu GN, Lawson L, Nnanna IS, Rastogi N, Goyal M. Genetic diversity of Mycobacterium tuberculosis complex strains isolated from patients with pulmonary tuberculosis in Anambra State, Nigeria. Int J Mycobacteriol 2015; 5:74-9. [PMID: 26927993 DOI: 10.1016/j.ijmyco.2015.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 11/24/2022] Open
Abstract
In this study, we analyzed Mycobacterium tuberculosis complex (MTC) genetic diversity in Anambra State, Nigeria based on spoligotyping followed by 5-loci exact tandem repeats (ETRs). Spoligotyping of 180 MTC strains isolated in 2009-2011 from pulmonary tuberculosis (TB) patients led to a total of 31 distinct patterns. A comparison with the SITVIT2 international database showed that all the 31 patterns could be classified as Shared-types (SITs) in this database; briefly, 26/31 SITs (n=174 isolates) matched a preexisting shared-type in the database, whereas 5/31 SITs (n=6 isolates) were newly created due to 2 or more strains belonging to an identical new pattern within this study (SIT3396) or after a match with an orphan in the database (SIT3397, SIT3398, SIT3399 and SIT3400). A total of 18/31 SITs containing 167 or 92.8% isolates were clustered within this study (2-89 isolates per cluster) while 13/31 SITs contained unique strains. Using VNTR typing, a total of 36 distinct patterns were identified; 27 patterns (n=157 isolates) matched a pattern already reported in the SITVIT2 database. Combination of both the methods generated 47 combined patterns for the 180 strains: 17 belonged to clustered isolates (n=127 isolates or 70.5%) while 30 corresponded to as many unique strains (note 23 strains could not be typed using 5-loci ETRs). No correlation was found between the spoligotyping pattern and the HIV status of the patient or drug sensitivity of the strain. This study showed that the LAM10-CAM prototype SIT61 accounted for highest number of isolates (n=89) in Anambra State, showing its relative contribution to the TB burden in the study.
Collapse
Affiliation(s)
| | | | | | - Nalin Rastogi
- World Health Organization TB Supranational Reference Laboratory, Institut Pasteur de Guadeloupe, Les Abymes, Guadeloupe, France.
| | - Madhu Goyal
- University of Hertfordshire, Hatfield, England, UK.
| |
Collapse
|
16
|
Goats challenged with different members of the Mycobacterium tuberculosis complex display different clinical pictures. Vet Immunol Immunopathol 2015; 167:185-9. [PMID: 26235598 DOI: 10.1016/j.vetimm.2015.07.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/07/2015] [Accepted: 07/20/2015] [Indexed: 01/01/2023]
Abstract
Tuberculosis (TB) in goats (Capra hircus) is due to infection with members of the Mycobacterium tuberculosis complex (MTC), mainly Mycobacterium bovis and Mycobacterium caprae. We report a comparative experimental infection of goats with M. bovis, M. caprae and M. tuberculosis strains. We hypothesized that goats experimentally infected with different members of the MTC would display different clinical pictures. Three groups of goats were challenged with either M. bovis SB0134 (group 1, n=5), M. caprae SB0157 (group 2, n=5) and M. tuberculosis SIT58 (group 3, n=4). The highest mean total lesion score was observed in M. bovis challenged goats (mean 15.2, range 9-19), followed by those challenged with M. caprae (10.8, 2-23). The lowest score was recorded in goats challenged with M. tuberculosis (3, 1-6). Culture results coincided with the lesion scores in yielding more positive pools (7/15) in M. bovis challenged goats. By contrast, only three pools were positive from goats challenged M. tuberculosis (3/12) and with M. caprae (3/15), respectively. Differences in the performance of the intradermal and gamma-interferon (IFN-γ) tests depending of the group were observed since all goats from group 1 were diagnosed using intradermal test and these goats reacted earlier to the IFN-γ assay in comparison to the other groups. This study confirmed that goats experimentally infected with different members of the MTC display different clinical pictures and this fact may have implications for MTC maintenance and bacterial shedding.
Collapse
|
17
|
Cazola DDO, Jorge KDS, Zumárraga MJ, Souza-Filho AF, Araújo FR, Osório ALA. Identificação e genotipagem de Mycobacterium bovis em bovinos positivos no teste intradérmico para tuberculose em Mato Grosso do Sul. PESQUISA VETERINÁRIA BRASILEIRA 2015. [DOI: 10.1590/s0100-736x2015000200008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neste estudo, realizou-se genotipagem de isolados de Mycobacterium bovis, provenientes de amostras de tecidos de bovinos positivos no teste cervical comparativo (TCC) para tuberculose em Mato Grosso do Sul, por meio da técnica de spoligotyping. Tecidos de 13 bovinos positivos, oriundos de diferentes municípios do estado, foram cultivados em meio de Stonebrink. As colônias resultantes foram submetidas à coloração de Ziehl-Neelsen e todos os isolados apresentaram características tintoriais de BAAR. Os 13 isolados de BAAR foram identificados por PCR multiplex (mPCR). O gene hsp65 foi alvo para identificação de Mycobacterium spp, a sequência de inserção IS6110 foi alvo para identificação de complexo Mycobacterium tuberculosis (CMT) e a região rvd1rv2031c foi explorada para detecção de M. bovis. Os isolados micobacterianos foram genotipados pela técnica de spoligotyping. Dos 13 bovinos, sete tinham pelo menos uma lesão sugestiva de tuberculose em linfonodos retrofaríngeos, parotídeos e pulmonares ou no pulmão, e em seis não foram encontradas lesões visíveis sugestivas da doença. Na mPCR, 11/13 (84,6%) isolados foram positivos para Mycobacterium spp; 8/13 (61,5%) positivos para CMT e 7/13 (53,8%) positivos para M. bovis. Com base no spoligotyping, oito isolados de BAAR foram agrupados dentro de três diferentes agrupamentos de genótipos e uma amostra remanescente apresentou perfil único, sendo quatro isolados com padrão de espoligotipo SB0121, dois SB1145, dois SB0881 e um SB0140. A técnica de spoligotyping demonstrou que há diversidade genética entre os espoligotipos presentes no estado de Mato Grosso do Sul, embora predomine o perfil SB0121
Collapse
|
18
|
Bacteriological diagnosis and molecular strain typing of Mycobacterium bovis and Mycobacterium caprae. Res Vet Sci 2014; 97 Suppl:S30-43. [DOI: 10.1016/j.rvsc.2014.04.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 04/08/2014] [Accepted: 04/24/2014] [Indexed: 11/24/2022]
|